
Mathematics 242 – Principles of Analysis
Solutions for Midterm Exam 3

May 3, 2013

Directions

Do all work in the blue exam booklet. There are 100 possible regular points and 10
possible Extra Credit points. Possibly useful information:

n
∑

i=1

i =
n(n + 1)

2
,

n
∑

i=1

i2 =
n(n + 1)(2n + 1)

6
.

I. Both parts of this question refer to the function f : R → R defined by f(x) = x2.

A) (25) Show directly, using upper and lower sums, that f is integrable on [0, 1] and

determine the value
∫ 1

0
x2 dx.

Solution: Consider a regular partition Pn of [0, 1] with n smaller intervals. Then
∆x = 1

n
and the endpoints are xi = i/n for i = 0, . . . , n. Since x2 is increasing on the

interval [0, 1] we have mi = ((i − 1)/n)2 and Mi = (i/n)2, so

L(f,Pn) =
n

∑

i=1

((i − 1)/n)2(1/n)

=
(n − 1)n(2n − 1)

6n3
, and

U(f,Pn) =

n
∑

i=1

(i/n)2(1/n)

=
n(n + 1)(2n + 1)

6n3
.

Hence

U(f,Pn) − L(f,Pn) =
1

n

Given ε > 0, the difference will be < ε whenever n > 1
ε
. So the function is integrable.

Note: The same result can be derived using the observation we made in the proof of
the general result that monotone functions are integrable. Then U(f,Pn)−L(f,Pn) =
(f(b)−f(a))(b−a)

n
= 1

n
. This is certainly “cleaner!”)

The value of the integral is

lim
n→∞

U(f,Pn) = lim
n→∞

n(n + 1)(2n + 1)

6n3
= lim

n→∞

1

3
+

1

2n
+

1

6n2
=

1

3
.



B) (5) Compute
∫ 1

0
x2 dx using the Fundamental Theorem of Calculus to check your

work.

Solution: An antiderivative of f(x) = x2 is F (x) = x3

3 , so by part (2) of the FTC, the
value is

∫ 1

0

x2 dx =
x3

3

∣

∣

∣

∣

1

0

=
1

3
−

0

3
=

1

3
.

II. Let f(x) = sin(x)
x

for x 6= 0.

A) (5) How should a value f(0) be defined to make f continuous at x = 0? (Note: If you
do not how to decide, you may “buy” the answer for 5 points so that you can do the
next part.)

Solution: By results from Problem Set 7 and 8, we know

lim
x→0

sin(x)

x
= 1

so we should set f(0) = 1 to get continuity. (Note that sin(x)
x

is differentiable, hence
continuous at all x 6= 0.)

B) (15) Using your value from part A for f(0), use the limit definition to show that the
resulting function is differentiable and find the value f ′(0). Say what method you are
using to compute this limit.

Solution: We need to compute

lim
x→0

f(x) − f(0)

x − 0
= lim

x→0

sin(x)
x

− 1

x − 0
= lim

x→0

sin(x) − x

x2
.

This is a 0/0 indeterminate form, so we can apply L’Hopital’s Rule (twice) as follows:

lim
x→0

sin(x) − x

x2
= lim

x→0

cos(x) − 1

2x
(still 0/0)

= lim
x→0

− sin(x)

2

= 0

So f ′(0) exists and equals 0. (The graph y = f(x) has a local maximum at x = 0.)

III.
A) (10) State the Mean Value Theorem.

Solution: Let f be continuous on [a, b] and differentiable on (a, b). Then there exists
a c ∈ (a, b) such that f(b) − f(a) = f ′(c)(b − a).



B) Determine

lub

{

ln(x)

x
| x ∈ (e, +∞)

}

and justify your answer completely using facts we have developed in this course.

Solution: Let f(x) = ln(x)
x

. By the quotient rule, we have f ′(x) = 1−ln(x)
x2 . Therefore,

f ′(x) > 0 if x < e and f ′(x) < 0 for x > e. By one of our corollaries of the MVT, f is
strictly decreasing on the given interval. That means that the value f(e) = 1

e
at the

left endpoint is the least upper bound of the set of values.

Note: It is not enough just to notice that limx→∞

ln(x)
x

= 0. To say the lub of the set
of values equals f(e), you must also show that f does not get larger anywhere between
e and ∞. Showing f is strictly decreasing implies that.

IV. True-False. Say whether each of the following statements is true or false. For true
statements, give short proofs or reasons; for false ones give reasons or counterexamples.

A) (10) f(x) = ln(x) is uniformly continuous on (1, +∞).

Solution: TRUE. f ′(x) = 1
x

satisfies |f ′(c)| < 1 for all c ∈ (1, +∞). Therefore, as
we saw on PS 8, f must be uniformly continuous on the interval (1, +∞). Here’s the
proof again: The MVT implies that if 1 < x1 < x2, then there is some c ∈ (x1, x2)
where

|f(x2) − f(x1)| = |f ′(c)||x2 − x1|.

But |f ′(c)| < 1, so this shows

|f(x2) − f(x1)| < |x2 − x1|.

Hence |f(x2)−f(x1)| < ε whenever |x2−x1| < δ = ε. (Or alternatively, the bound on
|f ′(x)| shows that f is Lipschitz continuous on that interval, with Lipschitz constant
k = 1.)

B) (10) If A ⊂ R contains no nonempty interval (a, b), then A is finite or countably
infinite.

Solution: FALSE. The Cantor set is a counterexample. It contains no intervals since
it is a subset of [0, 1], but the intervals removed in its construction have total length
1. On the other hand, we saw in class that the Cantor set is uncountably infinite.

C) (10) Let f be continuous on [a, b] and assume f(x) > 1 for all x ∈ [a, b]. It is possible
for glb{f(x) | x ∈ [a, b]} to equal 1.

Solution: FALSE. By the EVT, we have that f attains a minimum m = f(c), for some
c ∈ [a, b]. This m must equal the greatest lower bound of the set of values of f . By
the given information f(c) > 1. Therefore the glb must also be strictly larger than 1.



Extra Credit (10) Show that if f is differentiable on an open interval I and [a, b] ⊂ I where
f ′(a) < 0 and f ′(b) > 0, then there must be some c ∈ (a, b) where f ′(c) = 0.

Solution: Since differentiability of f implies continuity of f , the EVT applies to f on the
closed interval [a, b] and f attains a minimum value at some c ∈ [a, b]. We claim first that
c 6= a, b. Arguing by contradiction, suppose f(a) ≤ f(x) for all x ∈ [a, b]. Then we have
f(x)−f(a)

x−a
≥ 0 for all x ∈ [a, b], and this implies

f ′(a) = lim
x→a+

f(x) − f(a)

x − a
≥ 0.

But this contradicts the given information that f ′(a) < 0. Hence the minimum is not
attained at a. A similar argument shows the minimum is not attained at b either. Hence
it must be attained at some c ∈ (a, b). But now by the usual argument, we have

f ′(c) = lim
x→c−

f(x) − f(c)

x − c
≤ 0,

while

f ′(c) = lim
x→c+

f(x) − f(c)

x − c
≥ 0.

So f ′(c) = 0.

Notes:

1) You cannot apply Rolle’s theorem directly here because we are not given that f(a) =
f(b).

2) In addition, it is not correct to assume (even without saying so!) that f ′ is continu-
ous, since that is not given either. This means, for instance, that the IVT does not
necessarily apply to f ′ here.

3) This is the main step in a proof of a result called Darboux’s Theorem, which says
essentially that derivatives attain intermediate values, just as continuous functions do
by the IVT. The general statement says for instance that if f ′(a) < k < f ′(b) then
there is some c ∈ (a, b) with f ′(c) = k. We can see that by applying the result here to
the function g(x) = f(x) − kx. It is not necessarily true that the derivative function
f ′(x) is continuous, though, so this fact is not a consequence of the IVT.


