> Mathematics 242 - Principles of Analysis
> Solutions - Final Examination
> May 9, 2014
I. We have

$$
A=\{\tan (x): x \in[0, \pi / 4]\}=[0,1]
$$

and

$$
B=\{x: 1<|x|<3\}=(-3,-1) \cup(1,3)
$$

so:
A) $A \cup B=[0,1] \cup((-3,-1) \cup(1,3))=(-3,-1) \cup[0,3)$.
B) For each $x \in A,|x-2|$ represents the distance along the number line from x to 2 . So

$$
C=\{|x-2|: x \in A\}=[1,2]
$$

The least upper bound of C is 2 .
II. A) We say $\lim _{n \rightarrow \infty} x_{n}=L$ if for all $\varepsilon>0$, there exist n_{0} such that $\left|x_{n}-L\right|<\varepsilon$ for all $n \geq n_{0}$.
B) We have

$$
\lim _{n \rightarrow \infty} 1+\frac{(-1)^{n}}{\sqrt{n}}=1
$$

To prove this, note that

$$
\left|1+\frac{(-1)^{n}}{\sqrt{n}}-1\right|=\frac{1}{\sqrt{n}}
$$

For any given $\varepsilon>0$, since \mathbf{N} is not bounded in \mathbf{R}, there exist

$$
n_{0}>\frac{1}{\varepsilon^{2}} \Leftrightarrow \frac{1}{\sqrt{n_{0}}}<\varepsilon
$$

Hence if $n \geq n_{0}$, then we have

$$
\left|1+\frac{(-1)^{n}}{\sqrt{n}}-1\right|=\frac{1}{\sqrt{n}} \leq \frac{1}{\sqrt{n_{0}}}<\varepsilon
$$

This shows the sequence converges to 1 .
III. There is such an index sequence n_{k}. The sequence $x_{n}=\sin (n)$ is bounded since $|\sin (n)| \leq 1$ for all n. Hence the Bolzano-Weierstrass Theorem says that there exists a convergent subsequence $x_{n_{\ell}}=\sin \left(n_{\ell}\right)$ for some strictly increasing index sequence of integers n_{ℓ}. Consider the sequence $\cos \left(n_{\ell}\right)$, using these same indices n_{ℓ}. This is also a bounded sequence since $\left|\cos \left(n_{\ell}\right)\right| \leq 1$ for all ℓ. Hence the Bolzano-Weierstrass Theorem implies that there is a convergent subsequence of this sequence, say $y_{n_{\ell_{k}}}=\cos \left(n_{\ell_{k}}\right)$. Note that this sequence comes from a subsequence of the index sequence n_{ℓ}. Hence $x_{n_{\ell_{k}}}$ is a
subsequence of a convergent sequence. Since any subsequence of a convergent sequence is convergent too, the $x_{n_{\ell_{k}}}$ is also convergent.
IV. A) Let f be defined on a deleted interval D about c (that is, at all points on some interval containing c, except possibly at c itself). Then we say $\lim _{x \rightarrow c} f(x)=L$ if for all $\varepsilon>0$, there exist $\delta>0$ such that $|f(x)-L|<\varepsilon$ for all $x \in D$ with $0<|x-c|<\delta$. If we are considering the limit as $x \rightarrow+\infty$, then we should assume $f(x)$ is defined for all x sufficiently large and the definition of $\lim _{x \rightarrow+\infty} f(x)=L$ becomes: For all $\varepsilon>0$, there exist $B>0$ such that $|f(x)-L|<\varepsilon$ for all $x>B$.
B) The limit here is -1 . Proof: Let $\varepsilon>0$ and let $\delta=\min (1, \varepsilon / 3)$. Then for all x with $0<|x-0|<\delta$, we have

$$
\left|x^{2}-4 x+2-(-1)\right|=\left|x^{2}-4 x+3\right|=|x-1||x-3| .
$$

Since $|x-1|<1$, we have $0<x<2$. Hence $|x-3|<3$. But then:

$$
\left|x^{2}-4 x+2-(-1)\right|=|x-1||x-3|<\frac{\varepsilon}{3} \cdot 3=\varepsilon
$$

This shows the limit equals $L=-1$.
C) As $x \rightarrow \infty, 1 / x \rightarrow 0$. Hence the limit should be 1 . Let $\varepsilon>0$, and let $B>\frac{1}{\sqrt{\varepsilon}}$. Then $x>B$ implies $x>\frac{1}{\sqrt{\varepsilon}}$, so $\frac{1}{x^{2}}<\varepsilon$. Hence if $x>B$, then

$$
\left|\frac{1}{1+\frac{1}{x^{2}}}-1\right|=\left|\frac{\frac{-1}{x^{2}}}{1+\frac{1}{x^{2}}}\right|=\frac{1}{x^{2}+1}<\frac{1}{x^{2}}<\varepsilon
$$

This shows $\lim _{x \rightarrow+\infty} \frac{1}{1+\frac{1}{x^{2}}}=1$.
V. A) Statement of IVT: If f is continuous on $[a, b]$ and y_{0} is any number between $f(a)$ and $f(b)$, then there exists $c \in[a, b]$ with $f(c)=y_{0}$. See the class notes or the text for this proof.
B) The denominator $x^{4}+48$ is nonzero for all $x \in \mathbf{R}$. Hence $f(x)=\frac{32 x}{x^{4}+48}$ is continuous at all x. We see $f(0)=0$ and $f(2)=\frac{64}{64}=1$. By the IVT on the interval $[0,2]$, for each k with $0<k<1$, there is at least one $x \in(0,2)$ such that $f(x)=k$. To find a second x satisfying this condition, note that $\lim _{x \rightarrow+\infty} f(x)=0$. Hence given any $0<k<1$, we will have $f(b)<k$ for some $b>2$ as well. By the IVT again, in the interval $[2, b]$, there is also at least one additional solution of $f(x)=k$ for $x \in(2,+\infty)$.
C) If for some $k, f\left(x_{1}\right)=f\left(x_{2}\right)=k$ for some $x_{1} \neq x_{2}$, then $f^{\prime}(x)=0$ for some x between x_{1} and x_{2} by the special case of the MVT known as Rolle's Theorem. However, our function f has derivative

$$
f^{\prime}(x)=\frac{1536-96 x^{2}}{\left(x^{4}+48\right)^{2}}
$$

(quotient rule for derivatives!). This is zero for $x>0$ only at $x=2$. Hence by Rolle's Theorem, on the intervals $(0,2)$ and $(2,+\infty)$, there cannot be more than one solution of $f(x)=k$ in each interval. This means that there are exactly two of them all together.
VI. We want to show that given any $\varepsilon>0$, there exists a partition \mathcal{P} of $[0,2]$ such that $U(f, \mathcal{P})-L(f, \mathcal{P})<\varepsilon$. Since the function changes from being decreasing to increasing (and is discontinuous) at $x=1$, let's chose a regular partition of $[0,1]$ with an even number $n=2 q$ of subintervals, so that $x_{q}=1$ is always one of the endpoints. We have $x_{i}=2 i /(2 q)=i / q$ for $i=0, \ldots, 2 q$ for each $q \in \mathbf{N}$. On the first half of the interval, f is increasing. So for $i=1, \ldots, q$, we will have $m_{i}=f((i-1) /(2 q))=\frac{(i-1)}{2 q}+1$ and for $i=1, \ldots, q-1, M_{i}=f(i /(2 q))=\frac{i}{2 q}+1$, while $M_{q}=2$. But then for $i=q+1, \ldots, 2 q, f$ is decreasing so $m_{i}=f(i /(2 q))=\frac{-i}{2 q}, M_{i}=f((i-1) /(2 q))=\frac{-(i-1)}{2 q}$. At this point, it is possible either to add up the upper and lower sums and subtract, or we can also be more clever. Following the proof that f monotone implies f integrable on $[0,1]$ and $[1,2]$, we can see that

$$
U(f, \mathcal{P})-L(f, \mathcal{P})=(2-1) \frac{1}{2 q}+((-1)-(-2)) \frac{1}{2 q}=\frac{1}{q}
$$

We can get this $<\varepsilon$ for any $q>1 / \varepsilon$. The value of the integral is computed by taking the limit of the upper sum:

$$
\begin{aligned}
\lim _{q \rightarrow \infty}\left[\sum_{i=1}^{q}\left(\frac{i}{2 q}+1\right)+\sum_{i=q+1}^{2 q} \frac{-(i-1)}{2 q}\right] \frac{1}{2 q} & =\lim _{q \rightarrow \infty}\left[\frac{1}{4 q^{2}} \sum_{i=1}^{q} i+\frac{1}{2 q} \sum_{i=1}^{q} 1+\sum_{i=1}^{q}\left(-1-\frac{i}{2 q}\right) \frac{1}{2 q}\right] \\
& =\lim _{q \rightarrow \infty}\left[\frac{1}{4 q^{2}} \frac{q(q+1)}{2}+\frac{1}{2}-\frac{1}{2}-\frac{1}{4 q^{2}} \frac{q(q+1)}{2}\right] \\
& =0
\end{aligned}
$$

(This can also be checked by the Fundamental Theorem:

$$
\left.\int_{0}^{2} f=\int_{0}^{1} x+1 d x+\int_{1}^{2}-x d x=\frac{x^{2}}{2}+\left.x\right|_{0} ^{1}-\left.\frac{x^{2}}{2}\right|_{1} ^{2}=\frac{3}{2}-2+\frac{1}{2}=0 .\right)
$$

VII. A) FALSE. Note that the problem does not say to assume the terms are all positive. For instance, the series $\sum_{n=1}^{\infty}(-1)^{n}$ has partial sums

$$
S_{N}= \begin{cases}-1 & \text { if } N \text { odd } \\ 0 & \text { if } N \text { even }\end{cases}
$$

So the set of partial sums is bounded with $\left|S_{N}\right| \leq 1$ all N. However the sequence of partial sums does not converge, so the series does not converge.
B) TRUE. If $f^{\prime}(0)$ exists, then f must also be continuous at $x=0$. This implies

$$
\lim _{x \rightarrow 0^{-}} \cos (2 x)=1=\lim _{x \rightarrow 0^{+}} a x^{2}+b x+c
$$

Hence $c=1$. Then to get $f^{\prime}(0)$ to exist, we must have

$$
\lim _{x \rightarrow 0^{-}} \frac{\cos (2 x)-1}{x}=0=\lim _{x \rightarrow 0^{+}} \frac{a x^{2}+b x+1-1}{x}
$$

This implies $b=0$. Finally, and similarly, to get $f^{\prime \prime}(0)$ to exist we must have $a=-2$. Here's why: We have $f^{\prime}(x)=-2 \sin (2 x)$ for all $x<0$ and $f^{\prime}(x)=2 a x$ for $x>0$.

$$
\lim _{x \rightarrow 0^{-}} \frac{-2 \sin (2 x)-0}{x-0}=-4=2 a=\lim _{x \rightarrow 0^{+}} \frac{2 a x-0}{x}
$$

C) FALSE. The Ratio Test gives that the power series converges absolutely on the open interval $(-2,2)$. But in fact, note that with $x=2$ we get $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$. This series diverges by the integral test:

$$
\lim _{b \rightarrow \infty} \int_{1}^{b} \frac{1}{\sqrt{x}} d x=\lim _{b \rightarrow \infty} 2 \sqrt{b}-2
$$

is not finite. (Or: It's a p-series with $p=1 / 2<1$, so it must diverge.) Hence the power series does not converge absolutely on the closed interval $[-2,2]$.
D) TRUE. The idea is the same as in V C above. If there were distinct $x_{1}<x_{2}$ with $f\left(x_{1}\right)=f\left(x_{2}\right)$, then Rolle's Theorem would imply that $f^{\prime}(c)=0$ for some $c \in\left(x_{1}, x_{2}\right)$.
E) FALSE. This can be seen by experimenting a bit with the formulas. For instance with $n=3, k=1$, we get $\bar{x}=\frac{5 \cdot 4}{6 \cdot 5}=\frac{2}{3}$, and $\bar{y}=\frac{5 \cdot 4}{9 \cdot 7}=\frac{20}{63}$. However $(\bar{x})^{3}=\frac{8}{27}$, which is clearly less than \bar{y}. Hence $\bar{y}>(\bar{x})^{3}$.

In fact, we claim that for each fixed positive integer k,

$$
\lim _{n \rightarrow \infty} \bar{y}-(\bar{x})^{n}=\frac{1}{4}-\frac{1}{e^{2}}>0
$$

It follows that there exists an n_{0} (depending on k) such that $\bar{y}>\bar{x}^{n}$ for all $n \geq n_{0}$. (This says that the centroid of the region R lies above the upper boundary of R when n is sufficiently large(!)) Here's how to see this: First

$$
\bar{y}=\frac{(n+k+1)(n+1)}{(2 n+2 k+1)(2 n+1)}=\frac{n^{2}+(k+2) n+1}{4 n^{2}+(4 k+4) n+1}
$$

and it follows easily that $\lim _{n \rightarrow \infty} \bar{y}=\frac{1}{4}$. Now consider

$$
\lim _{n \rightarrow \infty} \bar{x}^{n}=\lim _{n \rightarrow \infty}\left(\frac{(n+k+1)(n+1)}{(n+k+2)(n+2)}\right)^{n}
$$

This is a 1^{∞} indeterminate form. So we proceed as in a problem on Problem Set 9 . We take the logarithm and apply L'Hopital's Rule to evaluate this limit:

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \ln \left(\frac{(n+k+1)(n+1)}{(n+k+2)(n+2)}\right)^{n} & =\lim _{n \rightarrow \infty} n \ln \left(\frac{(n+k+1)(n+1)}{(n+k+2)(n+2)}\right) \\
& =\lim _{n \rightarrow \infty} \frac{\ln \left(\frac{\left(n^{2}+(k+2) n+1\right)}{\left(n^{2}+(k+4) n+4\right)}\right)}{\frac{1}{n}} \\
& =\lim _{n \rightarrow \infty} \frac{\frac{n^{2}+(k+4) n+4}{n^{2}+(k+2) n+1} \cdot \frac{2 n^{2}+6 n+3 k+4}{\left(n^{2}+(k+4) n+4\right)^{2}}}{\frac{-1}{n^{2}}} \\
& =-2
\end{aligned}
$$

Hence

$$
\lim _{n \rightarrow \infty} \bar{x}^{n}=\lim _{n \rightarrow \infty}\left(\frac{(n+k+1)(n+1)}{(n+k+2)(n+2)}\right)^{n}=e^{-2}
$$

This concludes the proof.

