MATH 242 - Principles of Analysis
Solutions for Problem Set 2 - due: Feb. 8

' A ' Section

1. Let $x \in[1,3]$. Determine the largest and smallest values of $|x-5|,|x+5|$, and $1 /\left|x^{2}-25\right|$.
Solution: If $x \in[1,3]$, then $x-5 \in[-4,-2]$, so the largest and smallest values of $|x-5|$ are 4 and 2 respectively. Next, $x+5 \in[6,8]$, so the largest and smallest values of $|x+5|$ are 8 and 6 respectively. Finally, $\left|x^{2}-25\right|=|x-5||x+5|$, so the largest and smallest values of $1 /\left|x^{2}-25\right|$ are $1 / 16$ and $1 / 24$ respectively. (Think of the graph $y=1 / \mid x^{2}-25$ to see this.)
2. Use the binomial theorem (Theorem 1.4.1) for all parts of this problem.
a. Expand using the binomial theorem and simplify as much as possible:

$$
\left(a^{2}-5 b^{3}\right)^{6}
$$

Solution: We have

$$
\left(a^{2}-5 b^{3}\right)^{6}=a^{12}-30 a^{10} b^{3}+375 a^{8} b^{6}-2500 a^{6} b^{9}+9375 a^{4} b^{12}-18750 a^{2} b^{15}+15625 b^{18} .
$$

b. What is the coefficient of x^{3} in the expansion of

$$
\left(\frac{x^{4}+7 x}{x^{2}}\right)^{3}
$$

Solution: Dividing inside the power, we are looking at

$$
\left(x^{2}+7 x^{-1}\right)^{3}
$$

The only x^{3} term will come from squaring the x^{2} and taking x^{-1} to the first power. So the coefficient is $\binom{3}{1} \cdot 7=21$.
c. What is $\sum_{k=0}^{n}\binom{n}{k}$? Explain.

Solution: From the binomial theorem this sum is what we obtain from

$$
(1+1)^{n}=2^{n}
$$

d. What is $\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}$? Explain.

Solution: From the binomial theorem this sum is what we obtain from

$$
(1-1)^{n}=0^{n}=0
$$

3. For each of the following statements, say whether the statement is true or false. If it is false, give a counterexample; if it is true, give a short reason.
a. A set $A \subset \mathbf{R}$ is bounded if there exists some B such that $x \leq B$ for all $x \in A$.

Solution: FALSE - the set is bounded above, but not necessarily below. An example would be the open interval $(-\infty, 0)$ with $B=0$.
b. If $A, B \subset \mathbf{R}$ are bounded, then $A \cup B$ is also bounded.

Solution: TRUE - If A is bounded above by M_{A} and B is bounded above by M_{B}, then $A \cup B$ is bounded above by $\max \left(M_{A}, M_{B}\right)$. Similarly, if A is bounded below by m_{A} and B is bounded below by m_{B}, then $A \cup B$ is bounded above by $\min \left(m_{A}, m_{B}\right)$.
c. If $A, B \subset \mathbf{R}$ are bounded, then $D=\{x-y \mid x \in A, y \in B\}$ is also bounded.

Solution: TRUE - Suppose A is bounded above by M_{A} and B is bounded above by M_{B}. Similarly, suppose A is bounded below by m_{A} and B is bounded below by m_{B}. Then for all $x \in A$ and $y \in B$ we have $m_{A} \leq x \leq M_{A}$ and $m_{B} \leq y \leq M_{B}$. It follows that $m_{A}-M_{B} \leq x-y \leq M_{A}-m_{B}$. Therefore D is bounded.
d. If $A, B \subset \mathbf{R}_{>0}$ are bounded, then $Q=\{x / y \mid x \in A, y \in B\}$ is also bounded.

Solution: FALSE - Let $B=(0,1)$ and let $A=\{1\}$. The set Q is the set $\{1 / y \mid y \in(0,1)\}$ which is not bounded above.
4.
a. Let $A=[0,4] \cap(1,5)$. What is $a=\operatorname{lub} A$? What is $b=\operatorname{glb} A$? Are $a, b \in A$?

Solution: We have $A=(1,4]$. Therefore $a=4$, which is in A. But $b=1$ is not in A.
b. Let $B=\left\{x \in \mathbf{R} \mid 0<x^{2}-4 x+1<4\right\}$. What is $a=\operatorname{lub} B$? What is $b=\operatorname{glb} B$? Are $a, b \in B$?
Solution: By completing the square or using the quadratic formula, we see $B=$ $(2-\sqrt{7}, 2-\sqrt{3}) \cup(2+\sqrt{3}, 2+\sqrt{7})$. Hence $a=2+\sqrt{7}$ and $b=2-\sqrt{7}$. Neither is in B.
c. Let $C=\left\{x \in \mathbf{Q} \mid x^{2}<5\right\}$. What is $a=\operatorname{lub} C$? What is $b=\operatorname{glb} C$? Are $a, b \in C$?
Solution: There are rational numbers arbitrarily close to $\pm \sqrt{5}$, so whose squares are arbitrarily close to 5 , but $\pm \sqrt{5}$ are not themselves rational numbers. It follows that $a=\sqrt{5}$ and $b=-\sqrt{5}$, but neither is in C.

' B ' Section

1. Let x, y be any real numbers.
a. Show that $|x|-|y| \leq|x-y|$ and deduce that $||x|-|y|| \leq|x-y|$.

Solution: From the usual triangle inequality,

$$
|x|=|(x-y)+y| \leq|x-y|+|y|
$$

Subtracting, we obtain $|x|-|y| \leq|x-y|$ as desired. Similarly, reversing the roles of x, y, we have $|y|-|x| \leq|y-x|=|x-y|$. Since either $|x| \geq|y|$ or $|y| \geq|x|$ is true, we have either $\| x|-|y||=|x|-|y|$ or $||x|-|y||=|y|-|x|$. Since both of those are $\leq|x-y|$, it follows that $\| x|-|y|| \leq|x-y|$ as desired.
b. Show that if $x, y>0$, then $x<y$ is equivalent to $x^{2}<y^{2}$.

Solution: Since $x>0, x<y$ implies $x^{2}<x y$. Similarly, $x<y$ implies $x y<y^{2}$. But then transitivity implies $x^{2}<y^{2}$. Conversely, if $x^{2}<y^{2}$, then $0<y^{2}-x^{2}=$ $(y-x)(y+x)$. Since $x, y>0$, the sum $x+y>0$. This implies that $y-x>0$ too, or equivalently $x<y$.
c. Show that if $0<x<y$, then $\sqrt{y}-\sqrt{x}<\sqrt{y-x}$.

Solution: By part b, since $\sqrt{y}-\sqrt{x}>0$ and $\sqrt{y-x}>0$, it suffices to show that

$$
(\sqrt{y}-\sqrt{x})^{2}<(\sqrt{y-x})^{2}
$$

But the left side here is $y-2 \sqrt{y} \sqrt{x}+x$ and the right side is $y-x$. We have

$$
(y-x)-(y-2 \sqrt{y} \sqrt{x}+x)=2 \sqrt{y} \sqrt{x}-2 x=2 \sqrt{x}(\sqrt{y}-\sqrt{x}) .
$$

This is >0 because of the assumption $y>x$ and part b. Hence the desired inequality follows.
2. Let a, b be any real numbers. Define $\max (a, b)$ and $\min (a, b)$ to be the larger and smaller of the two numbers, respectively. (That is, $\max (a, b)=a$ if $a \geq b$ and $\max (a, b)=b$ if $b \geq a$. Similarly for the minimum.) Show that

$$
\max (a, b)=\frac{a+b}{2}+\frac{|a-b|}{2}
$$

and

$$
\min (a, b)=\frac{a+b}{2}-\frac{|a-b|}{2}
$$

Solution: Geometrically, the average $\frac{a+b}{2}$ is the midpoint of the line segment along \mathbf{R} between a and b and $|a-b|$ is the distance between a and b (the length of the line segment). So starting at the midpoint and going $1 / 2$ the distance to the right gives the maximum of the endpoints, and going $1 / 2$ the distance to the left gives the
minimum of the endpoints. More analytically, we can also prove these by breaking into cases. Suppose first that $a \geq b$ so a is the right endpoint. Then $|a-b|=a-b$, and

$$
\frac{a+b}{2}+\frac{|a-b|}{2}=\frac{a+b}{2}+\frac{a-b}{2}=a=\max (a, b),
$$

while

$$
\frac{a+b}{2}+\frac{|a-b|}{2}=\frac{a+b}{2}-\frac{a-b}{2}=b=\min (a, b) .
$$

If b is the maximum and a is the minimum, then

$$
\frac{a+b}{2}+\frac{|a-b|}{2}=\frac{a+b}{2}+\frac{b-a}{2}=b=\max (a, b),
$$

while

$$
\frac{a+b}{2}-\frac{|a-b|}{2}=\frac{a+b}{2}-\frac{b-a}{2}=a=\min (a, b)
$$

3. Show by mathematical induction that

$$
1^{3}+2^{3}+\cdots+n^{3}=(1+2+\cdots+n)^{2}
$$

for all $n \geq 1$.
Solution: With $n=1$, we have $1=1$, so the base case is established. Now assume the formula has been proved for $n=k$ and consider the next case $n=k+1$. We have by the induction hypothesis

$$
\begin{aligned}
\left(1^{3}+2^{3}+\cdots+k^{3}\right)+(k+1)^{3} & =(1+\cdots+k)^{2}+(k+1)^{3} \\
& =\left(\frac{k(k+1)}{2}\right)^{2}+(k+1)^{3} \\
& =\frac{(k+1)^{2}\left(k^{2}+4 k+4\right)}{4} \\
& =\frac{(k+1)^{2}(k+2)^{2}}{4} \\
& =(1+2+\cdots+(k+1))^{2}
\end{aligned}
$$

4. Show by mathematical induction that $n!\geq 2^{n}$ for all $n \geq 4$.

Solution: The base case here is $n=4$ and $4!=24>16=2^{4}$ is true. For the induction step, assume $k!>2^{k}$ and consider $(k+1)$!. We see, by the induction hypothesis:

$$
(k+1)!=(k+1) k!>(k+1) 2^{k}>2 \cdot 2^{k}=2^{k+1}
$$

(The third step is valid since $k \geq 4$ implies $k+1>2$.)

