Mathematics 242 - Principles of Analysis

Solutions for Midterm Exam 3
May 3, 2013

Directions

Do all work in the blue exam booklet. There are 100 possible regular points and 10 possible Extra Credit points. Possibly useful information:

$$
\sum_{i=1}^{n} i=\frac{n(n+1)}{2}, \quad \sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

I. Both parts of this question refer to the function $f: \mathbf{R} \rightarrow \mathbf{R}$ defined by $f(x)=x^{2}$.
A) (25) Show directly, using upper and lower sums, that f is integrable on $[0,1]$ and determine the value $\int_{0}^{1} x^{2} d x$.

Solution: Consider a regular partition \mathcal{P}_{n} of $[0,1]$ with n smaller intervals. Then $\Delta x=\frac{1}{n}$ and the endpoints are $x_{i}=i / n$ for $i=0, \ldots, n$. Since x^{2} is increasing on the interval $[0,1]$ we have $m_{i}=((i-1) / n)^{2}$ and $M_{i}=(i / n)^{2}$, so

$$
\begin{aligned}
L\left(f, \mathcal{P}_{n}\right) & =\sum_{i=1}^{n}((i-1) / n)^{2}(1 / n) \\
& =\frac{(n-1) n(2 n-1)}{6 n^{3}}, \text { and } \\
U\left(f, \mathcal{P}_{n}\right) & =\sum_{i=1}^{n}(i / n)^{2}(1 / n) \\
& =\frac{n(n+1)(2 n+1)}{6 n^{3}} .
\end{aligned}
$$

Hence

$$
U\left(f, \mathcal{P}_{n}\right)-L\left(f, \mathcal{P}_{n}\right)=\frac{1}{n}
$$

Given $\varepsilon>0$, the difference will be $<\varepsilon$ whenever $n>\frac{1}{\varepsilon}$. So the function is integrable.
Note: The same result can be derived using the observation we made in the proof of the general result that monotone functions are integrable. Then $U\left(f, \mathcal{P}_{n}\right)-L\left(f, \mathcal{P}_{n}\right)=$ $\frac{(f(b)-f(a))(b-a)}{n}=\frac{1}{n}$. This is certainly "cleaner!")
The value of the integral is

$$
\lim _{n \rightarrow \infty} U\left(f, \mathcal{P}_{n}\right)=\lim _{n \rightarrow \infty} \frac{n(n+1)(2 n+1)}{6 n^{3}}=\lim _{n \rightarrow \infty} \frac{1}{3}+\frac{1}{2 n}+\frac{1}{6 n^{2}}=\frac{1}{3}
$$

B) (5) Compute $\int_{0}^{1} x^{2} d x$ using the Fundamental Theorem of Calculus to check your work.

Solution: An antiderivative of $f(x)=x^{2}$ is $F(x)=\frac{x^{3}}{3}$, so by part (2) of the FTC, the value is

$$
\int_{0}^{1} x^{2} d x=\left.\frac{x^{3}}{3}\right|_{0} ^{1}=\frac{1}{3}-\frac{0}{3}=\frac{1}{3}
$$

II. Let $f(x)=\frac{\sin (x)}{x}$ for $x \neq 0$.
A) (5) How should a value $f(0)$ be defined to make f continuous at $x=0$? (Note: If you do not how to decide, you may "buy" the answer for 5 points so that you can do the next part.)

Solution: By results from Problem Set 7 and 8, we know

$$
\lim _{x \rightarrow 0} \frac{\sin (x)}{x}=1
$$

so we should set $f(0)=1$ to get continuity. (Note that $\frac{\sin (x)}{x}$ is differentiable, hence continuous at all $x \neq 0$.)
B) (15) Using your value from part A for $f(0)$, use the limit definition to show that the resulting function is differentiable and find the value $f^{\prime}(0)$. Say what method you are using to compute this limit.

Solution: We need to compute

$$
\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0} \frac{\frac{\sin (x)}{x}-1}{x-0}=\lim _{x \rightarrow 0} \frac{\sin (x)-x}{x^{2}} .
$$

This is a $0 / 0$ indeterminate form, so we can apply L'Hopital's Rule (twice) as follows:

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\sin (x)-x}{x^{2}} & =\lim _{x \rightarrow 0} \frac{\cos (x)-1}{2 x}(\text { still } 0 / 0) \\
& =\lim _{x \rightarrow 0} \frac{-\sin (x)}{2} \\
& =0
\end{aligned}
$$

So $f^{\prime}(0)$ exists and equals 0 . (The graph $y=f(x)$ has a local maximum at $x=0$.)
III.
A) (10) State the Mean Value Theorem.

Solution: Let f be continuous on $[a, b]$ and differentiable on (a, b). Then there exists a $c \in(a, b)$ such that $f(b)-f(a)=f^{\prime}(c)(b-a)$.
B) Determine

$$
\operatorname{lub}\left\{\left.\frac{\ln (x)}{x} \right\rvert\, x \in(e,+\infty)\right\}
$$

and justify your answer completely using facts we have developed in this course.
Solution: Let $f(x)=\frac{\ln (x)}{x}$. By the quotient rule, we have $f^{\prime}(x)=\frac{1-\ln (x)}{x^{2}}$. Therefore, $f^{\prime}(x)>0$ if $x<e$ and $f^{\prime}(x)<0$ for $x>e$. By one of our corollaries of the MVT, f is strictly decreasing on the given interval. That means that the value $f(e)=\frac{1}{e}$ at the left endpoint is the least upper bound of the set of values.

Note: It is not enough just to notice that $\lim _{x \rightarrow \infty} \frac{\ln (x)}{x}=0$. To say the lub of the set of values equals $f(e)$, you must also show that f does not get larger anywhere between e and ∞. Showing f is strictly decreasing implies that.
IV. True-False. Say whether each of the following statements is true or false. For true statements, give short proofs or reasons; for false ones give reasons or counterexamples.
A) (10) $f(x)=\ln (x)$ is uniformly continuous on ($1,+\infty$).

Solution: TRUE. $f^{\prime}(x)=\frac{1}{x}$ satisfies $\left|f^{\prime}(c)\right|<1$ for all $c \in(1,+\infty)$. Therefore, as we saw on PS $8, f$ must be uniformly continuous on the interval $(1,+\infty)$. Here's the proof again: The MVT implies that if $1<x_{1}<x_{2}$, then there is some $c \in\left(x_{1}, x_{2}\right)$ where

$$
\left|f\left(x_{2}\right)-f\left(x_{1}\right)\right|=\left|f^{\prime}(c)\right|\left|x_{2}-x_{1}\right| .
$$

But $\left|f^{\prime}(c)\right|<1$, so this shows

$$
\left|f\left(x_{2}\right)-f\left(x_{1}\right)\right|<\left|x_{2}-x_{1}\right| .
$$

Hence $\left|f\left(x_{2}\right)-f\left(x_{1}\right)\right|<\varepsilon$ whenever $\left|x_{2}-x_{1}\right|<\delta=\varepsilon$. (Or alternatively, the bound on $\left|f^{\prime}(x)\right|$ shows that f is Lipschitz continuous on that interval, with Lipschitz constant $k=1$.
B) (10) If $A \subset \mathbf{R}$ contains no nonempty interval (a, b), then A is finite or countably infinite.

Solution: FALSE. The Cantor set is a counterexample. It contains no intervals since it is a subset of $[0,1]$, but the intervals removed in its construction have total length 1. On the other hand, we saw in class that the Cantor set is uncountably infinite.
C) (10) Let f be continuous on $[a, b]$ and assume $f(x)>1$ for all $x \in[a, b]$. It is possible for $\operatorname{glb}\{f(x) \mid x \in[a, b]\}$ to equal 1 .

Solution: FALSE. By the EVT, we have that f attains a minimum $m=f(c)$, for some $c \in[a, b]$. This m must equal the greatest lower bound of the set of values of f. By the given information $f(c)>1$. Therefore the glb must also be strictly larger than 1 .

Extra Credit (10) Show that if f is differentiable on an open interval I and $[a, b] \subset I$ where $f^{\prime}(a)<0$ and $f^{\prime}(b)>0$, then there must be some $c \in(a, b)$ where $f^{\prime}(c)=0$.

Solution: Since differentiability of f implies continuity of f, the EVT applies to f on the closed interval $[a, b]$ and f attains a minimum value at some $c \in[a, b]$. We claim first that $c \neq a, b$. Arguing by contradiction, suppose $f(a) \leq f(x)$ for all $x \in[a, b]$. Then we have $\frac{f(x)-f(a)}{x-a} \geq 0$ for all $x \in[a, b]$, and this implies

$$
f^{\prime}(a)=\lim _{x \rightarrow a^{+}} \frac{f(x)-f(a)}{x-a} \geq 0
$$

But this contradicts the given information that $f^{\prime}(a)<0$. Hence the minimum is not attained at a. A similar argument shows the minimum is not attained at b either. Hence it must be attained at some $c \in(a, b)$. But now by the usual argument, we have

$$
f^{\prime}(c)=\lim _{x \rightarrow c^{-}} \frac{f(x)-f(c)}{x-c} \leq 0
$$

while

$$
f^{\prime}(c)=\lim _{x \rightarrow c^{+}} \frac{f(x)-f(c)}{x-c} \geq 0
$$

So $f^{\prime}(c)=0$.

Notes:

1) You cannot apply Rolle's theorem directly here because we are not given that $f(a)=$ $f(b)$.
2) In addition, it is not correct to assume (even without saying so!) that f^{\prime} is continuous, since that is not given either. This means, for instance, that the IVT does not necessarily apply to f^{\prime} here.
3) This is the main step in a proof of a result called Darboux's Theorem, which says essentially that derivatives attain intermediate values, just as continuous functions do by the IVT. The general statement says for instance that if $f^{\prime}(a)<k<f^{\prime}(b)$ then there is some $c \in(a, b)$ with $f^{\prime}(c)=k$. We can see that by applying the result here to the function $g(x)=f(x)-k x$. It is not necessarily true that the derivative function $f^{\prime}(x)$ is continuous, though, so this fact is not a consequence of the IVT.
