
MATH 242 – Principles of Analysis
Solutions for Problem Set 1 – due: Feb. 1

‘A‘ Section

1. Let A = {x ∈ R | x2 − 5x + 6 = 0}, B = (0, 4) = {x ∈ R | 0 < x < 4} and

C = { x

x
2+1

| x ∈ R} (Note: C is the range of the function f defined by f(x) = x

x
2+1

.)

a. Express the set C as a union of one or more closed intervals [a, b] in R. (Note:

You should use facts from calculus to solve this. Don’t worry that we have not

justified them yet.)

Solution: The function f(x) = x

x
2+1

has f ′(x) = 1−x
2

x
2+1

. This is = 0 at x = ±1.

Moreover f ′(x) < 0 for x < −1, f ′(x) > 0 for −1 < x < 1 and f ′(x) < 0

for x > 1. Therefore, at x = −1, f has a local minimum with f(−1) = −1/2.

Similarly, at x = 1, f has a local maximum with f(1) = 1/2. We also see

limx→±∞ f(x) = 0. Hence f(−1) = −1/2 is also an absolute minimum, and

f(1) = 1/2 is also an absolute maximum. We will show later in the course that

every y with −1/2 < y < 1/2 is also in the range. Hence C = [−1/2, 1/2].

b. Find the sets A ∩ C and B ∩ C.

Solution: Since A = {2, 3}, we see that A ∩ C = ∅ and B ∩ C = (0, 1/2].

c. Find the sets B ∪ A and B ∪ C and express as unions of intervals in R.

Solution: We have B ∪ A = (0, 4) = B, since A ⊂ B. Then by part a, B ∪ C =

(0, 4) ∪ [−1/2, 1/2] = [−1/2, 4).

2. Let Bn = {1, 1/4, 1/9, . . . , 1/n2} for each natural number n ≥ 1. What are ∩∞
n=1Bn

and ∪∞
n=1Bn?

Solution: The union, ∪∞
n=1Bn, is the set

{1/n2 | n ≥ 1}.

The intersection, ∩∞
n=1Bn, is the set {1}, since that is the only element in Bn for all

n ≥ 1.

3. Let In = [−1/n, 1/n] for any n ≥ 1. What are ∩∞
n=1In and ∪∞

n=1In. (Explain your

reasoning intuitively.)

Solution: Note first that Im ⊂ In whenever m > n. This shows that the union is

the same as I1 = [−1, 1]. The intersection contains only 0. We will see in about a

week how to justify the claim that for any real a > 0, there is some n ≥ 1 such that

1/n < a. Hence a is not in the intersection. The same is true on the negative side:

for any b < 0, there exists some n ≥ 1 such that b < −1/n. Hence b is not in the
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intersection either. This leaves only 0 which does satisfy −1/n < 0 < 1/n for all

n ≥ 1.

4. Let f : R → R be the function defined by f(x) = x2 − 4x + 1.

a. Is f one-to-one? Why or why not?

Solution: By completing the square, we see x2 − 4x+1 = (x− 2)2 − 3. From this

we can see for instance that f(3) = −2 = f(1). Therefore f is not one-to-one.

We also see that the graph y = f(x) is a shifted parabola with vertex at (2,−3).

This fact can be used to see parts of what we are saying in the later parts of the

problem.

b. Is f onto? Why or why not?

Solution: By the same computations as for part a, we see that f(x) ≥ −3 for all

x. Therefore f is not onto R.

c. If I = (1, 3), what is the set f(I)? Explain.

Solution: f has a local and global minimum at f(2) = −3. Hence f((1, 3)) =

[−3,−2).

d. If J = (5, 6), what is the set f−1(J). Explain.

Solution: We have f(x) = x2 − 4x + 1 = (x − 2)2 − 3 = 5 when x = 2 ±
√

8.

Similarly, f(x) = 6 when x = 2 ± 3 = −1, 5. Hence f−1(J) is the union of the

two intervals f−1(J) = (−1, 2 −
√

8) ∪ (2 +
√

8, 5).

‘B’ Section

1. Prove part (f) of Theorem 1.1.3 in the text. These are the De Morgan Laws for

complements.

Solution: We show (A ∩ B)c = Ac ∪ Bc. Let x ∈ (A ∩ B)c, then x /∈ A ∩ B, which

says x /∈ A or x /∈ B. But then x ∈ Ac ∪ Bc, and it follows that (A ∩ B)c ⊂ Ac ∪ Bc.

Conversely, if x ∈ Ac ∪ Bc, then x /∈ A or x /∈ B. This shows x /∈ A ∩ B, so

x ∈ (A ∩B)c, and it follows that Ac ∪Bc ⊂ (A ∩B)c. Since we have both inclusions,

(A ∩ B)c = Ac ∪ Bc. The second statement (A ∪ B)c = Ac ∩ Bc is proved similarly.

2. Let A and B be arbitrary sets. Does B = A−(A−B), as we might expect if we looked

at the formula through the lens of ordinary algebra? If this is always true, prove it;

if it is not, give both a counterexample (an example where the formula is not true),

and a correct statement with proof.

Solution: This is not true in general as the following counterexample shows. Let

A = {a} and let B = {b} (with a 6= b). Then A−B = {a} = A, so A−(A−B) = ∅ 6= B.

The statement that is true here is that A − (A − B) = A ∩ B. To prove this quickly,
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the best way is probably to use the De Morgan Laws from question 1 and other parts

of Theorem 1.1.3 in the text. We have

A − (A − B) = A ∩ (A − B)c

= A ∩ (A ∩ Bc)c

= A ∩ (Ac ∪ (Bc)c) (by 1.1.3 (f))

= A ∩ (Ac ∪ B) (by 1.1.3 (a))

= (A ∩ Ac) ∪ (A ∩ B) (by 1.1.3 (e))

= ∅ ∪ (A ∩ B)

= A ∩ B.

3. Let f : A → B be a function.

a. Let C, D be subsets of A. Is it always true that f(C ∪D) = f(C)∪ f(D)? If this

is always true prove it; if it is not, give a counterexample.

Solution: This statement is always true. We can prove it as follows. If x ∈ C∪D,

then x ∈ C or x ∈ D. Hence f(x) ∈ f(C) or f(x) ∈ f(D). It follows that

f(x) ∈ f(C)∪f(D), so f(C ∪D) ⊂ f(C)∪f(D). Conversely, if y ∈ f(C)∪f(D),

then y ∈ f(C) or y ∈ f(D). So y = f(x) for some x ∈ C or y = f(x) for some

x ∈ D. It follows that y ∈ f(C ∪ D), so f(C) ∪ f(D) ⊂ f(C ∪ D). This shows

the equality.

b. Show that f is onto if and only if f(f−1(E)) = E for all subsets E of B.

Solution: Suppose that f(f−1(E)) = E for all subsets E ⊂ B. Let b ∈ B and

E = {b}, then f−1(E) 6= ∅ since f(f−1(E)) = E. Thus there is some a ∈ f−1(E),

so f(a) = b. Since this is true for all b ∈ B, f is onto. Conversely, if f is onto, we

must show f(f−1(E)) = E for all subsets E ⊂ B. So let E be an arbitrary subset

of B. The definition of the inverse image says f(f−1(E)) ⊂ E for all mappings

f (that is, even without the assumption that f is onto). If in addition we know

that f is onto, we have that for all b ∈ E, there exist a ∈ A such that f(a) = b,

and hence that those a ∈ f−1(E). It follows that E ⊂ f(f−1(E)) when f is onto.

Hence if f is onto, then f(f−1(E)) = E.

4. Let f : A → B and g : B → C.

a. Show that if f and g are both one-to-one, then g ◦ f : A → C is also one-to-one.

Solution: Let (g ◦ f)(x) = (g ◦ f)(y) for some x, y ∈ A. Then g(f(x)) = g(f(y)).

Since g is assumed to be one-to-one, we have f(x) = f(y). But then, because f

is assumed to be one-to-one, x = y. Therefore, g ◦ f is one-to-one.
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b. Is the converse of the statement in part a true? That is, if you know that g ◦
f is one-to-one, does it follow that f and g are one-to-one? Prove or find a

counterexample.

Solution: This statement is not true. For instance, consider f : {b, c} → {b, c}
defined by f(b) = b and f(c) = c. Also let g : {a, b, c} → {b, c} by g(a) = g(b) = b

and g(c) = c. Then g ◦ f : {b, c} → {b, c} satisfies (g ◦ f)(b) = b and (g ◦ f)(c) = c

so g ◦ f is one-to-one. However, g is not one-to-one. (The statement that is true

here is that f must be one-to-one and g must be one-to-one when restricted to

the range of f .)
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