
MATH 242 – Principles of Analysis
Solutions for Problem Set 2 – due: Feb. 8

‘A‘ Section

1. Let x ∈ [1, 3]. Determine the largest and smallest values of |x − 5|, |x + 5|, and

1/|x2 − 25|.
Solution: If x ∈ [1, 3], then x − 5 ∈ [−4,−2], so the largest and smallest values of

|x− 5| are 4 and 2 respectively. Next, x +5 ∈ [6, 8], so the largest and smallest values

of |x + 5| are 8 and 6 respectively. Finally, |x2 − 25| = |x − 5||x + 5|, so the largest

and smallest values of 1/|x2−25| are 1/16 and 1/24 respectively. (Think of the graph

y = 1/|x2 − 25 to see this.)

2. Use the binomial theorem (Theorem 1.4.1) for all parts of this problem.

a. Expand using the binomial theorem and simplify as much as possible:

(a2 − 5b3)6.

Solution: We have

(a2−5b3)6 = a12−30a10b3+375a8b6−2500a6b9+9375a4b12−18750a2b15+15625b18.

b. What is the coefficient of x3 in the expansion of

(

x4 + 7x

x2

)3

.

Solution: Dividing inside the power, we are looking at

(

x2 + 7x−1
)3

The only x3 term will come from squaring the x2 and taking x−1 to the first

power. So the coefficient is
(

3

1

)

· 7 = 21.

c. What is
∑n

k=0

(

n

k

)

? Explain.

Solution: From the binomial theorem this sum is what we obtain from

(1 + 1)n = 2n.

d. What is
∑n

k=0
(−1)k

(

n

k

)

? Explain.

Solution: From the binomial theorem this sum is what we obtain from

(1 − 1)n = 0n = 0.
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3. For each of the following statements, say whether the statement is true or false. If it

is false, give a counterexample; if it is true, give a short reason.

a. A set A ⊂ R is bounded if there exists some B such that x ≤ B for all x ∈ A.

Solution: FALSE – the set is bounded above, but not necessarily below. An

example would be the open interval (−∞, 0) with B = 0.

b. If A, B ⊂ R are bounded, then A ∪ B is also bounded.

Solution: TRUE – If A is bounded above by MA and B is bounded above by

MB, then A ∪ B is bounded above by max(MA, MB). Similarly, if A is bounded

below by mA and B is bounded below by mB , then A ∪ B is bounded above by

min(mA, mB).

c. If A, B ⊂ R are bounded, then D = {x − y | x ∈ A, y ∈ B} is also bounded.

Solution: TRUE – Suppose A is bounded above by MA and B is bounded above

by MB . Similarly, suppose A is bounded below by mA and B is bounded below

by mB . Then for all x ∈ A and y ∈ B we have mA ≤ x ≤ MA and mB ≤ y ≤ MB.

It follows that mA − MB ≤ x − y ≤ MA − mB . Therefore D is bounded.

d. If A, B ⊂ R>0 are bounded, then Q = {x/y | x ∈ A, y ∈ B} is also bounded.

Solution: FALSE – Let B = (0, 1) and let A = {1}. The set Q is the set

{1/y | y ∈ (0, 1)} which is not bounded above.

4.

a. Let A = [0, 4] ∩ (1, 5). What is a = lub A? What is b = glb A? Are a, b ∈ A?

Solution: We have A = (1, 4]. Therefore a = 4, which is in A. But b = 1 is not

in A.

b. Let B = {x ∈ R | 0 < x2 − 4x + 1 < 4}. What is a = lub B? What is b = glb B?

Are a, b ∈ B?

Solution: By completing the square or using the quadratic formula, we see B =

(2−
√

7, 2−
√

3) ∪ (2 +
√

3, 2 +
√

7). Hence a = 2 +
√

7 and b = 2−
√

7. Neither

is in B.

c. Let C = {x ∈ Q | x2 < 5}. What is a = lub C? What is b = glb C? Are

a, b ∈ C?

Solution: There are rational numbers arbitrarily close to ±
√

5, so whose squares

are arbitrarily close to 5, but ±
√

5 are not themselves rational numbers. It follows

that a =
√

5 and b = −
√

5, but neither is in C.

‘B‘ Section

1. Let x, y be any real numbers.
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a. Show that |x| − |y| ≤ |x − y| and deduce that ||x| − |y|| ≤ |x − y|.
Solution: From the usual triangle inequality,

|x| = |(x − y) + y| ≤ |x − y| + |y|.

Subtracting, we obtain |x|− |y| ≤ |x−y| as desired. Similarly, reversing the roles

of x, y, we have |y| − |x| ≤ |y − x| = |x − y|. Since either |x| ≥ |y| or |y| ≥ |x| is

true, we have either ||x| − |y|| = |x| − |y| or ||x| − |y|| = |y| − |x|. Since both of

those are ≤ |x − y|, it follows that ||x| − |y|| ≤ |x − y| as desired.

b. Show that if x, y > 0, then x < y is equivalent to x2 < y2.

Solution: Since x > 0, x < y implies x2 < xy. Similarly, x < y implies xy < y2.

But then transitivity implies x2 < y2. Conversely, if x2 < y2, then 0 < y2 − x2 =

(y − x)(y + x). Since x, y > 0, the sum x + y > 0. This implies that y − x > 0

too, or equivalently x < y.

c. Show that if 0 < x < y, then
√

y −√
x <

√
y − x.

Solution: By part b, since
√

y −√
x > 0 and

√
y − x > 0, it suffices to show that

(
√

y −
√

x)2 < (
√

y − x)2.

But the left side here is y − 2
√

y
√

x + x and the right side is y − x. We have

(y − x) − (y − 2
√

y
√

x + x) = 2
√

y
√

x − 2x = 2
√

x(
√

y −
√

x).

This is > 0 because of the assumption y > x and part b. Hence the desired

inequality follows.

2. Let a, b be any real numbers. Define max(a, b) and min(a, b) to be the larger and

smaller of the two numbers, respectively. (That is, max(a, b) = a if a ≥ b and

max(a, b) = b if b ≥ a. Similarly for the minimum.) Show that

max(a, b) =
a + b

2
+

|a − b|
2

and

min(a, b) =
a + b

2
− |a − b|

2
.

Solution: Geometrically, the average a+b

2
is the midpoint of the line segment along

R between a and b and |a − b| is the distance between a and b (the length of the

line segment). So starting at the midpoint and going 1/2 the distance to the right

gives the maximum of the endpoints, and going 1/2 the distance to the left gives the

3



minimum of the endpoints. More analytically, we can also prove these by breaking

into cases. Suppose first that a ≥ b so a is the right endpoint. Then |a − b| = a − b,

and
a + b

2
+

|a − b|
2

=
a + b

2
+

a − b

2
= a = max(a, b),

while
a + b

2
+

|a − b|
2

=
a + b

2
− a − b

2
= b = min(a, b).

If b is the maximum and a is the minimum, then

a + b

2
+

|a − b|
2

=
a + b

2
+

b − a

2
= b = max(a, b),

while
a + b

2
− |a − b|

2
=

a + b

2
− b − a

2
= a = min(a, b).

3. Show by mathematical induction that

13 + 23 + · · ·+ n3 = (1 + 2 + · · ·+ n)2

for all n ≥ 1.

Solution: With n = 1, we have 1 = 1, so the base case is established. Now assume the

formula has been proved for n = k and consider the next case n = k + 1. We have by

the induction hypothesis

(13 + 23 + · · ·+ k3) + (k + 1)3 = (1 + · · ·+ k)2 + (k + 1)3

=

(

k(k + 1)

2

)2

+ (k + 1)3

=
(k + 1)2(k2 + 4k + 4)

4

=
(k + 1)2(k + 2)2

4

= (1 + 2 + · · · + (k + 1))2

4. Show by mathematical induction that n! ≥ 2n for all n ≥ 4.

Solution: The base case here is n = 4 and 4! = 24 > 16 = 24 is true. For the induction

step, assume k! > 2k and consider (k + 1)!. We see, by the induction hypothesis:

(k + 1)! = (k + 1)k! > (k + 1)2k > 2 · 2k = 2k+1.

(The third step is valid since k ≥ 4 implies k + 1 > 2.)
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