## ' $A$ ' Section

1. Let $A=\left\{x \in \mathbf{R} \mid x^{2}-5 x+6=0\right\}, B=(0,4)=\{x \in \mathbf{R} \mid 0<x<4\}$ and $C=\left\{\left.\frac{x}{x^{2}+1} \right\rvert\, x \in \mathbf{R}\right\}$ (Note: $C$ is the range of the function $f$ defined by $f(x)=\frac{x}{x^{2}+1}$.)
a. Express the set $C$ as a union of one or more closed intervals $[a, b]$ in $\mathbf{R}$. (Note: You should use facts from calculus to solve this. Don't worry that we have not justified them yet.)
b. Find the sets $A \cap C$ and $B \cap C$.
c. Find the sets $B \cup A$ and $B \cup C$ and express as unions of intervals in $\mathbf{R}$.
2. Let $B_{n}=\left\{1,1 / 4,1 / 9, \ldots, 1 / n^{2}\right\}$ for each natural number $n \geq 1$. What are $\cap_{n=1}^{\infty} B_{n}$ and $\cup_{n=1}^{\infty} B_{n}$.
3. Let $I_{n}=[-1 / n, 1 / n]$ for any natural number $n \geq 1$. What are $\cap_{n=1}^{\infty} I_{n}$ and $\cup_{n=1}^{\infty} I_{n}$ ? (Explain your reasoning intuitively.)
4. Let $f: \mathbf{R} \rightarrow \mathbf{R}$ be the function defined by $f(x)=x^{2}-4 x+1$.
a. Is $f$ one-to-one? Why or why not?
b. Is $f$ onto? Why or why not?
c. If $I=(1,3)$, what is the set $f(I)$ ? Explain.
d. If $J=(5,6)$, what is the set $f^{-1}(J)$. Explain.

## ' $B$ ' Section

1. Prove part (f) of Theorem 1.1.3 in the text. These are the De Morgan Laws for complements.
2. Let $A$ and $B$ be arbitrary sets. Does $B=A-(A-B)$, as we might expect if we looked at the formula through the lens of ordinary algebra? If this is always true, prove it; if it is not, give both a counterexample (an example where the formula is not true), and a correct statement with proof.
3. Let $f: A \rightarrow B$ be a function.
a. Let $C, D$ be subsets of $A$. Is it always true that $f(C \cup D)=f(C) \cup f(D)$ ? If this is always true prove it; if it is not, give a counterexample.
b. Show that $f$ is onto if and only if $f\left(f^{-1}(E)\right)=E$ for all subsets $E$ of $B$.
4. Let $f: A \rightarrow B$ and $g: B \rightarrow C$.
a. Show that if $f$ and $g$ are both one-to-one, then $g \circ f: A \rightarrow C$ is also one-to-one.
b. Is the converse of the statement in part a true? That is, if you know that $g \circ$ $f$ is one-to-one, does it follow that $f$ and $g$ are one-to-one? Prove or find a counterexample.
