MATH 242 – Principles of Analysis Exam 2 – April 1, 2011

Directions

Do all work in the blue exam booklet. There are 100 possible regular points and 10 Extra Credit Points.

I.

- A) (20) State and prove the Monotone Convergence Theorem for sequences. (You may give the proof in the case that the sequence is monotone increasing.)
- B) (10) Suppose that x_n is a sequence of strictly *negative* numbers and $x_{n+1}/x_n \leq 1$ for all $n \geq 1$. Show that $\lim_{n \to \infty} x_n = a$ exists in **R** and satisfies $a \leq 0$.

II. (20) Suppose $\{x_n\}$ is a sequence such that $|x_n - 10| < 100$ for all $n \ge 1$. Show that there exists some number $a \in [-90, 110]$ and a subsequence $\{x_{n_k}\}$ such that $x_{n_k} \to a$. State any "big theorems" you are using.

III.

- A) (10) Show using the ε , δ definition that $\lim_{x\to 2} x^2 x = 2$.
- B) (10) Show using the ε , n_0 definition that $\lim_{n\to\infty} \frac{(-1)^n}{n^2+1} = 0$.

IV. True/False. For each true statement, give a short proof. For each false statement, give a counterexample or reason.

- A) (10) If $\{x_n\}$ diverges, then for all $a \in \mathbf{R}$, there exist $\varepsilon_0 > 0$ and $n_0 \in \mathbf{N}$ such that $|x_n a| \ge \varepsilon_0$ for all $n \ge n_0$.
- B) (10) It is possible to find a function $f : \mathbf{R} \to \mathbf{R}$ that is continuous at c = e, with f(e) = 0, but satisfying f(x) = 1 for all rational x.
- C) (10) The sequence defined by $x_1 = 1$ and $x_n = \sqrt{3x_{n-1} + 1}$ for $n \ge 2$ is monotone increasing.

Extra Credit. (10)

Assume that $\{x_n\}$ is a sequence that converges to a. Construct a new sequence $\{y_n\}$ by making y_n the average of the first n terms in the original sequence: $y_n = \frac{x_1 + x_2 + \dots + x_n}{n}$. Show that $\{y_n\}$ also converges to a.