Mathematics 242 — Principles of Analysis
Solutions — Final Examination

May 9, 2014
I. We have
A = {tan(z) : z € [0,7/4]} = [0, 1]
and
B={z:1<|z|<3}=(-3,-1)U(L,3)
SO:

A) AUB =[0,1]U((~3,~1)U (1,3)) = (~3,-1) U[0,3).
B) For each z € A, |x — 2| represents the distance along the number line from x to 2. So

C={lz—-2|:2z€ A} =11,2]
The least upper bound of C' is 2.

I1. A) We say lim,,_. o z, = L if for all £ > 0, there exist ngy such that |z,, — L| < ¢ for all
n > no.

B) We have

_1)n
lim 1+( )

=1.
n—o00 \/ﬁ

To prove this, note that

)1+ iy —1‘ _

N

For any given € > 0, since N is not bounded in R, there exist

1 1
ng > = & —— < ¢.
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Hence if n > ng, then we have
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This shows the sequence converges to 1.

II1. There is such an index sequence ny. The sequence x,, = sin(n) is bounded since
|sin(n)| < 1 for all n. Hence the Bolzano-Weierstrass Theorem says that there exists
a convergent subsequence x,, = sin(n,) for some strictly increasing index sequence of
integers ny. Consider the sequence cos(nyg), using these same indices ny. This is also a
bounded sequence since | cos(ng)| < 1 for all £. Hence the Bolzano-Weierstrass Theorem
implies that there is a convergent subsequence of this sequence, say v, 0 = cos(ny, ). Note
that this sequence comes from a subsequence of the index sequence ny. Hence Tp, Isa
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subsequence of a convergent sequence. Since any subsequence of a convergent sequence is
convergent too, the x,, is also convergent.

IV. A) Let f be defined on a deleted interval D about ¢ (that is, at all points on some
interval containing ¢, except possibly at c itself). Then we say lim,_,. f(x) = L if for all
e > 0, there exist § > 0 such that |f(x) — L| < e for all z € D with 0 < |z —¢| < §. If
we are considering the limit as © — +o0, then we should assume f(z) is defined for all z
sufficiently large and the definition of lim,_,;~ f(z) = L becomes: For all ¢ > 0, there
exist B > 0 such that |f(z) — L| < ¢ for all z > B.

B) The limit here is —1. Proof: Let ¢ > 0 and let 6 = min(1,¢/3). Then for all x with
0 < |z — 0| <9, we have

2% —dx +2— (—1)| = |2 — 4z + 3| = |z — 1||z — 3|.
Since |z — 1| < 1, we have 0 < = < 2. Hence |z — 3| < 3. But then:
22 — 4z +2 — (=1)| = |z — ||z — 3| <§-3:5.
This shows the limit equals L = —1.

C) As ¢ — o0, 1/x — 0. Hence the limit should be 1. Let £ > 0, and let B > —-. Then

NG
x > B implies x > %, SO m% < e. Hence if z > B, then
1 - N
-1} = = — < e
1+ L 1+ 4| 2241 2

This shows lim,_, 4 o 14—% =1.
z2

V. A) Statement of IVT: If f is continuous on [a, b] and y, is any number between f(a)
and f(b), then there exists ¢ € [a, b] with f(c) = yo. See the class notes or the text for this
proof.

B) The denominator z* + 48 is nonzero for all z € R. Hence f(z) = mfﬁs is continuous

at all z. We see f(0) = 0 and f(2) = 8 = 1. By the IVT on the interval [0,2], for each
k with 0 < k < 1, there is at least one = € (0,2) such that f(x) = k. To find a second
x satisfying this condition, note that lim,_, . f(z) = 0. Hence given any 0 < k < 1, we
will have f(b) < k for some b > 2 as well. By the IVT again, in the interval [2, b], there is
also at least one additional solution of f(z) =k for x € (2, +00).

C) If for some k, f(x1) = f(x2) = k for some z1 # x2, then f'(z) = 0 for some z between 1
and o by the special case of the MVT known as Rolle’s Theorem. However, our function
f has derivative

1536 — 9622

) = Gty
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(quotient rule for derivatives!). This is zero for x > 0 only at z = 2. Hence by Rolle’s
Theorem, on the intervals (0,2) and (2, +00), there cannot be more than one solution of
f(x) = k in each interval. This means that there are exactly two of them all together.

VI. We want to show that given any € > 0, there exists a partition P of [0, 2] such that
U(f,P)— L(f,P) < e. Since the function changes from being decreasing to increasing
(and is discontinuous) at x = 1, let’s chose a regular partition of [0,1] with an even
number n = 2¢ of subintervals, so that z, = 1 is always one of the endpoints. We have
x; = 2i1/(2q) = i/q for i = 0,...,2q for each ¢ € N. On the first half of the interval, f

is increasing. So for i = 1,...,¢q, we will have m; = f((i — 1)/(2q)) = (iz_ql) + 1 and for

i=1,...,q—1, M; = f(i/(2q)) = Q—iq + 1, while M, = 2. But then for i =¢+1,...,2¢q, f
is decreasing so m; = f(i/(2q)) = g—qi, M, = f((i—1)/(2q)) = %. At this point, it is
possible either to add up the upper and lower sums and subtract, or we can also be more
clever. Following the proof that f monotone implies f integrable on [0,1] and [1,2], we
can see that

1 1 1
Uf,P)—L(f,P)=2—-1)—+((-1)—(-2)— = -
(F.P) = L(f.P) = (2= 1o+ ((-1) = (-2))5- = =
We can get this < e for any ¢ > 1/e. The value of the integral is computed by taking the
limit of the upper sum:

- lim | —®¢™2) - - - 4ET7
eI 2 T2 2 ag 2

=0

(This can also be checked by the Fundamental Theorem:

2 1 2 2
/f:/:v-l-ldx-i-/ —zdr= —+2x
0 0 1 2

VII. A) FALSE. Note that the problem does not say to assume the terms are all positive.
For instance, the series Y - (—1)" has partial sums

1
0

—1 if N odd
S p—
N { 0 if N even.

So the set of partial sums is bounded with |Sy| < 1 all N. However the sequence of partial
sums does not converge, so the series does not converge.

B) TRUE. If f/(0) exists, then f must also be continuous at = 0. This implies

lim cos(2z) =1= lim az®+ bz +c.
z—0~ x—0t



Hence ¢ = 1. Then to get f'(0) to exist, we must have

lim cos(2x) — 1 0= lim ar? +br+1-1
z—0~ X z—0+ X

This implies b = 0. Finally, and similarly, to get f/(0) to exist we must have a = —2.
Here’s why: We have f/(z) = —2sin(2x) for all z < 0 and f/(z) = 2az for x > 0.

—9sin(2z) — 2az —
lim 258 =0 o) iy 20270
z—0~ x—0 z—0Tt T

C) FALSE. The Ratio Test gives that the power series converges absolutely on the open
interval (—2,2). But in fact, note that with = 2 we get >, ﬁ This series diverges
by the integral test:

b
1
lim / —dz = lim 2vb —2
b—oo 1 \/E b— o0
is not finite. (Or: It’s a p-series with p = 1/2 < 1, so it must diverge.) Hence the power
series does not converge absolutely on the closed interval [—2,2].

D) TRUE. The idea is the same as in V C above. If there were distinct x1 < x5 with
f(z1) = f(z2), then Rolle’s Theorem would imply that f’(c) = 0 for some ¢ € (x1, x2).

E) FALSE. This can be seen by experimenting a bit with the formulas. For instance with

n=3 k=1, wegetT =22 = %, and § = % = %. However (Z)3 = 2%, which is clearly

6.5
less than 7. Hence 7 > (7)°.

In fact, we claim that for each fized positive integer k,

1 1
nh_{gog_@)nzi_e_2>0‘

It follows that there exists an ngy (depending on k) such that § > z" for all n > ng.
(This says that the centroid of the region R lies above the upper boundary of R when n is
sufficiently large(!)) Here’s how to see this: First

(n+k+1)(n+1)  nP+(k+2)n+1
In+2k+1)2n+1)  4n2+ (dk+4)n+1

V=1

and it follows easily that lim,, ..y = %. Now consider

lim z" = lim
n—oo n—oo

<(n+k+1)(n+1))n
(n+k+2)(n+2)
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This is a 1°° indeterminate form. So we proceed as in a problem on Problem Set 9. We
take the logarithm and apply L’Hopital’s Rule to evaluate this limit:

(n+k+1)(n+1)\" . (n+k+1)(n+1)
= lim nln

(n+k+2)(n+2) (n+k+2)(n+2)

In ((n2+(k+2)n—|—1)>
(n24+(k+4)n+4)
1

n’+(k+4)n+4  2n2+46n+3k+4
lim n2+(k+2)n+1  (n?+4(k+4)n+4)?

n— oo _—%
n

lim In

n—oo

n—oo

= lim

n—oo

Hence

lim 2" = lim (

n—oo n—oo

This concludes the proof.



