MATH 242 – Principles of Analysis Problem Set 2 – due: Feb. 8

 $`A`\ Section$

- 1. Let $x \in [1,3]$. Determine the largest and smallest values of |x-5|, |x+5|, and $1/|x^2-25|$.
- 2. Use the binomial theorem (Theorem 1.4.1) for all parts of this problem.
 - a. Expand using the binomial theorem and simplify as much as possible:

$$(a^2 - 5b^3)^6$$
.

b. What is the coefficient of x^3 in the expansion of

$$\left(\frac{x^4+7x}{x^2}\right)^3.$$

- c. What is $\sum_{k=0}^{n} {n \choose k}$? Explain.
- d. What is $\sum_{k=0}^{n} (-1)^k \binom{n}{k}$? Explain.
- 3. For each of the following statements, say whether the statement is true or false. If it is false, give a counterexample; if it is true, give a short reason.
 - a. A set $A \subset \mathbf{R}$ is bounded if there exists some B such that $x \leq B$ for all $x \in A$.
 - b. If $A, B \subset \mathbf{R}$ are bounded, then $A \cup B$ is also bounded.
 - c. If $A, B \subset \mathbf{R}$ are bounded, then $D = \{x y \mid x \in A, y \in B\}$ is also bounded.
 - d. If $A, B \subset \mathbf{R}_{>0}$ are bounded, then $Q = \{x/y \mid x \in A, y \in B\}$ is also bounded.
- 4.
- a. Let $A = [0, 4] \cap (1, 5)$. What is a = lub A? What is b = glb A? Are $a, b \in A$?
- b. Let $B = \{x \in \mathbb{R} \mid 0 < x^2 4x + 1 < 4\}$. What is a = lub B? What is b = glb B? Are $a, b \in B$?
- c. Let $C = \{x \in \mathbf{Q} \mid x^2 < 5\}$. What is a = lub C? What is b = glb C? Are $a, b \in C$?

B' Section

- 1. Let x, y be any real numbers.
 - a. Show that $|x| |y| \le |x y|$ and deduce that $||x| |y|| \le |x y|$.
 - b. Show that if x, y > 0, then x < y is equivalent to $x^2 < y^2$.
 - c. Show that if 0 < x < y, then $\sqrt{y} \sqrt{x} < \sqrt{y x}$.

2. Let a, b be any real numbers. Define $\max(a, b)$ and $\min(a, b)$ to be the larger and smaller of the two numbers, respectively. (That is, $\max(a, b) = a$ if $a \ge b$ and $\max(a, b) = b$ if $b \ge a$. Similarly for the minimum.) Show that

$$\max(a, b) = \frac{a+b}{2} + \frac{|a-b|}{2}$$

and

$$\min(a, b) = \frac{a+b}{2} - \frac{|a-b|}{2}.$$

3. Show by mathematical induction that

$$1^3 + 2^3 + \dots + n^3 = (1 + 2 + \dots + n)^2$$

for all $n \ge 1$.

4. Show by mathematical induction that $n! \ge 2^n$ for all $n \ge 4$.