Mathematics 242, section 1 - Principles of Analysis
Solutions For Final Examination - May 15, 2013
I. (20) Let $A=\left\{x^{2}-2:-1<x<2\right\}$ and $B=\{x:|x-1|<4\}$. Find $\operatorname{lub}(A \cup B)$ and $\operatorname{glb}(A \cap B)$.

Solution: By the definitions, we see $A=[-2,2)$ and $B=(-3,5)$. Hence, since $A \subset B$, $A \cup B=B=(-3,5)$ and $A \cap B=A=[-2,2)$. Hence $\operatorname{lub}(A \cup B)=5$ and $\operatorname{glb}(A \cap B)=-2$.
II.
A) (10) State the ε, n_{0} definition of convergence for a sequence of real numbers.

Solution: The sequence x_{n} converges to c if for all $\varepsilon>0$ there exist $n_{0} \in \mathbf{N}$ such that $\left|x_{n}-c\right|<\varepsilon$ for all $n \geq n_{0}$.
B) (10) Identify $\lim _{n \rightarrow \infty} \frac{5 n^{2}+1}{n^{2}+n+4}$.

Solution: Using the limit theorems, we have

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{5 n^{2}+1}{n^{2}+n+4} & =\lim _{n \rightarrow \infty} \frac{\left(5 n^{2}+1\right) \cdot \frac{1}{n^{2}}}{\left(n^{2}+n+4\right) \cdot \frac{1}{n^{2}}} \\
& =\lim _{n \rightarrow \infty} \frac{5+\frac{1}{n^{2}}}{1+\frac{1}{n}+\frac{4}{n^{2}}} \\
& =\frac{5+\lim _{n \rightarrow \infty} \frac{1}{n^{2}}}{1+\lim _{n \rightarrow \infty} \frac{1}{n}+\lim _{n \rightarrow \infty} \frac{4}{n^{2}}} \\
& =\frac{5+0}{1+0+0} \\
& =5
\end{aligned}
$$

C) (10) Show that your result in part B is correct using the definition.

Solution: Given $\varepsilon>0$, let $n_{0}>\max \left(20, \frac{6}{\varepsilon}\right)$. (No matter how small ε is, this is possible because \mathbf{N} is not bounded above.) Then for all $n \geq n_{0}$, we have

$$
\left|\frac{5 n^{2}+1}{n^{2}+n+4}-5\right|=\left|\frac{-5 n-19}{n^{2}+n+4}\right|<\frac{5 n+19}{n^{2}}
$$

Since $n \geq 20$, we have $5 n+19<6 n$, so this is

$$
<\frac{6 n}{n^{2}}=\frac{6}{n} \leq \frac{6}{n_{0}}<\varepsilon .
$$

Hence by the definition, $\frac{5 n^{2}+1}{n^{2}+n+4}$ converges to 5 .
III.
A) (15) Show that if x_{n} is a monotone increasing sequence of real numbers that is bounded above, then x_{n} converges to some real number.

Solution: The set $X=\left\{x_{n}\right\}$ is bounded above in \mathbf{R}. Hence the LUB axiom implies that it has a least upper bound c. Given any $\varepsilon>0, c-\varepsilon$ is not an unpper bound for X, therefore there exists some n_{0} such that $c-\varepsilon<x_{n_{0}} \leq c$. But the sequence is monotone increasing so $c-\varepsilon<x_{n_{0}} \leq x_{n} \leq c$ for all $n \geq n_{0}$. That implies $\left|x_{n}-c\right|<\varepsilon$ for all $n \geq n_{0}$, and hence $x_{n} \rightarrow c$ by the definition.
B) (10) True/False and prove/give a reason: The sequence

$$
x_{n}= \begin{cases}-1+\frac{1}{n^{2}} & \text { if } n \text { is a prime integer }>1 \\ 1-\frac{1}{n^{2}} & \text { if } n \text { is not prime }\end{cases}
$$

has convergent subsequences.
Solution: This is TRUE. From the definition, $x_{n}<1$ for all n and $x_{n}>-1$ for all n. Since $\left\{x_{n}\right\}$ is a bounded sequence, the Bolzano-Weierstrass theorem implies it must have convergent subsequences. (In fact, we can also see directly from the above that the subsequences for $n_{k}=k$ th prime number and $n_{k}=2 k, k \geq 1$ are convergent.)
C) True/False and prove/give a reason: The infinite "continued radical"

$$
\sqrt{3+\sqrt{3+\sqrt{3+\sqrt{3+\sqrt{3+\cdots}}}}}
$$

represents a finite real number. (Hint: If so, that number would be the limit of a sequence defined by $x_{1}=\sqrt{3}$ and $x_{n}=\sqrt{3+x_{n-1}}$ for all $n \geq 2$.)

Solution: This is TRUE. First we notice that in the sequence described in the Hint,

$$
\begin{aligned}
& x_{2}=\sqrt{3+\sqrt{3}} \\
& x_{3}=\sqrt{3+\sqrt{3+\sqrt{3}}}
\end{aligned}
$$

etc. So as $n \rightarrow \infty$, if the sequence x_{n} converges, it converges to the expression defined by the infinite "continued radical." We claim next the sequence is bounded below by 0 (clear) and above by 3 . The second part requires some proof, but we can argue that $x_{n}<3$ for all n by induction as follows. The base case is $x_{1}=\sqrt{3}<3$. Assuming $x_{k}<3$, then we have $x_{k+1}=\sqrt{3+x_{k}}<\sqrt{3+3}=\sqrt{6}<3$. Hence $x_{n}<3$ for all n. Finally, we show by induction again that x_{n} is monotone increasing. Note that $x_{2}=\sqrt{3+\sqrt{3}}>\sqrt{3}=x_{1}$ since $x_{2}^{2}=3+\sqrt{3}>3=x_{1}^{2}$. Assuming $x_{k+1}>x_{k}$, then
$x_{k+2}=\sqrt{3+x_{k+1}}>\sqrt{3+x_{k}}=x_{k+1}$ also. Hence the monotone convergence theorem (part A) implies that $x_{n} \rightarrow a$ for some real number $a<3$. In fact, taking the limit on both sides of $x_{n+1}=\sqrt{3+x_{n}}$, we can see that a must satisfy

$$
a=\sqrt{3+a} \Rightarrow a^{2}-a-3=0
$$

By the quadratic formula,

$$
a=\frac{1+\sqrt{13}}{2} \doteq 2.302775638
$$

IV.
A) (15) Let

$$
f(x)= \begin{cases}x+3 & \text { if } x \text { is a rational number } \\ -x^{2}+3 & \text { if } x \text { is an irrational number }\end{cases}
$$

Is f continuous at $x=0$? Why or why not?
Solution: Yes, $f(x)$ is continuous at 0 . To see this, let $\varepsilon>0$, and $\delta<\min (\varepsilon, \sqrt{\varepsilon})$. If $|x|<\delta$ and x is rational then we have

$$
|f(x)-f(0)|=|x+3-3|=|x|<\varepsilon
$$

while if x is irrational we have

$$
|f(x)-f(0)|=\left|-x^{2}+3-3\right|=|x|^{2}<(\sqrt{\varepsilon})^{2}=\varepsilon .
$$

Therefore f is continuous at 0 .
B) (25) State and prove the Intermediate Value Theorem. (You may assume as known the theorem that if f is continuous at c and $x_{n} \rightarrow c$ is a sequence contained in the domain of f, then $\left.f\left(x_{n}\right) \rightarrow f(c)\right)$.

Solution: The IVT in the form we proved first says that if f is continuous on $[a, b]$ with $f(a) \neq f(b)$, and k is any number between $f(a)$ and $f(b)$, then there exists a $c \in[a, b]$ such that $f(c)=k$. We proved this as follows. If $k=f(a)$ or $k=f(b)$, then there is nothing to prove. Hence we must consider the case that k is strictly between the two values $f(a)$ and $f(b)$. Suppose, for instance, that $f(a)<k<f(b)$. (The other case $f(b)<k<f(a)$ can be proved similarly.) Consider

$$
S=\{x \in[a, b] \mid f(x) \leq k\}
$$

Then S is not empty since for instance $a \in S$. S is also bounded since it is a subset of $[a, b]$. Hence the LUB axiom implies that $c=\operatorname{lub}(S)$ exists in \mathbf{R}. We claim that $f(c)=k$. First note that $c<b$ since $f(b)>k$. Hence if we let $x_{n} \rightarrow c$ with $c \leq x_{n} \leq b$, we will have $f\left(x_{n}\right)>k$ for all n, and hence (since f is continuous at c,
$\lim _{n \rightarrow \infty} f\left(x_{n}\right)=f(c) \geq k$. On the other hand, since $c=\operatorname{lub}(S)$, if $\varepsilon>0$, then there will exist $x \in S$ with $c-\varepsilon<x \leq c$. Apply this for each $\varepsilon=\frac{1}{n}$ for $n \in \mathbf{N}$. We get a a sequence $x_{n}^{\prime} \in S$ with $x_{n}^{\prime} \rightarrow c$. Hence $\lim _{n \rightarrow \infty} f\left(x_{n}^{\prime}\right)=f(c) \leq k$ since $f\left(x_{n}^{\prime}\right) \leq k$ for all n. The two inequalities show that $f(c)=k$.
V.
A) (15) Using the limit definition of the derivative, compute $f^{\prime}(c)$ for $f(x)=\frac{1}{(x+3)^{2}}$ at a general $c \neq-3$.

Solution: We have

$$
\begin{aligned}
f^{\prime}(c) & =\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c} \\
& =\lim _{x \rightarrow c} \frac{\frac{1}{(x+3)^{2}}-\frac{1}{(c+3)^{2}}}{x-c} \\
& =\lim _{x \rightarrow c} \frac{(c+3)^{2}-(x+3)^{2}}{(x+3)^{2}(c+3)^{2}(x-c)} \\
& =\lim _{x \rightarrow c} \frac{c^{2}-x^{2}+6(c-x)}{(x+3)^{2}(c+3)^{2}(x-c)} \\
& =\lim _{x \rightarrow c} \frac{-c-x-6}{(x+3)^{2}(c+3)^{2}} \\
& =\frac{-2}{(c+3)^{3}}
\end{aligned}
$$

(Note: It is not permissible to use L'Hopital's Rule to compute this limit because that requires you to use a derivative formula to derive $f^{\prime}(x)=\frac{-2}{(x+3)^{3}}$. Using the derivative rule to compute the derivative by the definition is an example of circular reasoning!)
B) (10) What theorem guarantees that

$$
F(x)=\int_{1}^{x} \frac{1}{(t+3)^{2}} d t
$$

is differentiable at $x=2$? Exactly why does it apply here? What does it say about $F^{\prime}(2)$?

Solution: The theorem is the first part of the Fundamental Theorem of Calculus. It applies because the function $f(x)=\frac{1}{(x+3)^{2}}$ is continuous on the closed interval $[1, a]$ for all $a>2$. It implies $F^{\prime}(2)=f(2)=\frac{1}{25}$.
C) (10) Show that if $f(x)=\frac{e^{x}+e^{-x}}{2}$, then for every real k, there exists a solution c of the equation $f^{\prime}(c)=\frac{e^{c}-e^{-c}}{2}=k$.

Solution: Note that $f^{\prime}(x)=\frac{e^{x}-e^{-x}}{2}$ exists and is continuous at all $x \in \mathbf{R}$. This function satisfies $\lim _{x \rightarrow+\infty} f^{\prime}(x)=+\infty$ and $\lim _{x \rightarrow-\infty} f^{\prime}(x)=-\infty$. So whatever the
value k, we can find an interval $[-a, a]$ such that $f^{\prime}(-a)<k<f^{\prime}(a)$. On the interval $[-a, a], f^{\prime}$ is continuous, and then the Intermediate Value Theorem implies there is some $c \in[-a, a]$ such that $f^{\prime}(c)=k$.

Alternatively, it would also be possible to solve the equation $\frac{e^{c}-e^{-c}}{2}=k$ explicitly like this:

$$
\begin{aligned}
\frac{e^{c}-e^{-c}}{2}=k & \Leftrightarrow e^{2 c}-2 k e^{c}-1=0 \\
& \Leftrightarrow e^{c}=\frac{2 k+\sqrt{4 k^{2}+4}}{2} \quad \text { (by the quadratic formula) } \\
& \Leftrightarrow e^{c}=k+\sqrt{k^{2}+1} \\
& \Leftrightarrow c=\ln \left(k+\sqrt{k^{2}+1}\right)
\end{aligned}
$$

The function $g(x)=\ln \left(x+\sqrt{x^{2}+1}\right)$ is also known as the inverse hyperbolic sine function, since $f^{\prime}(x)=\frac{e^{x}-e^{-x}}{2}$ is the hyperbolic sine.
VI. (20) In this question, you may use the summation formulas:

$$
\sum_{i=1}^{n} 1=n \quad \sum_{i=1}^{n} i=\frac{n(n+1)}{2} \quad \sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

Show that $f(x)=x^{2}+x$ is integrable on $[a, b]=[0,2]$ by considering upper and lower sums for f and determine the value of $\int_{0}^{2} x^{2}+x d x$.

Solution: $f^{\prime}(x)=2 x+1>0$ for all $x \in[0,2]$. Therefore, f is increasing on $[0,2]$ and as in the proof of the integrability of all monotone functions, if \mathcal{P}_{n} is the regular partition of [0,2] into n equal subintervals,

$$
U\left(f, \mathcal{P}_{n}\right)-L\left(f, \mathcal{P}_{n}\right)=(f(2)-f(0)) \frac{(2-0)}{n}=\frac{12}{n} .
$$

If $\varepsilon>0$ is given and $n>\frac{12}{\varepsilon}$, then

$$
U\left(f, \mathcal{P}_{n}\right)-L\left(f, \mathcal{P}_{n}\right)<\varepsilon .
$$

The limit of the upper sum for \mathcal{P}_{n} as $n \rightarrow \infty$ is

$$
\begin{aligned}
\int_{0}^{2} x^{2}+x d x & =\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(\left(\frac{2 i}{n}\right)^{2}+\frac{2 i}{n}\right) \frac{2}{n} \\
& =\lim _{n \rightarrow \infty}\left(\frac{8}{n^{3}} \sum_{i=1}^{n} i^{2}+\frac{4}{n^{2}} \sum_{i=1}^{n} i\right) \\
& =\lim _{n \rightarrow \infty}\left(\frac{8}{n^{3}} \cdot \frac{n(n+1)(2 n+1)}{6}+\frac{4}{n^{2}} \cdot \frac{n(n+1)}{2}\right) \\
& =\frac{8}{3}+2=\frac{14}{3}
\end{aligned}
$$

Check: By Part 2 of the FTC:

$$
\int_{0}^{2} x^{2}+x d x=\frac{x^{3}}{3}+\left.\frac{x^{2}}{2}\right|_{0} ^{2}=\frac{8}{3}+2=\frac{14}{3} .
$$

VII.
A) (5) State the definition of convergence for an infinite series $\sum_{n=1}^{\infty} a_{n}$.

Solution: The infinite series $\sum_{n=1}^{\infty} a_{n}$ converges to $S \in \mathbf{R}$ if the sequence of partial sums $s_{k}=\sum_{n=1}^{k} a_{n}$ converges to S (as a sequence).
B) (15) For which $x \in \mathbf{R}$ does the power series

$$
\sum_{n=1}^{\infty} \frac{3^{n} x^{n}}{n 7^{n}}
$$

converge? (Apply the Ratio Test and test the series at the endpoints of your interval separately.)

Solution: We have

$$
\lim _{n \rightarrow \infty}\left|\frac{3^{n+1} x^{n+1}}{(n+1) 7^{n+1}} \cdot \frac{n 7^{n}}{3^{n} x^{n}}\right|=\lim _{n \rightarrow \infty} \frac{3 n}{7(n+1)}|x|=\frac{3|x|}{7}
$$

By the Ratio Test, the series converges absolutely whenever $\frac{3|x|}{7}<1$, or $|x|<\frac{7}{3}$, and it diverges when $|x|>\frac{7}{3}$. At $x= \pm \frac{7}{3}$, we have the following. If $x=\frac{7}{3}$, we substitute and simplify to obtain $\sum_{n=1}^{\infty} \frac{1}{n}$. This is the harmonic series, which diverges. If $x=-\frac{7}{3}$, we substitute and simplify to obtain $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}$. This series converges by the Alternating Series Test. Therefore the series converges at all $x \in\left[-\frac{7}{3}, \frac{7}{3}\right.$) (and only for those x).

Extra Credit (20) Prove the result mentioned in part B of question IV above: if f is continuous at c and $x_{n} \rightarrow c$ is a sequence contained in the domain of f, then $f\left(x_{n}\right) \rightarrow f(c)$.

Solution: Since f is continuous at c, given any $\varepsilon>0$, there is some $\delta>0$ such that

$$
\begin{equation*}
|f(x)-f(c)|<\varepsilon \tag{1}
\end{equation*}
$$

for all x with $|x-c|<\delta$. Then, since $x_{n} \rightarrow c$, given that δ, there is an n_{0} such that $\left|x_{n}-c\right|<\delta$ for all $n \geq n_{0}$. But then substituting $x=x_{n}$ from the sequence into the inequality (1) we get $\left|f\left(x_{n}\right)-f(c)\right|<\varepsilon$ for all $n \geq n_{0}$. This implies that the sequence $f\left(x_{n}\right) \rightarrow f(c)$.

