'A'Section

1. Determine whether each of the following limits exists, then prove that your answers are correct using the ε, δ definition.
(a) $\lim _{x \rightarrow 3} x^{2}-4 x+1$
(b) $\lim _{x \rightarrow \frac{1}{2}} x+\frac{1}{x}$
(c) $\lim _{x \rightarrow 2} \frac{x^{3}-8}{x^{2}-4}$
(d) Let

$$
f(x)= \begin{cases}x \sin \left(\frac{1}{x}\right) & \text { if } x \neq 0 \\ 2 & \text { if } x=0\end{cases}
$$

and consider $\lim _{x \rightarrow 0} f(x)$.
2. Which of the functions in question 1 are continuous at the indicated c in the limits there? Explain.
3. True-False. For the true statements, give a short proof. For the false statements give a counterexample.
(a) If $\lim _{x \rightarrow 1} f(x)=e-\frac{27}{10}$, then there exists a $\delta>0$ such that $f(x)>0$ for all x with $0<|x-1|<\delta$.
(b) If $|f(x)| \leq x^{3}$ for all x, then $\lim _{x \rightarrow 2} f(x)=8$.
(c) Let $f: \mathbf{R} \rightarrow \mathbf{R}$ be defined by this rule:

$$
f(x)= \begin{cases}2 x & \text { if } x \text { is rational } \\ -2 x & \text { if } x \text { is irrational }\end{cases}
$$

Then $\lim _{x \rightarrow 0} f(x)$ exists and equals 0 .
(d) If $f(x)<g(x)$ on a deleted neighborhood of $c, \lim _{x \rightarrow c} f(x)=L$, and $\lim _{x \rightarrow c} g(x)=M$, then $L<M$.

'B' Section

1. Assume that $\lim _{x \rightarrow c} f(x)=L$.
(a) Show that there exists a constant B and $\delta>0$ such that $|f(x)| \leq B$ for all x in the deleted neighborhood $\{x \in \mathbf{R}|0<|x-c|<\delta\}$.
(b) Using part (a), not the limit product rule, show that $\lim _{x \rightarrow c}(f(x))^{n}=L^{n}$ for all integers $n \geq 1$.
(c) Assume that $f(x) \geq 0$ on some deleted neighborhood of $x=c$. Show that

$$
\lim _{x \rightarrow c} \sqrt{f(x)}=\sqrt{L}
$$

(Hint: It may help to treat the cases $L=0$ and $L \neq 0$ separately.)
2. In this problem you will show that

$$
\lim _{\theta \rightarrow 0} \frac{\sin (\theta)}{\theta}=1
$$

For $0<\theta<\frac{\pi}{2}$, the point $P=(\cos (\theta), \sin (\theta))=(x, y)$ lies on the arc of the unit circle $x^{2}+y^{2}=1$ in the first quadrant.
(a) Let $O=(0,0), Q=(\cos (\theta), 0)$, and $R=(1,0)$. (Draw a picture!) By considering the areas of the triangle $\triangle O Q P$ and the circular sector $O R P$, deduce that if $0<\theta<\frac{\pi}{2}$, then $\sin (\theta) \cos (\theta) \leq \theta$. (You may use "intuitively reasonable" facts about areas such as the statement that if one plane region \mathcal{R} is completely completely contained in a second region \mathcal{S}, then $\operatorname{area}(\mathcal{R}) \leq \operatorname{area}(\mathcal{S})$.)
(b) Now take the tangent line to the circle at R (a vertical line), and let $S=(1, \tan (\theta))$ be the intersection of that line and the radius $O P$ (extended). Considering the areas of the triangle $\triangle O R S$ and the sector $O R P$ as above, explain why $\theta \leq \tan (\theta)$.
(c) Combine parts (a) and (b) to deduce that if $0<\theta<\frac{\pi}{2}$, then

$$
\cos (\theta) \leq \frac{\sin (\theta)}{\theta} \leq \frac{1}{\cos (\theta)}
$$

(d) Using the one-sided form of Theorem 3.2.9 (The Limit Squeeze Theorem), show that

$$
\lim _{\theta \rightarrow 0^{+}} \frac{\sin (\theta)}{\theta}=1
$$

(You will need to use the fact that $\cos (\theta)$ is continuous at $\theta=0$.)
(e) Now, for $-\frac{\pi}{2}<\theta<0$, show that $\frac{\sin (\theta)}{\theta}=\frac{\sin (|\theta|)}{|\theta|}$ and use this to see that

$$
\lim _{\theta \rightarrow 0^{-}} \frac{\sin (\theta)}{\theta}=1
$$

as well.
(f) Finally, explain how parts (d) and (e) combine to show the statement at the start of the problem.

