'A'Section

1. Let $f(x)=\frac{15 x}{x^{4}+x^{2}+1}$. Using the Intermediate Value Theorem,
A) Show: For all $k \in[-5,5]$, there exist $c \in[-1,1]$ such that $f(c)=k$.
B) Show: For all k with $0<k<5$, there exist some $c \in(1, \infty)$ such that $f(c)=k$.
C) Show that if m satisfies $0<m<15$, then $f(x)=m x$ has two real solutions other than $x=0$.
2. Show that there are at least three real solutions of the equation $\sin (x)+2 \cos (x)=x / 2$. Hint: Look at the values of $g(x)=\sin (x)+2 \cos (x)-x / 2$ at "nice" multiples of $\frac{\pi}{2}$.
3. Using the definition of the derivative, find the value of $f^{\prime}(c)$, or say why f is not differentiable at $x=c$:
A) $f(x)=x^{3}+2 x+1$ at $c=2$.
B) $f(x)=\sin (|x|)$ at $c=0$. Hint: Look back at Problem Set 6, B 2.
C) The function defined by

$$
f(x)= \begin{cases}x^{2} & \text { if } x>1 \\ 2 x-1 & \text { if } x \leq 1\end{cases}
$$

at $c=1$.
D) The function defined by

$$
f(x)= \begin{cases}x^{2} & \text { if } x \in \mathbf{Q} \\ 0 & \text { if } x \in \mathbf{Q}^{c}\end{cases}
$$

at $c=0$.
4. Suppose f, g are differentiable functions with $f(g(x))=\frac{x}{x^{2}+1}$ and that

$$
\begin{array}{cc}
g(1)=1 & g(2)=4 \\
g^{\prime}(1)=2 & g^{\prime}(2)=-1
\end{array}
$$

Determine the equation of the tangent line to the given graph at the given point.
A) $y=f(x)$ at $(1, f(1))$.
B) $y=(f \circ g)(x)$ at $(2,(f \circ g)(2))$.
'B' Section

1. Let f be continuous on $[0,1]$ with $f(0)<0$ and $f(1)>1$. Suppose that g is another continuous function on $[0,1]$ such that $g(0) \geq 0$ and $g(1) \leq 1$. Show that there exists some $c \in(0,1)$ such that $f(x)=g(x)$.
2. Let f be continuous on $[a, b]$ with $f(a)<k<f(b)$. Here is a variation on our proof of the Intermediate Value Theorem.
A) Let

$$
T=\{x \in[a, b] \mid f(x)>k\} .
$$

Show that T has a greatest lower bound and that $f(\operatorname{glb}(T))=k$.
B) Will this $\operatorname{glb}(T)$ always be the same as the c we found in our proof of the IVT with $f(c)=k$? If so, prove they are the same; if not, give a counterexample.
3. This property deals with another property of real-valued functions of a real variable sometimes called Lipschitz continuity.
A) Let f be a function on an interval I with the property that there exists a strictly positive constant k such that $\left|f(x)-f\left(x^{\prime}\right)\right| \leq k\left|x-x^{\prime}\right|$ for all $x, x^{\prime} \in I$ (this is the definition of Lipschitz continuity). Show that f is uniformly continuous on I.
B) The converse of the statement in part A is not true: Show that $f(x)=x^{1 / 3}$ is uniformly continuous on $[-1,1]$, but there is no constant k such that $\left|f(x)-f\left(x^{\prime}\right)\right| \leq k\left|x-x^{\prime}\right|$ for all $x, x^{\prime} \in[-1,1]$. Hint: Think slopes of secant lines to the graph $y=x^{1 / 3}$.
4. Let f and g be differentiable on (a, c) and let $b \in(a, c)$. Assume $f(b)=g(b)$. Define a new function by

$$
p(x)= \begin{cases}f(x) & \text { if } x \in(a, b) \\ g(x) & \text { if } x \in[b, c)\end{cases}
$$

Show that p is differentiable on (a, c) if and only if $f^{\prime}(b)=g^{\prime}(b)$.

