I.
A) (10) Let

$$
A=\bigcup_{n=1}^{\infty}\left(\frac{1}{n}, 2-\frac{1}{n}\right)
$$

Explain why A is bounded and determine upper and lower bounds for A.
Solution: A is bounded below since $\frac{1}{n}>0$ for all n. Therefore all elements of A are strictly positive, or $x>0$ for all $x \in A$. On the other hand $2-\frac{1}{n}<2$ for all n, so all elements of A satisfy $x<2$.
B) (10) Define: The real number a is a least upper bound of $A \subset \mathbf{R}$, and state the Least Upper Bound Axiom for \mathbf{R}.
Solution: a is a least upper bound of A if (1) $a \geq x$ for all $x \in A$, and (2) If $b \geq x$ for all $x \in A$, then $b \geq a$. The LUB Axiom states that every nonempty set of real numbers that is bounded above has a least upper bound in \mathbf{R}. (The existence is not guaranteed just by defining a term by giving the properties that a lub should satisfy.)
C) (10) Let A be a bounded subset of \mathbf{R} and let $B=\{4 \cdot x-3 \mid x \in A\}$. What can be said about $\operatorname{lub}(B)$? Prove your assertion.
Solution: If $a=\operatorname{lub}(A)$, then we claim $\operatorname{lub}(B)=4 a-3$. To prove this, note that a exists in \mathbf{R} by the LUB Axiom. Since $a \geq x$ for all $x \in A$, we have $4 a \geq 4 x$ and $4 a-3 \geq 4 x-3$ by properties of the order relation. This shows that $4 a-3$ is an upper bound for B. Then, if b is any upper bound for B, we have $b \geq 4 x-3$ for all $x \in A$, so $\frac{b+3}{4} \geq x$ for all $x \in A$. This implies $\frac{b+3}{4} \geq a$ by definition of an lub. Hence $b \geq 4 a-3$. This shows that $4 a-3=4 \operatorname{lub}(A)-3=\operatorname{lub}(B)$.
II. (20) Let x_{n} be the sequence defined by the rules $x_{1}=1$ and $x_{n+1}=\frac{1}{3} x_{n}+1$ for all $n \geq 1$. Show by mathematical induction that

$$
x_{n}=\frac{1-\frac{1}{3^{n}}}{1-\frac{1}{3}} \text { for all } n \geq 1
$$

Solution: The base case is $n=1$. We have $x_{1}=1=\frac{1-\frac{1}{3}}{1-\frac{1}{3}}$, so the formula is true in this case. Now assume that

$$
x_{k}=\frac{1-\frac{1}{3^{k}}}{1-\frac{1}{3}}
$$

By definition,

$$
\begin{aligned}
x_{k+1} & =\frac{1}{3} x_{k}+1 \quad \text { (by definition of the sequence) } \\
& =\frac{1}{3} \cdot \frac{1-\frac{1}{3^{k}}}{1-\frac{1}{3}}+1 \quad \text { (by the induction hypothesis) } \\
& =\frac{\frac{1}{3}-\frac{1}{3^{k+1}}}{1-\frac{1}{3}}+1 \\
& =\frac{\frac{1}{3}-\frac{1}{3^{k+1}}+1-\frac{1}{3}}{1-\frac{1}{3}} \quad \text { (common denominator) } \\
& =\frac{1-\frac{1}{3^{k+1}}}{1-\frac{1}{3}} \quad \text { (by algebra) }
\end{aligned}
$$

This shows that x_{n} is given by the formula above for all $n \geq 1$.
III. Let $x_{n}=\frac{5^{n}}{7^{n}+3}$ for all natural numbers $n \geq 1$.
A) (10) Determine $\lim _{n \rightarrow \infty} x_{n}$ intuitively.

Solution: We have

$$
\frac{5^{n}}{7^{n}+3}=\frac{(5 / 7)^{n}}{1+3(1 / 7)^{n}}
$$

Since $0<5 / 7<1$ and $0<1 / 7<1,(5 / 7)^{n} \rightarrow 0$ and $(1 / 7)^{n} \rightarrow 0$. We expect the limit should be 0 .
B) (20) Use the ε, n_{0} definition of convergence to prove that $\left\{x_{n}\right\}$ converges to the number you identified in part A.
Solution: Given $\varepsilon>0$, let n_{0} be any natural number satisfying $n_{0}>\frac{\ln (\varepsilon)}{\ln (5 / 7)}$. (Note: If $\varepsilon<1$, then both the top and the bottom of the quotient are negative so the lower bound on n_{0} is positive, and the smaller ε is the larger n_{0} will be.) The for all $n \geq n_{0}$ we will have

$$
\begin{aligned}
\left|\frac{5^{n}}{7^{n}+3}-0\right| & =\frac{5^{n}}{7^{n}+3} \\
& <\left(\frac{5}{7}\right)^{n} \\
& <\left(\frac{5}{7}\right)^{n_{0}} \quad\left(\text { since } 5 / 7<1 \text { and } n \geq n_{0}\right) \\
& <\left(\frac{5}{7}\right)^{\frac{\ln (\varepsilon)}{\ln (5 / 7)}} \\
& =e^{\ln (5 / 7) \cdot \ln (\varepsilon) / \ln (5 / 7)} \\
& =e^{\ln (\varepsilon)} \\
& =\varepsilon
\end{aligned}
$$

This shows that $x_{n} \rightarrow 0$.
IV. True-False. For each true statement, give a short proof or reason. For each false statement give an explicit counterexample.
A) (10) Let A be a bounded set of real numbers and let $a=\operatorname{lub}(A)$. Then for each $\varepsilon>0$, there exists $x \in A$ such that $a-\varepsilon<x<a$.
Solution: This is FALSE. For example let $A=[0,1] \cup\{2\}$. Then $a=\operatorname{lub}(A)=2$. But if $\varepsilon<1$, then there are no elements of A in the open interval $(2-\varepsilon, 2)$. (The statement would be true if the inequalities were $a-\varepsilon<x \leq a$, but it is false if we do not allow $x=a$.)
B) (10) If r is a nonzero rational number and s is a nonzero irrational number, then r / s is irrational.
Solution: This is TRUE. Since $r \neq 0$ and $s \neq 0, r / s=t \neq 0$. Suppose t is rational. Then we can solve to get $s=r / t \in \mathbf{Q}$, which contradicts the assumption $s \notin \mathbf{Q}$. Hence t must be irrational.

Extra Credit (10) Is it possible to produce a sequence x_{n} whose terms include all the rational numbers p / q with $p, q \in \mathbf{Z}$ and $p, q>0$? If so, give an indication how to construct such a sequence. If not, give a reason why there cannot exist such a sequence.

Solution: There is such a sequence, and we can construct one as follows. List all the ratios of positive integers in a two-dimensional table with denominators constant across the rows and numerators constant along the columns:

$1 / 1$	$2 / 1$	$3 / 1$	$4 / 1$	\ldots
$1 / 2$	$2 / 2$	$3 / 2$	$4 / 2$	\ldots
$1 / 3$	$2 / 3$	$3 / 3$	$4 / 3$	\ldots
$1 / 4$	$2 / 4$	$3 / 4$	$4 / 4$	\cdots
\vdots	\vdots	\vdots	\vdots	\ddots

We can then construct a sequence by starting at the upper left and listing the elements in this "zig-zag order" (down the first diagonal, up the second, and and alternating that way forever):

$$
x_{1}=1 / 1, x_{2}=2 / 1, x_{3}=1 / 2, x_{4}=1 / 3, x_{5}=2 / 2, x_{6}=3 / 1, x_{7}=4 / 1, x_{8}=3 / 2, \ldots
$$

Every positive rational will appear somewhere in this sequence (in fact infinitely many times each, do you see why?)

