
MATH 242 – Principles of Analysis
Solutions for Problem Set 3 – due: Feb. 15

‘A‘ Section

1. A set B is said to be finite if there is some n ∈ N (the number of elements in B),

and a one-to-one onto mapping f : {1, 2, . . . , n} → B. (Intuitively, we think that

f(1) = b1, f(2) = b2, . . . “counts through” all the elements of B one at a time without

repetitions and without missing any elements in B.) For each of the following sets,

either show B is finite by determining the n and constructing a mapping f as above,

or say why no such mapping exists.

a. B = {r = p/q ∈ Q | 1 ≤ q ≤ 5, 0 < r < 1}
Solution: The distinct elements of B are given by

B = {1/2, 1/3, 2/3, 1/4, 3/4, 1/5, 2/5, 3/5, 4/5}

Hence we have n = 9, and we can construct the required mapping by taking

f(1) = 1/2, f(2) = 1/3, and so on up to f(9) = 4/5.

b. B = {r = p/q ∈ Q | 0 < r < 1}
Solution: This set is not finite, because it contains, for instance all the elements

1/n for n ≥ 1. Since N is not a finite set, B is not finite either.

c. B = {n ∈ Z | |n| ≤ 109}
Solution: This is a finite set with n = 2 × 109 + 1 elements, since

B = {−109, . . . ,−3,−2,−1, 0, 1, 2, 3, . . . , 109}.

There are many correct mappings f . Perhaps the most useful way to write one

down is to alternate back and forth between positive and negative elements like

this f(1) = 0, f(2) = 1, f(3) = −1, f(4) = 2, f(5) = −2, etc. The general

pattern is

f(n) =

{

1−n

2 if n is odd
n

2 if n is even

2. Which of the following sequences converge to 0? Explain your answers.

a. {xn}, where

xn =
{

en if n ≤ 1000
e−n if n > 1000

Solution: This does converge to 0 since the part of the sequence starting after

n = 1000 converges to 0. In other words, given any ε > 0, we can always take
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n0 > 1000 and then the initial segment of the sequence does not matter. Since

e−1 < 1, the sequence with e−n = (e−1)n for n ≥ 1000 does converge to zero by

a result shown in class.

b. {yn}, where

yn =

{

1 if n is evenly divisible by 1000
1
n

if n is not evenly divisible by 1000

Solution: This sequence does not converge to 0 since there are arbitrarily large

numbers n that are divisible by 1000. Hence with ε = 1, for all n0, there exist

n > n0 with |xn − 0| ≥ ε = 1.

c. {zn}, where

zn =

{

n if n is a Fermat prime number (look up on Wikipedia)
(−1)n

n2 if n is not a Fermat prime number

Solution: The portion of the sequence for n equal to some Fermat prime is clearly

not tending to zero. However, the only reasonable answer here is that no one

knows! Fermat primes are prime numbers of the form p = 22n

+1, like 17 = 222

+1.

There are only 5 known Fermat primes and all the numbers of the form 22n

+ 1

after the largest known prime that have been factored successfully are composite

(not prime). But there is no proof known that those five are the only ones. Hence

the convergence of this sequence is an open question in mathematics(!)

3. Let f(x) = [x] be the greatest integer function, defined as [x] = the greatest integer

≤ x.

a. If xn → a, does it follow that [xn] → [a]? Prove or give a counterexample.

This is not true. For instance, let xn = 1 − 1/n → a = 1. But [xn] = 0 for all n,

while [a] = 1.

b. If [xn] → [a], does it follow that xn → a? Prove or give a counterexample.

This is not true either. For instance let xn = 1
2 for all n ≥ 1. Then [xn] → 0 = [0].

But xn does not converge to 0.

4.

a. Suppose that xn → e (the base of the natural logarithm). Show that there exists

an n0 such that xn < 3 for all n ≥ n0.

Solution: e
.
= 2.71828 < 3, so 3 − e > 0. Applying the definition of convergence

of the sequence xn with ε = 3 − e, we see that there exists an n0 such that

|xn − e| < 3 − e for all n ≥ n0. However, |xn − e| < 3 − e is equivalent to

e − 3 < xn − e < 3 − e. Adding e to both sides of the second inequality here

shows xn < 3 for all n ≥ n0.
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b. Suppose xn → 6 and yn → 9. Show that there exists an n0 such that xn+yn > 14

for all n ≥ n0.

Solution: The idea is similar to what we did for part a. Since xn → 6, if we take

ε = 1/2 (or any smaller positive number), there must be an n0,x such that xn > 11
2

for all n ≥ n0,x. Similarly, there exists an n0,y such that yn > 17
2 for all n ≥ n0,y.

Hence if n0 = max(n0,x, n0,y), then n ≥ n0 implies xn + yn > 11
2 + 17

2 = 14.

‘B‘ Section

1.

a. Prove that
√

5 is an irrational number.

Solution: Suppose
√

5 = m

n
in lowest terms. Then m2 = 5n2, which shows that

5 must divide m2. Since 5 is prime, this implies that 5 divides m, so m = 5k for

some integer k. But then we have 25k2 = 5n2, so 5k2 = n2. The same reasoning

shows that n must also be divisible by 5. But that contradicts the fact that the

fraction m/n was supposed to be in lowest terms.

b. If r 6= 0 and s are rational numbers, show that r
√

5 + s is an irrational number.

Solution: The set of rational numbers Q is closed under addition and multiplica-

tion. So if r
√

5 + s = t ∈ Q, then we get
√

5 = t−s

r
∈ Q. This is a contradiction

to what was proved in part a.

c. If x = r
√

5 + s and y = r′
√

5 + s′ are two numbers as in part b, what can be said

about x + x′ and xx′? Are they irrational too?

Solution: Nothing can be said here since there are cases where these are rational

and others where they are irrational. For instance, if x =
√

5 and y = −
√

5 + 1,

then x + y = 1 ∈ Q. But if x =
√

5 = y, then x + y = 2
√

5 /∈ Q, by part

a. Similarly, if x =
√

5 + 1 and y = −
√

5 + 1, then xy = −4 ∈ Q. But if

x =
√

5 + 1 = y, then xy = 6 + 2
√

5 /∈ Q, by part a again.

2. Let A and B be two nonempty sets of real numbers.

a. Assume that x ≤ y for all x ∈ A and y ∈ B. Show that lub A and glb B must

exist.

Solution: Any element of B is an upper bound for A. Hence by the lub axiom,

A has a least upper bound. Similarly, any element of A is a lower bound for B,

so B has a greatest lower bound.

b. Under the same assumptions as in part a, show that lub A ≤ glb B.

Solution: (By contradiction.) Suppose that the contrary inequality is true: a =

lub A > glb B = b. By definition, that would say that the number a = lub A is
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not a lower bound for B and similarly, b = glb B is not an upper bound for A.

Hence by definition, there exist x ∈ A such that b < x ≤ a. But then x is not a

lower bound for B, so there exists y ∈ B with b ≤ y < x. But this contradicts

the assumption that x ≤ y for all x ∈ A and y ∈ B. Hence the desired statement

must be true.

c. Now assume that A, B are bounded subsets of R. Is it true that lub A ≤ glb B

implies that x ≤ y for all x ∈ A and y ∈ B? Prove or give a counterexample.

Solution: This is true. Write a = lub A and b = glb B. By definition, every

x ∈ A satisfies x ≤ a and similarly every y ∈ B satisfies b ≤ y. But then it

follows that x ≤ a ≤ b ≤ y. Hence by transitivity, x ≤ y.

3. Let A be a bounded set of real numbers and let B = {kx | x ∈ A}, where k < 0 is a

strictly negative number. Show that B is also bounded. Then, determine formulas for

computing lub B and glb B in terms of lub A and glb B, and prove your assertions.

Solution: First, if A is bounded, there exist real numbers m, M such that m ≤ x ≤ M

for all x ∈ A. Then since k < 0, we have km ≥ kx ≥ kM . But this shows that B is

also bounded (below by kM and above by km). The general statements here are that

(because k < 0), lub B = k · glb A and vice versa glb B = k · lub A. We will prove the

first one of these (the other is similar; the proof consists of reversing some inequalities

and changing glbs to lubs. So let ℓ = glb A. Then ℓ ≤ x for all x ∈ A. Hence since

k < 0, kℓ ≥ k · x for all x ∈ A. But this shows that k · ℓ is an upper bound for B.

Now let m be any other upper bound for B, so kx ≤ m for all x ∈ A. This implies

x ≥ m/k for all x ∈ A since. But then m/k is a lower bound for A. Since ℓ was the

greatest lower bound for A, m/k ≤ ℓ. But that implies m ≥ kℓ. Therefore, kℓ is the

least upper bound for B.

4. Determine whether each of the following series converge and prove your assertions

using the ε, n0 definition of convergence.

a. xn = 3n
2

n2+5

Solution: By rearranging algebraically, we see

3n2

n2 + 5
=

3

1 + 5/n2

Intuitively, as n → ∞, the 5/n2 is tending to 0, and we see the xn → 3. To prove

this rigorously, we start out with our “preparation for the proof:”
∣

∣

∣

∣

3n2

n2 + 5
− 3

∣

∣

∣

∣

=
15

n2 + 5
<

15

n2

To make this < ε it will suffice to take n >
√

15
ε

.
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Formal proof: Let ε > 0, and let n0 >
√

15
ε

. Then for all n ≥ n0, we have 15
n2 < ε,

so
∣

∣

∣

∣

3n2

n2 + 5
− 3

∣

∣

∣

∣

=
15

n2 + 5
<

15

n2
< ε.

This shows that xn → 3.

b. xn = 1
ln(n)

Solution: The numbers ln(n) increase without bound, so this sequence should be

converging to 0. The “preparation for the proof” is to notice that

1

ln(n)
< ε ⇔ ln(n) >

1

ε
⇔ n > e

1

ε .

Formal proof: Let ε > 0 and let n0 > e
1

ε . Then for all n ≥ n0, we have (since ln

is a strictly increasing function)

∣

∣

∣

∣

1

ln(n)
− 0

∣

∣

∣

∣

=
1

ln(n)
<

1

ln(e
1

ε )
= ε.

This shows 1
ln(n)

→ 0.

c. xn =

{

3n+1
4n

if n is even
6n−3
8n+1 if n is odd

Solution: The even and odd parts of the sequence are both tending to 3/4 by

rearrangements similar to what we did in part a. For the even part,
∣

∣

∣

∣

3n + 1

4n
− 3

4

∣

∣

∣

∣

=
1

4n
,

which will be < ε whenever n > 1
4ε

. Similarly, for the odd part,

∣

∣

∣

∣

6n − 3

8n + 1
− 3

4

∣

∣

∣

∣

=
15

32n + 4
<

15

32n
.

This will be < ε whenever n > 15
32ε

. If we take n greater than the larger of these

bounds, then we can use them both. That is the reason for the max below.

Formal proof: Let ε > 0, and let

n0 > max

(

1

4ε
,

15

32ε

)

=
15

32ε
.

Then whenever n ≥ n0 and n is even we have
∣

∣

∣

∣

xn − 3

4

∣

∣

∣

∣

=

∣

∣

∣

∣

3n + 1

4n
− 3

4

∣

∣

∣

∣

=
1

4n
< ε.
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Similarly, when n is odd, we have

∣

∣

∣

∣

xn − 3

4

∣

∣

∣

∣

=

∣

∣

∣

∣

6n − 3

8n + 1
− 3

4

∣

∣

∣

∣

=
15

32n + 4
<

15

32n
< ε.

This shows that xn → 3
4
.

d. Show that the sequence xn = sin
(

nπ

2

)

does not converge to any a ∈ R.

Solution: If we list out the first few terms in this sequence, we can see that the pattern

will be repeating the four values 1, 0,−1, 0, . . . forever. Thus it is pretty clear that

the the terms are not approaching any single limit. To prove that this is not the case

rigorously, we have to show that for every a ∈ R, there exist ε > 0 such that for all

n0, there exist n ≥ n0 with |xn − a| ≥ ε. We consider the case where a 6= −1, 0, 1

first. In this case, let ε = min(|a + 1|, |a|, |a − 1|) (the shortest distance from a to

any one of the three special values −1, 0, 1). Then in fact |xn − a| ≥ ε for all n,

and this shows the sequence cannot be converging to a. If a = −1, 0, 1, we need to

argue slightly differently. Say a = −1 for instance (the others will be similar). If we

take ε = 1 in this case, then notice there are infinitely many values of n for which

|xn − (−1)| ≥ 1 = ε, namely, all the n’s for which xn = 0 or 1, or n 6= 3, 7, 11, . . .. (In

MATH 243 terms |xn − (−1)| ≥ 1 for all n with n 6≡ 3 mod 4.) Hence there are such

n ≥ n0 for any given n0. This shows the definition of convergence does not hold with

a = −1.
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