MATH 242 - Principles of Analysis
Problem Set 3 - due: Feb. 15

'A'Section

1. A set B is said to be finite if there is some $n \in \mathbf{N}$ (the number of elements in B), and a one-to-one onto mapping $f:\{1,2, \ldots, n\} \rightarrow B$. (Intuitively, we think that $f(1)=b_{1}, f(2)=b_{2}, \ldots$ "counts through" all the elements of B one at a time without repetitions and without missing any elements in B.) For each of the following sets, either show B is finite by determining the n and constructing a mapping f as above, or say why no such mapping exists.
a. $B=\{r=p / q \in \mathbf{Q} \mid 1 \leq q \leq 5$ and $0<r<1\}$
b. $B=\{r=p / q \in \mathbf{Q} \mid 0<r<1\}$
c. $B=\left\{n \in \mathbf{Z}| | n \mid \leq 10^{9}\right\}$
2. Which of the following sequences converge to 0 ? Explain your answers.
a. $\left\{x_{n}\right\}$, where

$$
x_{n}= \begin{cases}e^{n} & \text { if } n \leq 1000 \\ e^{-n} & \text { if } n>1000\end{cases}
$$

b. $\left\{y_{n}\right\}$, where

$$
y_{n}= \begin{cases}1 & \text { if } n \text { is evenly divisible by } 1000 \\ \frac{1}{n} & \text { if } n \text { is not evenly divisible by } 1000\end{cases}
$$

c. $\left\{z_{n}\right\}$, where

$$
z_{n}= \begin{cases}n & \text { if } n \text { is a Fermat prime number (look up on Wikipedia) } \\ \frac{(-1)^{n}}{n^{2}} & \text { if } n \text { is not a Fermat prime number }\end{cases}
$$

3. Let $f(x)=[x]$ be the greatest integer function, defined as $[x]=$ the greatest integer $\leq x$.
a. If $x_{n} \rightarrow a$, does it follow that $\left[x_{n}\right] \rightarrow[a]$? Prove or give a counterexample.
b. If $\left[x_{n}\right] \rightarrow[a]$, does it follow that $x_{n} \rightarrow a$? Prove or give a counterexample.
4.

a. Suppose that $x_{n} \rightarrow e$ (the base of the natural logarithms). Explain why there exists an n_{0} such that $x_{n}<3$ for all $n \geq n_{0}$.
b. Suppose $x_{n} \rightarrow 6$ and $y_{n} \rightarrow 9$. Explain why there exists an n_{0} such that $x_{n}+y_{n}>$ 14 for all $n \geq n_{0}$.
1.
a. Prove that $\sqrt{5}$ is an irrational number.
b. If $r \neq 0$ and s are rational numbers, show that $r \sqrt{5}+s$ is also an irrational number.
c. If $x=r \sqrt{5}+s$ and $x^{\prime}=r^{\prime} \sqrt{5}+s^{\prime}$ are two numbers as in part b , what can be said about $x+x^{\prime}$ and $x x^{\prime}$? Are they necessarily irrational too?
2. Let A and B be two nonempty sets of real numbers.
a. Assume that $x \leq y$ for all $x \in A$ and $y \in B$. Show that lub A and glb B must exist.
b. Under the same assumptions as part a, show that lub $A \leq$ glb B.
c. Now assume that A and B are bounded. Is it true that lub $A \leq$ glb B implies that $x \leq y$ for all $x \in A$ and $y \in B$? Prove or give a counterexample.
3. Let A be a bounded set of real numbers and let $B=\{k x \mid x \in A\}$, where $k<0$ is a strictly negative number. Show that B is also bounded. Then, determine formulas for computing lub B and glb B in terms of lub A and glb A, and prove your assertions.
4. Determine whether each of the following sequences converge and prove your assertions using the ε, n_{0} definition of convergence.
a. $x_{n}=\frac{3 n^{2}}{n^{2}+5}$
b. $x_{n}=\frac{1}{\ln (n)}$
c. $x_{n}= \begin{cases}\frac{3 n+1}{4 n} & \text { if } n \text { is even } \\ \frac{6 n-3}{8 n+1} & \text { if } n \text { is odd }\end{cases}$
d. $x_{n}=\sin (n \pi / 2)$.

