I.
A) (15) Show using the ε, n_{0} definition that

$$
\lim _{n \rightarrow \infty} \frac{5 n+1}{3 n+3}=\frac{5}{3}
$$

Solution: Given $\varepsilon>0$, let $n_{0}>\frac{4}{3 \varepsilon}$. Then for all $n \geq n_{0}$,

$$
\left|\frac{5 n+1}{3 n+3}-\frac{5}{3}\right|=\frac{4}{3 n+3}<\frac{4}{3 n} \leq \frac{4}{3 n_{0}}<\varepsilon
$$

This shows the limit is $\frac{5}{3}$.
B) (15) Show using the ε, δ definition that

$$
\lim _{x \rightarrow 1} \frac{5 x+1}{3 x+3}=1
$$

Solution: Given $\varepsilon>0$, let $\delta=\min \left(1, \frac{3 \varepsilon}{2}\right)$. Then for all x in the deleted neighborhood of 1 defined by $0<|x-1|<\delta$ we have $0<x<2$, so $\frac{1}{|x+1|}<1$ and $|x-1|<\frac{3 \varepsilon}{2}$. Therefore

$$
\left|\frac{5 x+1}{3 x+3}-1\right|=\frac{2|x-1|}{3|x+1|}=\frac{1}{|x+1|} \cdot \frac{2}{3} \cdot|x-1|<1 \cdot \frac{2}{3} \cdot \frac{3 \varepsilon}{2}=<\varepsilon
$$

This shows the limit is 1 .
II.
A) (20) State and prove the Monotone Convergence Theorem for sequences. (You may give the proof in the case that the sequence is monotone increasing.)
Solution: The statement is that any monotone bounded sequence of real numbers converges. If the sequence is monotone increasing, let $a=\operatorname{lub}\left\{x_{n} \mid n \in \mathbf{N}\right\}$. Then for all $\varepsilon>0, a-\varepsilon$ is not an upper bound for $\left\{x_{n} \mid n \in \mathbf{N}\right\}$, so there exist n_{0} such that $a-\varepsilon<x_{n_{0}} \leq a$. But then since $\left\{x_{n}\right\}$ is monotone increasing, we have $a-\varepsilon<x_{n_{0}} \leq x_{n} \leq a$ for all $n \geq n_{0}$. This shows $x_{n} \rightarrow a$, since it implies $\left|x_{n}-a\right|<\varepsilon$ for all $n \geq n_{0}$.
B) (10) Let $\left\{x_{n}\right\}$ be the sequence defined by $x_{1}=1$ and

$$
x_{n+1}=\frac{5 x_{n}+3}{16}
$$

for all $n \geq 1$. Does this sequence converge? Why? If it does, what is the limit?

Solution: We have $x_{1}=1$ and $x_{2}=\frac{5 \cdot 1+3}{16}=\frac{1}{2}$. Assuming $x_{k+1}<x_{k}$, it follows that

$$
x_{k+2}=\frac{5 x_{k+1}+3}{16}<\frac{5 x_{k}+3}{16}=x_{k+1}
$$

Therefore, the sequence is monotone (strictly) decreasing. The terms are clearly bounded below by 0 , so the sequence converges by the Monotone Convergence Theorem. The limit is found by letting $n \rightarrow \infty$ in the recurrence. If a denotes the limit then $a=\frac{5 a+3}{16}$, so $a=\frac{3}{11}$.
III. (10) Let $x_{n}=\sin (n)-\cos (n)$ (the sequence of values of $\sin (x)-\cos (x)$ at the angles x given by a whole number $n \geq 1$ in radian measure). Show that there exists a subsequence $x_{n_{k}}=\sin \left(n_{k}\right)-\cos \left(n_{k}\right)$ that converges. State any "big theorems" that you are using.

Solution 1: We have

$$
\left|x_{n}\right|=|\sin (n)-\cos (n)| \leq|\sin (n)|+|\cos (n)| \leq 2
$$

for all n by the triangle inequality. This shows the sequence is bounded. Hence the Bolzano-Weierstrass theorem implies it has a convergent subsequence. (Note: This is not the tightest possible upper bound. In fact, by trig identities,

$$
\sin (n)-\cos (n)=\sqrt{2} \sin \left(n-\frac{\pi}{4}\right)
$$

so $|\sin (n)-\cos (n)| \leq \sqrt{2}$ is also true for all n. There are n for which $|\sin (n)-\cos (n)|>1$, though, so that is not a valid upper bound.)

It is also possible to argue like this:
Solution 2: Since $|\sin (n)| \leq 1$ for all n, by the Bolzano-Weierstrass theorem there exists an index sequence n_{k} such that $\sin \left(n_{k}\right)$ converges to some $a \in \mathbf{R}$. There is no guarantee that $\cos \left(n_{k}\right)$ also converges, but we can apply the Bolzano-Weierstrass theorem again to that sequence and get a subsequence of the index sequence n_{k}, say $n_{k_{\ell}}$ for some strictly increasing sequence k_{ℓ} of k-values, such that $\cos \left(n_{k_{\ell}}\right)$ converges to some $b \in \mathbf{R}$. But then $\sin \left(n_{k_{\ell}}\right)$ is a subsequence of a convergent sequence, so it also converges to a. Then by the limit sum theorem, as $\ell \rightarrow \infty$,

$$
\sin \left(n_{k_{\ell}}\right)-\cos \left(n_{k_{\ell}}\right) \rightarrow a-b .
$$

(Note: Solution 1 is certainly more direct(!))
IV. Give an example, or give a reason why there can be no such examples:
A) (10) A function f that is continuous at all real c, with $f(x)=3$ for all $x \in \mathbf{Q}$, but $f(\sqrt{2})=4$.

Solution: There are no such examples because we can find sequences $x_{n} \rightarrow \sqrt{2}$ where all the x_{n} are rational. If f is continuous at $c=\sqrt{2}$, then $f\left(x_{n}\right) \rightarrow f(\sqrt{2})=4$ but $f\left(x_{n}\right)=3$ for all n if x_{n} is rational, so this is impossible.
B) (10) A function f that is continuous and bounded on an open interval (a, b) with $M=\operatorname{lub}\{f(x) \mid x \in(a, b)\}$, but such that $f(x) \neq M$ for all $x \in(a, b)$.

Solution: An example is $f(x)=x$ on $(0,1)$. We have $M=1$, but $f(x) \neq 1$ for any $x \in(0,1)$. (The Extreme Value Theorem does not apply on open intervals.)
C) (10) A continuous function on $[0,1]$ with $f(0)=4, f(1)=-2$, but $f(x) \neq 0$ for all $x \in(0,1)$.
Solution: There are no such examples because the Intermediate Value Theorem says that there must be solutions of all equations $f(c)=k$ for k between $f(0)=4$ and $f(1)=-2$, including $k=0$.

Extra Credit. (10) A function is said to be right-continuous at c if the one-sided limit $\lim _{x \rightarrow c^{+}} f(x)$ exists and equals $f(c)$. True or False (and give a proof or a counterexample): If f is right-continuous at all $c \in[a, b]$ for some closed interval $[a, b]$, then $\{f(x) \mid x \in[a, b]\}$ is a bounded subset of \mathbf{R}.

Solution: This is not true. An example is

$$
f(x)= \begin{cases}0 & \text { if } x \geq 0 \\ 1 / x & \text { if } x<0\end{cases}
$$

for $x \in[-1,1]$. Then $\lim _{x \rightarrow c^{+}} f(x)=f(c)$ for all $c \in[-1,1]$, but the set of values is not bounded, since $\lim _{x \rightarrow 0^{-}} f(x)=-\infty$.

