
Mathematics 242 – Principles of Analysis
Solutions – Final Examination

May 9, 2014

I. We have
A = {tan(x) : x ∈ [0, π/4]} = [0, 1]

and
B = {x : 1 < |x| < 3} = (−3,−1) ∪ (1, 3)

so:
A) A ∪ B = [0, 1] ∪ ((−3,−1) ∪ (1, 3)) = (−3,−1) ∪ [0, 3).
B) For each x ∈ A, |x− 2| represents the distance along the number line from x to 2. So

C = {|x − 2| : x ∈ A} = [1, 2]

The least upper bound of C is 2.

II. A) We say limn→∞ xn = L if for all ε > 0, there exist n0 such that |xn − L| < ε for all
n ≥ n0.

B) We have

lim
n→∞

1 +
(−1)n

√
n

= 1.

To prove this, note that
∣

∣

∣

∣

1 +
(−1)n

√
n

− 1

∣

∣

∣

∣

=
1√
n

For any given ε > 0, since N is not bounded in R, there exist

n0 >
1

ε2
⇔ 1√

n0
< ε.

Hence if n ≥ n0, then we have

∣

∣

∣

∣

1 +
(−1)n

√
n

− 1

∣

∣

∣

∣

=
1√
n
≤ 1√

n0
< ε.

This shows the sequence converges to 1.

III. There is such an index sequence nk. The sequence xn = sin(n) is bounded since
| sin(n)| ≤ 1 for all n. Hence the Bolzano-Weierstrass Theorem says that there exists
a convergent subsequence xnℓ

= sin(nℓ) for some strictly increasing index sequence of
integers nℓ. Consider the sequence cos(nℓ), using these same indices nℓ. This is also a
bounded sequence since | cos(nℓ)| ≤ 1 for all ℓ. Hence the Bolzano-Weierstrass Theorem
implies that there is a convergent subsequence of this sequence, say ynℓk

= cos(nℓk
). Note

that this sequence comes from a subsequence of the index sequence nℓ. Hence xnℓk
is a
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subsequence of a convergent sequence. Since any subsequence of a convergent sequence is
convergent too, the xnℓk

is also convergent.

IV. A) Let f be defined on a deleted interval D about c (that is, at all points on some
interval containing c, except possibly at c itself). Then we say limx→c f(x) = L if for all
ε > 0, there exist δ > 0 such that |f(x) − L| < ε for all x ∈ D with 0 < |x − c| < δ. If
we are considering the limit as x → +∞, then we should assume f(x) is defined for all x
sufficiently large and the definition of limx→+∞ f(x) = L becomes: For all ε > 0, there
exist B > 0 such that |f(x) − L| < ε for all x > B.

B) The limit here is −1. Proof: Let ε > 0 and let δ = min(1, ε/3). Then for all x with
0 < |x − 0| < δ, we have

|x2 − 4x + 2 − (−1)| = |x2 − 4x + 3| = |x − 1||x − 3|.

Since |x − 1| < 1, we have 0 < x < 2. Hence |x − 3| < 3. But then:

|x2 − 4x + 2 − (−1)| = |x − 1||x − 3| <
ε

3
· 3 = ε.

This shows the limit equals L = −1.

C) As x → ∞, 1/x → 0. Hence the limit should be 1. Let ε > 0, and let B > 1√
ε
. Then

x > B implies x > 1√
ε
, so 1

x2 < ε. Hence if x > B, then

∣

∣

∣

∣

1

1 + 1
x2

− 1

∣

∣

∣

∣

=

∣

∣

∣

∣

−1
x2

1 + 1
x2

∣

∣

∣

∣

=
1

x2 + 1
<

1

x2
< ε.

This shows limx→+∞
1

1+ 1

x2

= 1.

V. A) Statement of IVT: If f is continuous on [a, b] and y0 is any number between f(a)
and f(b), then there exists c ∈ [a, b] with f(c) = y0. See the class notes or the text for this
proof.

B) The denominator x4 + 48 is nonzero for all x ∈ R. Hence f(x) = 32x
x4+48 is continuous

at all x. We see f(0) = 0 and f(2) = 64
64

= 1. By the IVT on the interval [0, 2], for each
k with 0 < k < 1, there is at least one x ∈ (0, 2) such that f(x) = k. To find a second
x satisfying this condition, note that limx→+∞ f(x) = 0. Hence given any 0 < k < 1, we
will have f(b) < k for some b > 2 as well. By the IVT again, in the interval [2, b], there is
also at least one additional solution of f(x) = k for x ∈ (2, +∞).

C) If for some k, f(x1) = f(x2) = k for some x1 6= x2, then f ′(x) = 0 for some x between x1

and x2 by the special case of the MVT known as Rolle’s Theorem. However, our function
f has derivative

f ′(x) =
1536 − 96x2

(x4 + 48)2
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(quotient rule for derivatives!). This is zero for x > 0 only at x = 2. Hence by Rolle’s
Theorem, on the intervals (0, 2) and (2, +∞), there cannot be more than one solution of
f(x) = k in each interval. This means that there are exactly two of them all together.

VI. We want to show that given any ε > 0, there exists a partition P of [0, 2] such that
U(f,P) − L(f,P) < ε. Since the function changes from being decreasing to increasing
(and is discontinuous) at x = 1, let’s chose a regular partition of [0, 1] with an even

number n = 2q of subintervals, so that xq = 1 is always one of the endpoints. We have
xi = 2i/(2q) = i/q for i = 0, . . . , 2q for each q ∈ N. On the first half of the interval, f

is increasing. So for i = 1, . . . , q, we will have mi = f((i − 1)/(2q)) = (i−1)
2q

+ 1 and for

i = 1, . . . , q − 1, Mi = f(i/(2q)) = i
2q

+ 1, while Mq = 2. But then for i = q + 1, . . . , 2q, f

is decreasing so mi = f(i/(2q)) = −i
2q

, Mi = f((i − 1)/(2q)) = −(i−1)
2q

. At this point, it is
possible either to add up the upper and lower sums and subtract, or we can also be more
clever. Following the proof that f monotone implies f integrable on [0, 1] and [1, 2], we
can see that

U(f,P) − L(f,P) = (2 − 1)
1

2q
+ ((−1) − (−2))

1

2q
=

1

q

We can get this < ε for any q > 1/ε. The value of the integral is computed by taking the
limit of the upper sum:

lim
q→∞





q
∑

i=1

(

i

2q
+ 1

)

+

2q
∑

i=q+1

−(i − 1)

2q





1

2q
= lim

q→∞

[

1

4q2

q
∑

i=1

i +
1

2q

q
∑

i=1

1 +

q
∑

i=1

(

−1 − i

2q

)

1

2q

]

= lim
q→∞

[

1

4q2

q(q + 1)

2
+

1

2
− 1

2
− 1

4q2

q(q + 1)

2

]

= 0

(This can also be checked by the Fundamental Theorem:

∫ 2

0

f =

∫ 1

0

x + 1 dx +

∫ 2

1

−x dx =
x2

2
+ x

∣

∣

∣

∣

1

0

− x2

2

∣

∣

∣

∣

2

1

=
3

2
− 2 +

1

2
= 0.)

VII. A) FALSE. Note that the problem does not say to assume the terms are all positive.
For instance, the series

∑∞
n=1(−1)n has partial sums

SN =
{−1 if N odd

0 if N even.

So the set of partial sums is bounded with |SN | ≤ 1 all N . However the sequence of partial
sums does not converge, so the series does not converge.

B) TRUE. If f ′(0) exists, then f must also be continuous at x = 0. This implies

lim
x→0−

cos(2x) = 1 = lim
x→0+

ax2 + bx + c.
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Hence c = 1. Then to get f ′(0) to exist, we must have

lim
x→0−

cos(2x) − 1

x
= 0 = lim

x→0+

ax2 + bx + 1 − 1

x

This implies b = 0. Finally, and similarly, to get f ′′(0) to exist we must have a = −2.
Here’s why: We have f ′(x) = −2 sin(2x) for all x < 0 and f ′(x) = 2ax for x > 0.

lim
x→0−

−2 sin(2x) − 0

x − 0
= −4 = 2a = lim

x→0+

2ax − 0

x

C) FALSE. The Ratio Test gives that the power series converges absolutely on the open
interval (−2, 2). But in fact, note that with x = 2 we get

∑∞
n=1

1√
n
. This series diverges

by the integral test:

lim
b→∞

∫ b

1

1√
x

dx = lim
b→∞

2
√

b − 2

is not finite. (Or: It’s a p-series with p = 1/2 < 1, so it must diverge.) Hence the power
series does not converge absolutely on the closed interval [−2, 2].

D) TRUE. The idea is the same as in V C above. If there were distinct x1 < x2 with
f(x1) = f(x2), then Rolle’s Theorem would imply that f ′(c) = 0 for some c ∈ (x1, x2).

E) FALSE. This can be seen by experimenting a bit with the formulas. For instance with
n = 3, k = 1, we get x = 5·4

6·5 = 2
3 , and y = 5·4

9·7 = 20
63 . However (x)3 = 8

27 , which is clearly
less than y. Hence y > (x)3.

In fact, we claim that for each fixed positive integer k,

lim
n→∞

y − (x)n =
1

4
− 1

e2
> 0.

It follows that there exists an n0 (depending on k) such that y > xn for all n ≥ n0.
(This says that the centroid of the region R lies above the upper boundary of R when n is
sufficiently large(!)) Here’s how to see this: First

y =
(n + k + 1)(n + 1)

(2n + 2k + 1)(2n + 1)
=

n2 + (k + 2)n + 1

4n2 + (4k + 4)n + 1

and it follows easily that limn→∞ y = 1
4
. Now consider

lim
n→∞

xn = lim
n→∞

(

(n + k + 1)(n + 1)

(n + k + 2)(n + 2)

)n
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This is a 1∞ indeterminate form. So we proceed as in a problem on Problem Set 9. We
take the logarithm and apply L’Hopital’s Rule to evaluate this limit:

lim
n→∞

ln

(

(n + k + 1)(n + 1)

(n + k + 2)(n + 2)

)n

= lim
n→∞

n ln

(

(n + k + 1)(n + 1)

(n + k + 2)(n + 2)

)

= lim
n→∞

ln
(

(n2+(k+2)n+1)
(n2+(k+4)n+4)

)

1
n

= lim
n→∞

n2+(k+4)n+4
n2+(k+2)n+1 · 2n2+6n+3k+4

(n2+(k+4)n+4)2

−1
n2

= −2

Hence

lim
n→∞

xn = lim
n→∞

(

(n + k + 1)(n + 1)

(n + k + 2)(n + 2)

)n

= e−2.

This concludes the proof.
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