Mathematics 242 – Principles of Analysis Problem Set 6 – **due:** Friday, March 22

'A' Section

1. Determine whether each of the following limits exists, then prove that your answers are correct using the ε , δ definition.

(a) $\lim_{x \to 3} x^2 - 4x + 1$ (b) $\lim_{x \to \frac{1}{2}} x + \frac{1}{x}$ (c) $\lim_{x \to 2} \frac{x^3 - 8}{x^2 - 4}$ (d) Let $f(x) = \begin{cases} x \sin\left(\frac{1}{x}\right) & \text{if } x \neq 0\\ 2 & \text{if } x = 0 \end{cases}$

and consider $\lim_{x\to 0} f(x)$.

2. Which of the functions in question 1 are *continuous* at the indicated c in the limits there? Explain.

3. True-False. For the true statements, give a short proof. For the false statements give a counterexample.

- (a) If $\lim_{x\to 1} f(x) = e \frac{27}{10}$, then there exists a $\delta > 0$ such that f(x) > 0 for all x with $0 < |x-1| < \delta$.
- (b) If $|f(x)| \leq x^3$ for all x, then $\lim_{x \to 2} f(x) = 8$.
- (c) Let $f : \mathbf{R} \to \mathbf{R}$ be defined by this rule:

$$f(x) = \begin{cases} 2x & \text{if } x \text{ is rational} \\ -2x & \text{if } x \text{ is irrational.} \end{cases}$$

Then $\lim_{x\to 0} f(x)$ exists and equals 0.

(d) If f(x) < g(x) on a deleted neighborhood of c, $\lim_{x \to c} f(x) = L$, and $\lim_{x \to c} g(x) = M$, then L < M.

B' Section

- 1. Assume that $\lim_{x\to c} f(x) = L$.
- (a) Show that there exists a constant B and $\delta > 0$ such that $|f(x)| \leq B$ for all x in the deleted neighborhood $\{x \in \mathbf{R} \mid 0 < |x c| < \delta\}$.
- (b) Using part (a), not the limit product rule, show that $\lim_{x\to c} (f(x))^n = L^n$ for all integers $n \ge 1$.
- (c) Assume that $f(x) \ge 0$ on some deleted neighborhood of x = c. Show that

$$\lim_{x \to c} \sqrt{f(x)} = \sqrt{L}.$$

(*Hint*: It may help to treat the cases L = 0 and $L \neq 0$ separately.)

2. In this problem you will show that

$$\lim_{\theta \to 0} \frac{\sin(\theta)}{\theta} = 1.$$

For $0 < \theta < \frac{\pi}{2}$, the point $P = (\cos(\theta), \sin(\theta)) = (x, y)$ lies on the arc of the unit circle $x^2 + y^2 = 1$ in the first quadrant.

- (a) Let O = (0, 0), $Q = (\cos(\theta), 0)$, and R = (1, 0). (Draw a picture!) By considering the areas of the triangle ΔOQP and the circular sector ORP, deduce that if $0 < \theta < \frac{\pi}{2}$, then $\sin(\theta) \cos(\theta) \leq \theta$. (You may use "intuitively reasonable" facts about areas such as the statement that if one plane region \mathcal{R} is completely completely contained in a second region \mathcal{S} , then $\operatorname{area}(\mathcal{R}) \leq \operatorname{area}(\mathcal{S})$.)
- (b) Now take the tangent line to the circle at R (a vertical line), and let $S = (1, \tan(\theta))$ be the intersection of that line and the radius OP (extended). Considering the areas of the triangle ΔORS and the sector ORP as above, explain why $\theta \leq \tan(\theta)$.
- (c) Combine parts (a) and (b) to deduce that if $0 < \theta < \frac{\pi}{2}$, then

$$\cos(\theta) \le \frac{\sin(\theta)}{\theta} \le \frac{1}{\cos(\theta)}$$

(d) Using the one-sided form of Theorem 3.2.9 (The Limit Squeeze Theorem), show that

$$\lim_{\theta \to 0^+} \frac{\sin(\theta)}{\theta} = 1$$

(You will need to use the fact that $\cos(\theta)$ is continuous at $\theta = 0$.) (e) Now, for $-\frac{\pi}{2} < \theta < 0$, show that $\frac{\sin(\theta)}{\theta} = \frac{\sin(|\theta|)}{|\theta|}$ and use this to see that

$$\lim_{\theta \to 0^-} \frac{\sin(\theta)}{\theta} = 1$$

as well.

(f) Finally, explain how parts (d) and (e) combine to show the statement at the start of the problem.