‘A’ Section

1. A set B is said to be *finite* if there is some $n \in \mathbb{N}$ (the number of elements in B), and a one-to-one onto mapping $f : \{1, 2, \ldots, n\} \to B$. (Intuitively, we think that $f(1) = b_1, f(2) = b_2, \ldots$ “counts through” all the elements of B one at a time without repetitions and without missing any elements in B.) For each of the following sets, either show B is finite by determining the n and constructing a mapping f as above, or say why no such mapping exists.
 a. $B = \{r = p/q \in \mathbb{Q} \mid 1 \leq q \leq 5$ and $0 < r < 1\}$
 b. $B = \{r = p/q \in \mathbb{Q} \mid 0 < r < 1\}$
 c. $B = \{n \in \mathbb{Z} \mid |n| \leq 10^9\}$

2. Which of the following sequences converge to 0? Explain your answers.
 a. $\{x_n\}$, where
 $$x_n = \begin{cases} e^n & \text{if } n \leq 1000 \\ e^{-n} & \text{if } n > 1000 \end{cases}$$
 b. $\{y_n\}$, where
 $$y_n = \begin{cases} 1 & \text{if } n \text{ is evenly divisible by 1000} \\ \frac{1}{n} & \text{if } n \text{ is not evenly divisible by 1000} \end{cases}$$
 c. $\{z_n\}$, where
 $$z_n = \begin{cases} n & \text{if } n \text{ is a Fermat prime number (look up on Wikipedia)} \\ (-1)^n \frac{1}{n^2} & \text{if } n \text{ is not a Fermat prime number} \end{cases}$$

3. Let $f(x) = [x]$ be the greatest integer function, defined as $[x] = \text{the greatest integer } \leq x$.
 a. If $x_n \to a$, does it follow that $[x_n] \to [a]$? Prove or give a counterexample.
 b. If $[x_n] \to [a]$, does it follow that $x_n \to a$? Prove or give a counterexample.

4. a. Suppose that $x_n \to e$ (the base of the natural logarithms). Explain why there exists an n_0 such that $x_n < 3$ for all $n \geq n_0$.
 b. Suppose $x_n \to 6$ and $y_n \to 9$. Explain why there exists an n_0 such that $x_n + y_n > 14$ for all $n \geq n_0$.

'B’ Section

1.
 a. Prove that \(\sqrt{5} \) is an irrational number.
 b. If \(r \neq 0 \) and \(s \) are rational numbers, show that \(r\sqrt{5} + s \) is also an irrational number.
 c. If \(x = r\sqrt{5} + s \) and \(x' = r'\sqrt{5} + s' \) are two numbers as in part b, what can be said about \(x + x' \) and \(xx' \)? Are they necessarily irrational too?

2. Let \(A \) and \(B \) be two nonempty sets of real numbers.
 a. Assume that \(x \leq y \) for all \(x \in A \) and \(y \in B \). Show that lub \(A \) and glb \(B \) must exist.
 b. Under the same assumptions as part a, show that lub \(A \leq \) glb \(B \).
 c. Now assume that \(A \) and \(B \) are bounded. Is it true that lub \(A \leq \) glb \(B \) implies that \(x \leq y \) for all \(x \in A \) and \(y \in B \)? Prove or give a counterexample.

3. Let \(A \) be a bounded set of real numbers and let \(B = \{kx \mid x \in A\} \), where \(k < 0 \) is a strictly negative number. Show that \(B \) is also bounded. Then, determine formulas for computing lub \(B \) and glb \(B \) in terms of lub \(A \) and glb \(A \), and prove your assertions.

4. Determine whether each of the following sequences converge and prove your assertions using the \(\varepsilon, n_0 \) definition of convergence.
 a. \(x_n = \frac{3n^2}{n^2 + 5} \)
 b. \(x_n = \frac{1}{\ln(n)} \)
 c. \(x_n = \begin{cases}
 \frac{3n+1}{4n^2} & \text{if } n \text{ is even} \\
 \frac{4n^2}{8n^2+3} & \text{if } n \text{ is odd}
 \end{cases} \)
 d. \(x_n = \sin(n\pi/2) \).