MATH 242 - Principles of Analysis
Problem Set 2 - due: Feb. 8

'A'Section

1. Let $x \in[1,3]$. Determine the largest and smallest values of $|x-5|,|x+5|$, and $1 /\left|x^{2}-25\right|$.
2. Use the binomial theorem (Theorem 1.4.1) for all parts of this problem.
a. Expand using the binomial theorem and simplify as much as possible:

$$
\left(a^{2}-5 b^{3}\right)^{6}
$$

b. What is the coefficient of x^{3} in the expansion of

$$
\left(\frac{x^{4}+7 x}{x^{2}}\right)^{3}
$$

c. What is $\sum_{k=0}^{n}\binom{n}{k}$? Explain.
d. What is $\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}$? Explain.
3. For each of the following statements, say whether the statement is true or false. If it is false, give a counterexample; if it is true, give a short reason.
a. A set $A \subset \mathbf{R}$ is bounded if there exists some B such that $x \leq B$ for all $x \in A$.
b. If $A, B \subset \mathbf{R}$ are bounded, then $A \cup B$ is also bounded.
c. If $A, B \subset \mathbf{R}$ are bounded, then $D=\{x-y \mid x \in A, y \in B\}$ is also bounded.
d. If $A, B \subset \mathbf{R}_{>0}$ are bounded, then $Q=\{x / y \mid x \in A, y \in B\}$ is also bounded.
4.
a. Let $A=[0,4] \cap(1,5)$. What is $a=\operatorname{lub} A$? What is $b=\operatorname{glb} A$? Are $a, b \in A$?
b. Let $B=\left\{x \in \mathbf{R} \mid 0<x^{2}-4 x+1<4\right\}$. What is $a=\operatorname{lub} B$? What is $b=\operatorname{glb} B$? Are $a, b \in B$?
c. Let $C=\left\{x \in \mathbf{Q} \mid x^{2}<5\right\}$. What is $a=\operatorname{lub} C$? What is $b=$ glb C ? Are $a, b \in C$?

‘B' Section

1. Let x, y be any real numbers.
a. Show that $|x|-|y| \leq|x-y|$ and deduce that $||x|-|y|| \leq|x-y|$.
b. Show that if $x, y>0$, then $x<y$ is equivalent to $x^{2}<y^{2}$.
c. Show that if $0<x<y$, then $\sqrt{y}-\sqrt{x}<\sqrt{y-x}$.
2. Let a, b be any real numbers. Define $\max (a, b)$ and $\min (a, b)$ to be the larger and smaller of the two numbers, respectively. (That is, $\max (a, b)=a$ if $a \geq b$ and $\max (a, b)=b$ if $b \geq a$. Similarly for the minimum.) Show that

$$
\max (a, b)=\frac{a+b}{2}+\frac{|a-b|}{2}
$$

and

$$
\min (a, b)=\frac{a+b}{2}-\frac{|a-b|}{2}
$$

3. Show by mathematical induction that

$$
1^{3}+2^{3}+\cdots+n^{3}=(1+2+\cdots+n)^{2}
$$

for all $n \geq 1$.
4. Show by mathematical induction that $n!\geq 2^{n}$ for all $n \geq 4$.

