
Mathematics 242 – Principles of Analysis
Solutions for Exam 2 – April 5, 2013

I.
A) (15) Show using the ε, n0 definition that

lim
n→∞

5n + 1

3n + 3
=

5

3
.

Solution: Given ε > 0, let n0 > 4

3ε
. Then for all n ≥ n0,
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This shows the limit is 5

3
.

B) (15) Show using the ε, δ definition that

lim
x→1

5x + 1

3x + 3
= 1.

Solution: Given ε > 0, let δ = min
(

1, 3ε

2

)

. Then for all x in the deleted neighborhood
of 1 defined by 0 < |x − 1| < δ we have 0 < x < 2, so 1

|x+1| < 1 and |x − 1| < 3ε

2
.

Therefore
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3
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This shows the limit is 1.

II.
A) (20) State and prove the Monotone Convergence Theorem for sequences. (You may

give the proof in the case that the sequence is monotone increasing.)

Solution: The statement is that any monotone bounded sequence of real numbers
converges. If the sequence is monotone increasing, let a = lub{xn | n ∈ N}. Then
for all ε > 0, a − ε is not an upper bound for {xn | n ∈ N}, so there exist n0

such that a − ε < xn0
≤ a. But then since {xn} is monotone increasing, we have

a− ε < xn0
≤ xn ≤ a for all n ≥ n0. This shows xn → a, since it implies |xn − a| < ε

for all n ≥ n0.

B) (10) Let {xn} be the sequence defined by x1 = 1 and

xn+1 =
5xn + 3

16

for all n ≥ 1. Does this sequence converge? Why? If it does, what is the limit?



Solution: We have x1 = 1 and x2 = 5·1+3

16
= 1

2
. Assuming xk+1 < xk, it follows that

xk+2 =
5xk+1 + 3

16
<

5xk + 3

16
= xk+1.

Therefore, the sequence is monotone (strictly) decreasing. The terms are clearly
bounded below by 0, so the sequence converges by the Monotone Convergence The-
orem. The limit is found by letting n → ∞ in the recurrence. If a denotes the limit
then a = 5a+3

16
, so a = 3

11
.

III. (10) Let xn = sin(n)− cos(n) (the sequence of values of sin(x)− cos(x) at the angles x
given by a whole number n ≥ 1 in radian measure). Show that there exists a subsequence
xnk

= sin(nk) − cos(nk) that converges. State any “big theorems” that you are using.

Solution 1: We have

|xn| = | sin(n) − cos(n)| ≤ | sin(n)| + | cos(n)| ≤ 2

for all n by the triangle inequality. This shows the sequence is bounded. Hence the
Bolzano-Weierstrass theorem implies it has a convergent subsequence. (Note: This is not
the tightest possible upper bound. In fact, by trig identities,

sin(n) − cos(n) =
√

2 sin
(

n − π

4

)

so | sin(n)−cos(n)| ≤
√

2 is also true for all n. There are n for which | sin(n)−cos(n)| > 1,
though, so that is not a valid upper bound.)

It is also possible to argue like this:

Solution 2: Since | sin(n)| ≤ 1 for all n, by the Bolzano-Weierstrass theorem there exists
an index sequence nk such that sin(nk) converges to some a ∈ R. There is no guarantee
that cos(nk) also converges, but we can apply the Bolzano-Weierstrass theorem again to
that sequence and get a subsequence of the index sequence nk, say nkℓ

for some strictly
increasing sequence kℓ of k-values, such that cos(nkℓ

) converges to some b ∈ R. But then
sin(nkℓ

) is a subsequence of a convergent sequence, so it also converges to a. Then by the
limit sum theorem, as ℓ → ∞,

sin(nkℓ
) − cos(nkℓ

) → a − b.

(Note: Solution 1 is certainly more direct(!))

IV. Give an example, or give a reason why there can be no such examples:

A) (10) A function f that is continuous at all real c, with f(x) = 3 for all x ∈ Q, but
f(
√

2) = 4.



Solution: There are no such examples because we can find sequences xn →
√

2 where
all the xn are rational. If f is continuous at c =

√
2, then f(xn) → f(

√
2) = 4 but

f(xn) = 3 for all n if xn is rational, so this is impossible.

B) (10) A function f that is continuous and bounded on an open interval (a, b) with
M = lub{f(x) | x ∈ (a, b)}, but such that f(x) 6= M for all x ∈ (a, b).

Solution: An example is f(x) = x on (0, 1). We have M = 1, but f(x) 6= 1 for any
x ∈ (0, 1). (The Extreme Value Theorem does not apply on open intervals.)

C) (10) A continuous function on [0, 1] with f(0) = 4, f(1) = −2, but f(x) 6= 0 for all
x ∈ (0, 1).
Solution: There are no such examples because the Intermediate Value Theorem says
that there must be solutions of all equations f(c) = k for k between f(0) = 4 and
f(1) = −2, including k = 0.

Extra Credit. (10) A function is said to be right-continuous at c if the one-sided limit
limx→c+ f(x) exists and equals f(c). True or False (and give a proof or a counterexample):
If f is right-continuous at all c ∈ [a, b] for some closed interval [a, b], then {f(x) | x ∈ [a, b]}
is a bounded subset of R.

Solution: This is not true. An example is

f(x) =

{

0 if x ≥ 0
1/x if x < 0

for x ∈ [−1, 1]. Then limx→c+ f(x) = f(c) for all c ∈ [−1, 1], but the set of values is not
bounded, since limx→0− f(x) = −∞.


