
Mathematics 242 – Principles of Analysis
Solutions for Exam 1 – February 21, 2014

Directions: Do all work in the blue exam booklet (do not place any work that you want to
have considered for credit on this sheet). There are 100 regular and 10 extra credit points.

I.
A) (10) Define: The real number a is a least upper bound of A ⊂ R, and state the Least

Upper Bound Axiom for R.

Solution: a is a least upper bound of A if (1) a ≥ x for all x ∈ A, and (2) if a′ ≥ x for
all x ∈ A, then a′ ≥ a. The LUB Axiom states that if A is a nonempty subset of R

that is bounded above, then A has a least upper bound in R.

B) (10) Let

A =
∞
⋂

n=1

(

1 +
1

n
, 4 − 1

n

)

Explain why A is bounded and determine the least upper and greatest lower bounds
for A.

Solution: When n = 1, we have
(

1 + 1

n
, 4 − 1

n

)

= (2, 3). For n > 1, 1 + 1

n
< 2 and

4 − 1

n
> 3. Hence the intersection of all the intervals

(

1 + 1

n
, 4 − 1

n

)

is equal to the
interval for n = 1: A = (2, 3). Hence glb(A) = 2 and lub(A) = 3.

C) (15) Let A be a bounded subset of R with lub(A) = 2, and let B = {−4x+3 | x ∈ A}.
What can be said about glb(B)? Prove your assertion.

Solution: glb)(B) must exist and equal −5. Proof: First, 2 is an upper bound for A,
so for all x ∈ A, x ≤ 2. Hence −4x ≥ −8, and so −4x + 3 ≥ −5. Next if b is any
lower bound for B, we have b ≤ −4x + 3 for all x ∈ A, hence b−3

−4
= 3−b

4
≥ x for all x

in A. Since 2 = lub(A), this implies 3−b

4
≥ 2, so 3 − b ≥ 8, and hence b ≤ −5. This

shows glb(B) = −5.

II. (15) Let xn be the sequence defined by the rules x1 = 1 and xn+1 = −2

5
xn + 1 for all

n ≥ 1. Show by mathematical induction that

0 ≤ xn ≤ 1 for all n ≥ 1.

Solution: The base case for the induction is n = 1 and x1 = 1 ≥ 0, so there is nothing
else to be proved there. Now for the induction step, assume 0 ≤ xk ≤ 1. Then the
−2

5
≤ −2

5
x ≤ 0, so −2

5
+ 1 ≤ −2

5
x + 1 ≤ 1, which shows what we want since −2

5
+ 1 ≥ 0.

III. Let xn = 3n
2

5n2+3n+1
for all natural numbers n ≥ 1.



A) (10) Determine limn→∞ xn intuitively.

Solution: Dividing numerator and denominator by n2 have

xn =
3

5 + 3

n
+ 1

n2

so we expect xn → 3

5
as n → ∞.

B) (20) Use the ε, n0 definition of convergence to prove that {xn} converges to the number
you identified in part A.

Solution: Let ε > 0. Since N is not bounded in the real numbers, there exists n0 in
N with n0 > 2

5ε
, so 2

5n0

< ε. Then for any n ≥ n0, we have

∣

∣

∣

∣

3n2

5n2 + 3n + 1
− 3

5

∣

∣

∣

∣

=
9n + 3

25n2 + 15n + 5

<
10n

25n2

=
2

5n

≤ 2

5n0

< ε.

This shows xn → 3

5
as n → ∞.

IV. True-False. For each true statement, give a short proof or reason. For each false
statement, give an explicit counterexample.

A) (10) If A and B are two nonempty bounded sets of real numbers and lub(B) > lub(A),
then y > x for all y ∈ B and all x ∈ A.

Solution: This is FALSE. A counterexample would be something like A = [0, 1] and
B = [−1, 2] Then lub(A) = 1 and lub(B) = 2, but B also contains elements smaller
than elements in A: −1 ∈ B but −1 < x for some x ∈ A (in fact all x in A, but that
would not be necessary to get a counterexample).

B) Let

A = {x ∈ R | 0 < x < 1, and x = r
√

2 for some r ∈ Q}.
Then lub(A) = 1.

Solution: This is TRUE. First, x < 1 for all x ∈ A by definition. Now, let 0 < a < 1
be any real number. We claim that there are elements of A between a and 1, so that



a cannot be an upper bound for A. To see this, note that by a theorem we proved in

class, there must be rational numbers r in the interval
(

a√
2
, 1√

2

)

. So for any such r,

a < r
√

2 < 1. Hence r
√

2 ∈ A. This shows that a cannot be an upper bound for A.
Hence lub(A) = 1.

Extra Credit (10) Is it possible to produce a sequence xn whose terms include all the
positive and negative integers? If so, give an indication how to construct such a sequence.
If not, give a reason why there cannot exist such a sequence.

Solution: There is such a sequence, and an example can be constructed like this: Let

xn =

{

1−n

2
if n is odd

n

2
if n is even

Listing out the first few terms we see

0, 1,−1, 2,−2, 3,−3, . . .

so it is clear that every integer will be in the set of terms of the sequence. The positive
integers come from n even and the non-positive integers come from n odd.


