'A'Section

1. Let $f(x)=\frac{15 x}{x^{4}+x^{2}+1}$. Using the Intermediate Value Theorem,
A) Show: For all $k \in[-5,5]$, there exist $c \in[-1,1]$ such that $f(c)=k$.

Solution: First, $f(x)$ is a rational function and $x^{4}+x^{2}+1>1$ for all $x \in \mathbf{R}$, so it follows that $f(x)$ is continuous at all $c \in \mathbf{R}$. We have $f(-1)=-5$ and $f(1)=5$. Therefore, by the IVT, for all $k \in[-5,5]$, there exist $c \in[-1,1]$ such that $f(c)=k$.
B) Show: For all k with $0<k<5$, there exist some $c \in(1, \infty)$ such that $f(c)=k$.

Solution: We see by the "Big Theorem" on function limits that $\lim _{x \rightarrow \infty} f(x)=0$. Hence if we have any k with $0<k<5$, then there exists a $B>1$ such that $f(B)<k<$ $5=f(1)$. Applying the IVT on the interval $[1, B]$, we see there is a $c \in(1, B) \subset(1, \infty)$ such that $f(c)=k$.
C) Show that if $0<m<15$, then $f(x)=m x$ has two real solutions other than $x=0$.

Solution: Note that

$$
f(x)-m x=\frac{15 x}{x^{4}+x^{2}+1}-m x=\frac{-m x^{5}-m x^{3}-(m-15) x}{x^{4}+x^{2}+1} .
$$

The numerator factors as

$$
-m x\left(x^{4}+x^{2}+\frac{m-15}{m}\right) .
$$

Method 1: The polynomial $g(x)=x^{4}+x^{2}+\frac{m-15}{m}$ is continuous at all real x. Moreover, $g(0)=\frac{m-15}{m}<0$ (since $m<15$ while $g(b)>0$ if b is sufficiently large because the x^{4} term occurs with a positive coefficient. Therefore, by the IVT, there is a c with $g(c)=0$ on the interval $(0, b)$. Since $g(x)$ is an even function, we also have $g(-c)=0$.

Method 2: Applying the quadratic formula to the quadratic in x^{2}, the second factor is zero when

$$
x^{2}=\frac{-1 \pm \sqrt{1-4\left(\frac{m-15}{m}\right)}}{2}=\frac{-\sqrt{m} \pm \sqrt{60-3 m}}{2 \sqrt{m}}
$$

In order for this to be defined, we must have $m>0$. For x^{2} to be positive we must take the + sign and we must have $60-3 m>m$, so $m<15$. For $0<m<15$, there are two solutions found by taking the positive and negative square roots of the above:

$$
x= \pm \sqrt{\frac{-\sqrt{m}+\sqrt{60-3 m}}{2 \sqrt{m}}} .
$$

Neither of these is equal to zero.
2. Show that there are at least three real solutions of the equation $\sin (x)+2 \cos (x)=x / 2$. Hint: Look at the values of $g(x)=\sin (x)+2 \cos (x)-x / 2$ at "nice" multiples of $\frac{\pi}{2}$.

Solution: From calculus we know that $\sin (x)$ and $\cos (x)$ are differentiable for all x and the same is true for $x / 2$. Therefore, the function $g(x)$ is differentiable everywhere and consequently continuous everywhere. We have

$$
\begin{aligned}
g\left(\frac{-3 \pi}{2}\right) & =1+\frac{3 \pi}{4}>0 \\
g(-\pi) & =-2+\frac{\pi}{2}<0 \\
g\left(\frac{-\pi}{2}\right) & =-1+\frac{\pi}{4}<0 \\
g(0) & =2>0 \\
g\left(\frac{\pi}{2}\right) & =\frac{1}{2}>0 \\
g(\pi) & =-2-\frac{\pi}{2}<0
\end{aligned}
$$

Therefore, the IVT implies that g has one zero in the interval $(-3 \pi / 2,-\pi)$, another in the interval $\left(\frac{-\pi}{2}, 0\right)$, and a third in the interval $(\pi / 2, \pi)$.
3. Using the definition of the derivative, find the value of $f^{\prime}(c)$, or say why f is not differentiable at $x=c$:
A) $f(x)=x^{3}+2 x+1$ at $c=2$.

Solution: We have

$$
\begin{aligned}
f^{\prime}(2) & =\lim _{x \rightarrow 2} \frac{\left(x^{3}+2 x+1\right)-13}{x-2} \\
& =\lim _{x \rightarrow 2} \frac{(x-2)\left(x^{2}+2 x+6\right)}{x-2} \\
& =\lim _{x \rightarrow 2} x^{2}+2 x+6 \\
& =14 .
\end{aligned}
$$

B) $f(x)=\sin (|x|)$ at $c=0$. Hint: Look back at Problem Set 6 , B 2.

Solution: $f^{\prime}(0)$ does not exist for this function because

$$
\lim _{x \rightarrow 0^{+}} \frac{\sin (|x|)}{x}=+1
$$

by the indicated problem on Problem Set 6 , while

$$
\lim _{x \rightarrow 0^{-}} \frac{\sin (|x|)}{x}=\lim _{x \rightarrow 0^{-}} \frac{-\sin (x)}{x}=-1
$$

Since the one-sided limits are not equal, the derivative at 0 does not exist.
C) The function defined by

$$
f(x)= \begin{cases}x^{2} & \text { if } x>1 \\ 2 x-1 & \text { if } x \leq 1\end{cases}
$$

at $c=1$.
Solution: We have

$$
\lim _{x \rightarrow 1^{+}} \frac{f(x)-f(1)}{x-1}=\lim _{x \rightarrow 1^{+}} \frac{x^{2}-1}{x-1}=\lim _{x \rightarrow 1^{+}} x+1=2
$$

On the other hand,

$$
\lim _{x \rightarrow 1^{-}} \frac{f(x)-f(1)}{x-1}=\lim _{x \rightarrow 1^{-}} \frac{2 x-2}{x-1}=\lim _{x \rightarrow 1^{-}} 2=2
$$

Since the one-sided limits exist and are equal, $f^{\prime}(1)$ exists and equals 2.
D) The function defined by

$$
f(x)= \begin{cases}x^{2} & \text { if } x \in \mathbf{Q} \\ 0 & \text { if } x \in \mathbf{Q}^{c}\end{cases}
$$

at $c=0$.
Solution: We have for $x \neq 0$,

$$
\frac{f(x)-f(0)}{x-0}= \begin{cases}x & \text { if } x \in \mathbf{Q} \\ 0 & \text { if } x \in \mathbf{Q}^{c}\end{cases}
$$

Given any $\varepsilon>0$, if we take $\delta=\varepsilon$, then for all x in the deleted neighborhood defined by $0<|x|<\varepsilon$,

$$
\left|\frac{f(x)-f(0)}{x-0}-0\right|<\varepsilon
$$

It follows that

$$
\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}=0=f^{\prime}(0)
$$

(It is not too hard to show that $f^{\prime}(c)$ exists only for this one $c=0$. This function is not differentiable anywhere else.)
4. Suppose f, g are differentiable functions with $f(g(x))=\frac{x}{x^{2}+1}$ and that

$$
\begin{array}{cc}
g(1)=1 & g(2)=4 \\
g^{\prime}(1)=2 & g^{\prime}(2)=-1
\end{array}
$$

Determine the equation of the tangent line to the given graph at the given point.
A) $y=f(x)$ at $(1, f(1))$.

Solution: First, $f(1)=f(g(1))=\frac{1}{2}$. By the Chain Rule $(f \circ g)^{\prime}(1)=f^{\prime}(g(1)) g^{\prime}(1)=$ $2 f^{\prime}(1)$. On the other hand, by the Quotient Rule,

$$
(f \circ g)^{\prime}(x)=\frac{\left(x^{2}+1\right)(1)-(x)(2 x)}{\left(x^{2}+1\right)^{2}}=\frac{1-x^{2}}{\left(x^{2}+1\right)^{2}}
$$

So $(f \circ g)^{\prime}(1)=0$ and hence $f^{\prime}(1)=0$. The tangent line to $y=f(x)$ at $(1, f(1))$ is the horizontal line $y=\frac{1}{2}$.
B) $y=(f \circ g)(x)$ at $(2,(f \circ g)(2))$.

Solution: By the computations in part A, $f(g(2))=\frac{2}{5}$ and $(f \circ g)^{\prime}(2)=\frac{-3}{25}$. So the tangent line is

$$
y=\frac{2}{5}-\frac{3}{25}(x-2) .
$$

'B' Section

1. Let f be continuous on $[0,1]$ with $f(0)<0$ and $f(1)>1$. Suppose that g is another continuous function on $[0,1]$ such that $g(0) \geq 0$ and $g(1) \leq 1$. Show that there exists some $c \in(0,1)$ such that $f(x)=g(x)$.

Solution: Let $h(x)=f(x)-g(x)$. Since f, g are continuous on $[0,1]$, the same is true for h. By the given information, $h(0)=f(0)-g(0)<0$ and $h(1)=f(1)-g(1)>0$. Therefore, the IVT implies that $h(c)=0$ for some $c \in(0,1)$. But then $0=h(c)=f(c)-g(c)$, so $f(c)=g(c)$.
2. Let f be continuous on $[a, b]$ with $f(a)<k<f(b)$. Here is a variation on our proof of the Intermediate Value Theorem.
A) Let

$$
T=\{x \in[a, b] \mid f(x)>k\} .
$$

Show that T has a greatest lower bound and that $f(\operatorname{glb}(T))=k$.
Solution: T is contained in the interval $[a, b]$, so it is a bounded subset of \mathbf{R}. Then $c=\operatorname{glb}(T)$ exists by the LUB Axiom. Note that $a<c$ since $f(a)<k$. Hence the interval $[a, c)$ is contained in the complement of T. If we let $\left\{x_{n}\right\}$ be any sequence contained in $[a, c)$ converging to c, then since f is continuous, $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=f(c)$. But $f\left(x_{n}\right) \leq k$ for all n, so

$$
\begin{equation*}
f(c)=\lim _{n \rightarrow \infty} f\left(x_{n}\right) \leq k \tag{1}
\end{equation*}
$$

also (by Corollary 2.2.8 in the text). On the other hand, given any $\varepsilon>0, c+\varepsilon$ is not a lower bound for T, so there exists some $x \in T$ such that $c \leq x<c+\varepsilon$. Apply this for $\varepsilon=\frac{1}{n}$ for each natural number. Then we get a sequence x_{n}^{\prime} such that $x_{n}^{\prime} \in T$ for
all n and $c \leq x_{n}^{\prime}<c+\frac{1}{n}$. It follows easily that $x_{n}^{\prime} \rightarrow c$ as $n \rightarrow \infty$. Therefore since f is continuous at $c, \lim _{n \rightarrow \infty} f\left(x_{n}^{\prime}\right)=f(c)$. But $x_{n}^{\prime} \in T$ for all n, so $f\left(x_{n}^{\prime}\right)>k$. Hence

$$
\begin{equation*}
f(c)=\lim _{n \rightarrow \infty} f\left(x_{n}^{\prime}\right) \geq k \tag{2}
\end{equation*}
$$

The two inequalities (1) and (2) show that $f(c)=k$.
B) Will this $\operatorname{glb}(T)$ always be the same as the c we found in our proof of the IVT with $f(c)=k$? If so, prove they are the same; if not, give a counterexample.

Solution: In the proof we did in class we considered

$$
S=\{x \in[a, b] \mid f(x) \leq k\}
$$

and we showed that if $c^{\prime}=\operatorname{lub}(S)$, then $f\left(c^{\prime}\right)=k$. The c found in part A and the c^{\prime} here do not have to be the same. For instance, let $f(x)=x^{3}-2 x+1$ on $[-2,2]$. We have $f(-2)=-3$ and $f(2)=5$. So the IVT will apply for any k with $-3<k<5$. Consider $k=0$. The equation $x^{3}-2 x+1=0$ actually has three different roots in the interval $[-2,2]$: One between -2 and -1 (call this one α), a second between $1 / 2$ and 1 (call this one β), and a third at $x=1$. The set T as in part A is the union $T=(\alpha, \beta) \cup(1,2)$, so $c=\operatorname{glb}(T)=\alpha$. On the other hand, the set S as in the proof we did in class is $S=[-2, \alpha] \cup[\beta, 1]$, so $c^{\prime}=\operatorname{lub}(S)=1$.
3. This property deals with another property of real-valued functions of a real variable sometimes called Lipschitz continuity.
A) Let f be a function on an interval I with the property that there exists a strictly positive constant k such that $\left|f(x)-f\left(x^{\prime}\right)\right| \leq k\left|x-x^{\prime}\right|$ for all $x, x^{\prime} \in I$ (this is the definition of Lipschitz continuity). Show that f is uniformly continuous on I.

Solution: Given $\varepsilon>0$, let $\delta=\varepsilon / k$. Then for any $x, x^{\prime} \in I$ such that $\left|x-x^{\prime}\right|<\delta=\varepsilon / k$, it follows that

$$
\left|f(x)-f\left(x^{\prime}\right)\right| \leq k\left|x-x^{\prime}\right|<k \cdot \varepsilon / k=\varepsilon .
$$

This shows that the definition of uniform continuity is satisfied for f on I.
B) The converse of the statement in part A is not true: Show that $f(x)=x^{1 / 3}$ is uniformly continuous on $[-1,1]$, but there is no constant k such that $\left|f(x)-f\left(x^{\prime}\right)\right| \leq k\left|x-x^{\prime}\right|$ for all $x, x^{\prime} \in[-1,1]$. Hint: Think slopes of secant lines to the graph $y=x^{1 / 3}$.

Solution: First, $f(x)$ is continuous on $[-1,1]$, hence it is uniformly continuous by the result of Theorem 3.6.8 (proved in class before Easter break). Let $x^{\prime}=0$ and take arbitrary $x>0$ we have

$$
\frac{f(x)-f(0)}{x-0}=\frac{x^{1 / 3}}{x}=\frac{1}{x^{\frac{2}{3}}} .
$$

But $\lim _{x \rightarrow 0^{+}} \frac{1}{x^{\frac{2}{3}}}=+\infty$. In other words, the value of the difference quotient will get unboundedly large as $x \rightarrow 0^{+}$. Hence there is no single k such that

$$
\left|\frac{f(x)-f(0)}{x-0}\right| \leq k
$$

for all x in $[-1,1]$. But that shows that there is no k such that $|f(x)-f(0)| \leq k|x-0|$ for all x in $[-1,1]$.
4. Let f and g be differentiable on (a, c) and let $b \in(a, c)$. Assume $f(b)=g(b)$. Define a new function by

$$
p(x)= \begin{cases}f(x) & \text { if } x \in(a, b) \\ g(x) & \text { if } x \in[b, c)\end{cases}
$$

Show that p is differentiable on (a, c) if and only if $f^{\prime}(b)=g^{\prime}(b)$.

Solution: Assume first that $f^{\prime}(b)=g^{\prime}(b)$. Then

$$
\begin{aligned}
\lim _{x \rightarrow b^{-}} \frac{p(x)-p(b)}{x-b} & =\lim _{x \rightarrow b^{-}} \frac{f(x)-f(b)}{x-b} \\
& =f^{\prime}(b)
\end{aligned}
$$

By our assumption, this is also

$$
\begin{aligned}
& =g^{\prime}(b) \\
& =\lim _{x \rightarrow b^{+}} \frac{g(x)-g(b)}{x-b} \\
& =\lim _{x \rightarrow b^{+}} \frac{p(x)-p(b)}{x-b}
\end{aligned}
$$

This shows that p is differentiable at b since the one sided limits of the difference quotients for p exist and are equal. Differentiability of p at all $x \neq b$ in (a, c) follows from the way $p(x)$ is defined. At those x, the values of p are either the same as the values of f or the values of g on some interval containing x. Hence, for instance, if $a<x_{0}<b$, then since $p(x)=f(x)$ for all x in an interval containing x_{0},

$$
p^{\prime}\left(x_{0}\right)=\lim _{x \rightarrow x_{0}} \frac{p(x)-p\left(x_{0}\right)}{x-x_{0}}=\lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}=f^{\prime}\left(x_{0}\right),
$$

since f is differentiable at x_{0}. Similarly, if $b<x_{0}<c$, then $p^{\prime}\left(x_{0}\right)=g^{\prime}\left(x_{0}\right)$.

Conversely, suppose that p is differentiable at all x in (a, c). This implies in particular that p is differentiable at $x=b$, so

$$
\begin{aligned}
f^{\prime}(b) & =\lim _{x \rightarrow b^{-}} \frac{f(x)-f(b)}{x-b} \\
& =\lim _{x \rightarrow b^{-}} \frac{p(x)-p(b)}{x-b} \\
& =\lim _{x \rightarrow b^{+}} \frac{p(x)-p(b)}{x-b} \\
& =\lim _{x \rightarrow b^{+}} \frac{g(x)-g(b)}{x-b} \\
& =g^{\prime}(b) .
\end{aligned}
$$

