
Mathematics 242 – Principles of Analysis
Solutions for Exam 1 – February 22, 2013

I.

A) (10) Let

A =

∞
⋃

n=1

(

1

n
, 2 −

1

n

)

Explain why A is bounded and determine upper and lower bounds for A.

Solution: A is bounded below since 1
n > 0 for all n. Therefore all elements of A are

strictly positive, or x > 0 for all x ∈ A. On the other hand 2 − 1
n

< 2 for all n, so all
elements of A satisfy x < 2.

B) (10) Define: The real number a is a least upper bound of A ⊂ R, and state the Least
Upper Bound Axiom for R.

Solution: a is a least upper bound of A if (1) a ≥ x for all x ∈ A, and (2) If b ≥ x
for all x ∈ A, then b ≥ a. The LUB Axiom states that every nonempty set of real
numbers that is bounded above has a least upper bound in R. (The existence is not
guaranteed just by defining a term by giving the properties that a lub should satisfy.)

C) (10) Let A be a bounded subset of R and let B = {4 · x − 3 | x ∈ A}. What can be
said about lub(B)? Prove your assertion.

Solution: If a = lub(A), then we claim lub(B) = 4a − 3. To prove this, note that
a exists in R by the LUB Axiom. Since a ≥ x for all x ∈ A, we have 4a ≥ 4x and
4a−3 ≥ 4x−3 by properties of the order relation. This shows that 4a−3 is an upper
bound for B. Then, if b is any upper bound for B, we have b ≥ 4x−3 for all x ∈ A, so
b+3
4 ≥ x for all x ∈ A. This implies b+3

4 ≥ a by definition of an lub. Hence b ≥ 4a−3.
This shows that 4a − 3 = 4lub(A) − 3 = lub(B).

II. (20) Let xn be the sequence defined by the rules x1 = 1 and xn+1 = 1
3
xn + 1 for all

n ≥ 1. Show by mathematical induction that

xn =
1 − 1

3n

1 − 1
3

for all n ≥ 1.

Solution: The base case is n = 1. We have x1 = 1 =
1− 1

3

1− 1
3

, so the formula is true in this

case. Now assume that

xk =
1 − 1

3k

1 − 1
3

.
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By definition,

xk+1 =
1

3
xk + 1 (by definition of the sequence)

=
1

3
·
1 − 1

3k

1 − 1
3

+ 1 (by the induction hypothesis)

=
1
3
− 1

3k+1

1 − 1
3

+ 1

=
1
3
− 1

3k+1 + 1 − 1
3

1 − 1
3

(common denominator)

=
1 − 1

3k+1

1 − 1
3

(by algebra)

This shows that xn is given by the formula above for all n ≥ 1.

III. Let xn = 5n

7n+3 for all natural numbers n ≥ 1.
A) (10) Determine limn→∞ xn intuitively.

Solution: We have
5n

7n + 3
=

(5/7)n

1 + 3(1/7)n

Since 0 < 5/7 < 1 and 0 < 1/7 < 1, (5/7)n → 0 and (1/7)n → 0. We expect the limit
should be 0.

B) (20) Use the ε, n0 definition of convergence to prove that {xn} converges to the number
you identified in part A.

Solution: Given ε > 0, let n0 be any natural number satisfying n0 > ln(ε)
ln(5/7)

. (Note:

If ε < 1, then both the top and the bottom of the quotient are negative so the lower
bound on n0 is positive, and the smaller ε is the larger n0 will be.) The for all n ≥ n0

we will have

∣

∣

∣

∣

5n

7n + 3
− 0

∣

∣

∣

∣

=
5n

7n + 3

<

(

5

7

)n

<

(

5

7

)n0

(since 5/7 < 1 and n ≥ n0)

<

(

5

7

)

ln(ε)
ln(5/7)

= eln(5/7)·ln(ε)/ ln(5/7)

= eln(ε)

= ε.
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This shows that xn → 0.

IV. True-False. For each true statement, give a short proof or reason. For each false
statement give an explicit counterexample.
A) (10) Let A be a bounded set of real numbers and let a = lub(A). Then for each ε > 0,

there exists x ∈ A such that a − ε < x < a.
Solution: This is FALSE. For example let A = [0, 1] ∪ {2}. Then a = lub(A) = 2.
But if ε < 1, then there are no elements of A in the open interval (2 − ε, 2). (The
statement would be true if the inequalities were a− ε < x ≤ a, but it is false if we do
not allow x = a. )

B) (10) If r is a nonzero rational number and s is a nonzero irrational number, then r/s
is irrational.
Solution: This is TRUE. Since r 6= 0 and s 6= 0, r/s = t 6= 0. Suppose t is rational.
Then we can solve to get s = r/t ∈ Q, which contradicts the assumption s /∈ Q.
Hence t must be irrational.

Extra Credit (10) Is it possible to produce a sequence xn whose terms include all the
rational numbers p/q with p, q ∈ Z and p, q > 0? If so, give an indication how to construct
such a sequence. If not, give a reason why there cannot exist such a sequence.

Solution: There is such a sequence, and we can construct one as follows. List all the ratios
of positive integers in a two-dimensional table with denominators constant across the rows
and numerators constant along the columns:

1/1 2/1 3/1 4/1 · · ·
1/2 2/2 3/2 4/2 · · ·
1/3 2/3 3/3 4/3 · · ·
1/4 2/4 3/4 4/4 · · ·
...

...
...

...
. . .

We can then construct a sequence by starting at the upper left and listing the elements in
this “zig-zag order” (down the first diagonal, up the second, and and alternating that way
forever):

x1 = 1/1, x2 = 2/1, x3 = 1/2, x4 = 1/3, x5 = 2/2, x6 = 3/1, x7 = 4/1, x8 = 3/2, . . .

Every positive rational will appear somewhere in this sequence (in fact infinitely many
times each, do you see why?)
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