MATH 242 – Principles of Analysis Solutions for Problem Set 1 – due: Feb. 1

`A` Section

- 1. Let $A = \{x \in \mathbf{R} \mid x^2 5x + 6 = 0\}$, $B = (0,4) = \{x \in \mathbf{R} \mid 0 < x < 4\}$ and $C = \{\frac{x}{x^2+1} \mid x \in \mathbf{R}\}$ (Note: C is the range of the function f defined by $f(x) = \frac{x}{x^2+1}$.)
 - a. Express the set C as a union of one or more closed intervals [a, b] in **R**. (Note: You should use facts from calculus to solve this. Don't worry that we have not justified them yet.)

Solution: The function $f(x) = \frac{x}{x^2+1}$ has $f'(x) = \frac{1-x^2}{x^2+1}$. This is = 0 at $x = \pm 1$. Moreover f'(x) < 0 for x < -1, f'(x) > 0 for -1 < x < 1 and f'(x) < 0 for x > 1. Therefore, at x = -1, f has a local minimum with f(-1) = -1/2. Similarly, at x = 1, f has a local maximum with f(1) = 1/2. We also see $\lim_{x\to\pm\infty} f(x) = 0$. Hence f(-1) = -1/2 is also an absolute minimum, and f(1) = 1/2 is also an absolute maximum. We will show later in the course that every y with -1/2 < y < 1/2 is also in the range. Hence C = [-1/2, 1/2].

b. Find the sets $A \cap C$ and $B \cap C$.

Solution: Since $A = \{2, 3\}$, we see that $A \cap C = \emptyset$ and $B \cap C = (0, 1/2]$.

- c. Find the sets $B \cup A$ and $B \cup C$ and express as unions of intervals in **R**. Solution: We have $B \cup A = (0, 4) = B$, since $A \subset B$. Then by part $A, B \cup C = (0, 4) \cup [-1/2, 1/2] = [-1/2, 4)$.
- 2. Let $B_n = \{1, 1/4, 1/9, \dots, 1/n^2\}$ for each natural number $n \ge 1$. What are $\bigcap_{n=1}^{\infty} B_n$ and $\bigcup_{n=1}^{\infty} B_n$?

Solution: The union, $\bigcup_{n=1}^{\infty} B_n$, is the set

$$\{1/n^2 \mid n \ge 1\}.$$

The intersection, $\bigcap_{n=1}^{\infty} B_n$, is the set $\{1\}$, since that is the only element in B_n for all $n \ge 1$.

3. Let $I_n = [-1/n, 1/n]$ for any $n \ge 1$. What are $\bigcap_{n=1}^{\infty} I_n$ and $\bigcup_{n=1}^{\infty} I_n$. (Explain your reasoning intuitively.)

Solution: Note first that $I_m \subset I_n$ whenever m > n. This shows that the union is the same as $I_1 = [-1, 1]$. The intersection contains only 0. We will see in about a week how to justify the claim that for any real a > 0, there is some $n \ge 1$ such that 1/n < a. Hence a is not in the intersection. The same is true on the negative side: for any b < 0, there exists some $n \ge 1$ such that b < -1/n. Hence b is not in the intersection either. This leaves only 0 which does satisfy -1/n < 0 < 1/n for all $n \ge 1$.

- 4. Let $f : \mathbf{R} \to \mathbf{R}$ be the function defined by $f(x) = x^2 4x + 1$.
 - a. Is f one-to-one? Why or why not?

Solution: By completing the square, we see $x^2 - 4x + 1 = (x - 2)^2 - 3$. From this we can see for instance that f(3) = -2 = f(1). Therefore f is not one-to-one. We also see that the graph y = f(x) is a shifted parabola with vertex at (2, -3). This fact can be used to see parts of what we are saying in the later parts of the problem.

- b. Is f onto? Why or why not? Solution: By the same computations as for part a, we see that $f(x) \ge -3$ for all x. Therefore f is not onto **R**.
- c. If I = (1,3), what is the set f(I)? Explain. Solution: f has a local and global minimum at f(2) = -3. Hence f((1,3)) = [-3, -2).
- d. If J = (5, 6), what is the set $f^{-1}(J)$. Explain. Solution: We have $f(x) = x^2 - 4x + 1 = (x - 2)^2 - 3 = 5$ when $x = 2 \pm \sqrt{8}$. Similarly, f(x) = 6 when $x = 2 \pm 3 = -1, 5$. Hence $f^{-1}(J)$ is the union of the two intervals $f^{-1}(J) = (-1, 2 - \sqrt{8}) \cup (2 + \sqrt{8}, 5)$.

B' Section

1. Prove part (f) of Theorem 1.1.3 in the text. These are the *De Morgan Laws* for complements.

Solution: We show $(A \cap B)^c = A^c \cup B^c$. Let $x \in (A \cap B)^c$, then $x \notin A \cap B$, which says $x \notin A$ or $x \notin B$. But then $x \in A^c \cup B^c$, and it follows that $(A \cap B)^c \subset A^c \cup B^c$. Conversely, if $x \in A^c \cup B^c$, then $x \notin A$ or $x \notin B$. This shows $x \notin A \cap B$, so $x \in (A \cap B)^c$, and it follows that $A^c \cup B^c \subset (A \cap B)^c$. Since we have both inclusions, $(A \cap B)^c = A^c \cup B^c$. The second statement $(A \cup B)^c = A^c \cap B^c$ is proved similarly.

2. Let A and B be arbitrary sets. Does B = A - (A - B), as we might expect if we looked at the formula through the lens of ordinary algebra? If this is always true, prove it; if it is not, give both a counterexample (an example where the formula is not true), and a correct statement with proof.

Solution: This is not true in general as the following counterexample shows. Let $A = \{a\}$ and let $B = \{b\}$ (with $a \neq b$). Then $A - B = \{a\} = A$, so $A - (A - B) = \emptyset \neq B$. The statement that is true here is that $A - (A - B) = A \cap B$. To prove this quickly,

the best way is probably to use the De Morgan Laws from question 1 and other parts of Theorem 1.1.3 in the text. We have

$$A - (A - B) = A \cap (A - B)^c$$

= $A \cap (A \cap B^c)^c$
= $A \cap (A^c \cup (B^c)^c)$ (by 1.1.3 (f))
= $A \cap (A^c \cup B)$ (by 1.1.3 (a))
= $(A \cap A^c) \cup (A \cap B)$ (by 1.1.3 (e))
= $\emptyset \cup (A \cap B)$
= $A \cap B$.

- 3. Let $f : A \to B$ be a function.
 - a. Let C, D be subsets of A. Is it always true that $f(C \cup D) = f(C) \cup f(D)$? If this is always true prove it; if it is not, give a counterexample.

Solution: This statement is always true. We can prove it as follows. If $x \in C \cup D$, then $x \in C$ or $x \in D$. Hence $f(x) \in f(C)$ or $f(x) \in f(D)$. It follows that $f(x) \in f(C) \cup f(D)$, so $f(C \cup D) \subset f(C) \cup f(D)$. Conversely, if $y \in f(C) \cup f(D)$, then $y \in f(C)$ or $y \in f(D)$. So y = f(x) for some $x \in C$ or y = f(x) for some $x \in D$. It follows that $y \in f(C \cup D)$, so $f(C) \cup f(D) \subset f(C \cup D)$. This shows the equality.

- b. Show that f is onto if and only if $f(f^{-1}(E)) = E$ for all subsets E of B.
- Solution: Suppose that $f(f^{-1}(E)) = E$ for all subsets $E \subset B$. Let $b \in B$ and $E = \{b\}$, then $f^{-1}(E) \neq \emptyset$ since $f(f^{-1}(E)) = E$. Thus there is some $a \in f^{-1}(E)$, so f(a) = b. Since this is true for all $b \in B$, f is onto. Conversely, if f is onto, we must show $f(f^{-1}(E)) = E$ for all subsets $E \subset B$. So let E be an arbitrary subset of B. The definition of the inverse image says $f(f^{-1}(E)) \subset E$ for all mappings f (that is, even without the assumption that f is onto). If in addition we know that f is onto, we have that for all $b \in E$, there exist $a \in A$ such that f(a) = b, and hence that those $a \in f^{-1}(E)$. It follows that $E \subset f(f^{-1}(E))$ when f is onto. Hence if f is onto, then $f(f^{-1}(E)) = E$.
- 4. Let $f: A \to B$ and $g: B \to C$.
 - a. Show that if f and g are both one-to-one, then $g \circ f : A \to C$ is also one-to-one. Solution: Let $(g \circ f)(x) = (g \circ f)(y)$ for some $x, y \in A$. Then g(f(x)) = g(f(y)). Since g is assumed to be one-to-one, we have f(x) = f(y). But then, because f is assumed to be one-to-one, x = y. Therefore, $g \circ f$ is one-to-one.

b. Is the converse of the statement in part a true? That is, if you know that $g \circ f$ is one-to-one, does it follow that f and g are one-to-one? Prove or find a counterexample.

Solution: This statement is not true. For instance, consider $f : \{b, c\} \to \{b, c\}$ defined by f(b) = b and f(c) = c. Also let $g : \{a, b, c\} \to \{b, c\}$ by g(a) = g(b) = b and g(c) = c. Then $g \circ f : \{b, c\} \to \{b, c\}$ satisfies $(g \circ f)(b) = b$ and $(g \circ f)(c) = c$ so $g \circ f$ is one-to-one. However, g is not one-to-one. (The statement that is true here is that f must be one-to-one and g must be one-to-one when restricted to the range of f.)