Mathematics 242 - Principles of Analysis
 Problem Set 5

Due: March 15, 2013

' A ' Section

1. For each of the following sequences, determine three different subsequences, each converging to a different limit. For each one, express your three subsequences as $x_{n_{k}}$ for a suitably chosen (strictly increasing) index sequence n_{k}, and give an explicit formula for n_{k} as a function of k :
(a) $x_{n}=\cos \left(\frac{\pi \sqrt{n}}{2}\right)$
(b) $x_{n}=\frac{n}{3}-\left[\frac{n}{3}\right]$ (as usual, [] denotes the greatest integer function)
2. Let $x_{n}=n^{1 / 4}$. For each of the following sequences, either express that sequence as a subsequence of the sequence x_{n} for some explicit (strictly increasing) index sequence n_{k}, or say why that is impossible:
(a) $\{2,3,4,5, \ldots\}$
(b) $\{\sqrt{3}, \sqrt{6}, \sqrt{9}, \sqrt{12}, \ldots\}$
(c) $\{1,2,4,8,16,32, \ldots\}$
3. Let $x_{n}=\sin \left(\frac{n \pi}{4}\right)$ and $y_{n}=\cos \left(\frac{n \pi}{4}\right)$.
(a) Find a (strictly increasing) index sequence n_{k} such that both $x_{n_{k}}$ and $y_{n_{k}}$ converge.
(b) Find a second (strictly increasing) index sequence n_{k} such that both $x_{n_{k}}$ and $y_{n_{k}}$ diverge.
(c) Find a third (strictly increasing) index sequence n_{k} such that one of $x_{n_{k}}$ and $y_{n_{k}}$ converges and the other diverges.

' B ' Section

1. (True or False) - If the statement is true give a proof; if it is false give a counterexample.
(a) If x_{n} is a sequence of strictly negative numbers converging to 0 , then x_{n} has a strictly increasing subsequence $x_{n_{k}}$.
(b) If $x_{n} \rightarrow 0$, then x_{n} contains a strictly increasing subsequence or a strictly decreasing subsequence (or both).
(c) If x_{n} is a decreasing sequence with a bounded subsequence $x_{n_{k}}$, then x_{n} converges.
2. Consider the sequence $x_{n}=\cos (n)$ (where we think of n as an angle expressed in radians).
(a) Prove that x_{n} has a convergent subsequence.
(b) In this part of the question we will show that x_{n} is not convergent, though. Suppose $\lim _{n \rightarrow \infty} \cos (n)=a$ for some real number a. Using a trig identity for $\cos (n+1)$ and considering $\lim _{n \rightarrow \infty}(\cos (n+1)-\cos (n))$, show that

$$
\frac{a(\cos (1)-1)}{\sin (1)}=\lim _{n \rightarrow \infty} \sin (n) .
$$

But then use the sequence $\lim _{n \rightarrow \infty}(\sin (n+1)-\sin (n))$ to deduce that $a=0$, so $\lim _{n \rightarrow \infty} \cos (n)=\lim _{n \rightarrow \infty} \sin (n)=0$. But this is a contradiction. Explain why to conclude the proof.
3. A cluster point of a sequence x_{n} is a limit of a convergent subsequence $x_{n_{k}}$. (See question 1 on the A section for examples of sequences with several different cluster points.)
(a) Show that there exists a sequence x_{n} whose set of cluster points is all of $\mathbf{R}_{+}=\{x \in$ $\mathbf{R} \mid x>0\}$. (Hint: Look at the solution for the Extra Credit problem on Exam 1, which shows how to get a sequence containing all the positive rational numbers. Think rational approximations to decimals to get a subsequence converging to any given positive $a \in \mathbf{R}$. However, note that you will need to be careful to produce an actual subsequence $x_{n_{k}}$ with a strictly increasing index sequence n_{k}. In fact, this example can be "jazzed up" to get a sequence whose set of cluster points consists is all of \mathbf{R} !)
(b) Show that if a_{m} is a convergent sequence of cluster points of a given sequence x_{n}, then $a=\lim _{m \rightarrow \infty} a_{m}$ is also a cluster point of the x_{n} sequence.

