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§1.1/

3. (a) A question like this is asking for a specific counterexample to the statement (A −
B) ∪ B = A – an explicit example that shows the statement is not true. You can find a
simple example where this fails whenever A − B and B − A are nonempty. For instance,
let

A = {1, 2}, B = {2, 3}

Then A − B = {1} so (A − B) ∪ B = {1, 2, 3} 6= A.

(b) From examples like this (and/or Venn diagrams), we can see that the correct
statement should be (A − B) ∪ B = A ∪ B. Here are two different “styles” of proofs of
this, equally correct.

Proof 1: We will show the two inclusions (A−B)∪B ⊂ A∪B and A∪B ⊂ (A−B)∪B.
First, let x ∈ (A−B)∪B. then x ∈ A−B or x ∈ B by the definition of the union. Hence
by part (d) of problem 2 (part (g) of Theorem 1.1.3), x ∈ A and x /∈ B, or x ∈ B. This
shows x ∈ A or x ∈ B, so x ∈ A∪B. Hence (A−B)∪B ⊂ A∪B. For the other inclusion,
let x ∈ A ∪ B. Then x ∈ A or x ∈ B. If x ∈ B, then x ∈ (A − B) ∪ B by definition
of the union. On the other hand if x /∈ B, then it must be true that x ∈ A, and hence
x ∈ A∩Bc = A−B (using part (d) of problem 2 again). This shows A∪B ⊂ (A−B)∪B
and hence the equality we want. //

Proof 2: For this proof, we will use several parts of Theorem 1.1.3 that incorporate the
sort of element-by-element arguments in Proof 1. We have

(A − B) ∪ B = (A ∩ Bc) ∪ B (by 1.1.3(g))

= (A ∪ B) ∩ (Bc ∪ B) (by 1.1.3(e))

= (A ∪ B) ∩ X (by 1.1.3(b))

= A ∪ B (by def. of universal set)

§1.2/

5. Let f : A → B be a function and C, D ⊂ A.

(a) We want to show f(C ∪ D) = f(C) ∪ f(D) (subsets of B), and we will do this by
showing each set is contained in the other. First, let y ∈ f(C ∪ D). Then y = f(x) for
some x ∈ C ∪ D. Hence y = f(x) for some x ∈ C or some x ∈ D. If x ∈ C, then
y = f(x) ∈ f(C); if x ∈ D, then y = f(x) ∈ f(D). Hence y ∈ f(C) ∪ f(D). This shows
f(C ∪ D) ⊂ f(C) ∪ f(D). For the reverse inclusion, suppose y ∈ f(C) ∪ f(D). Then
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y ∈ f(C) or y ∈ f(D). In the first case, y = f(x) for some x ∈ C; in the second y = f(x)
for some x ∈ D. Either way, y = f(x) for some x ∈ C ∪ D since then x ∈ C or x ∈ D. It
follows that y ∈ f(C ∪ D) and f(C) ∪ f(D) ⊂ f(C ∪ D).

(b) We want to show f(C∩D) ⊂ f(C)∩f(D). Let y ∈ f(C ∩D). Then y = f(x) for some
x ∈ C ∩ D. Hence y = f(x) for some x ∈ C which also satisfies x ∈ D. Hence y ∈ f(C)
and y ∈ f(D), so y ∈ f(C) ∪ f(D). This shows f(C ∩ D) ⊂ f(C) ∩ f(D).

(c) If we think carefully about how the reverse inclusion might fail, then it should be clear
that knowing y ∈ f(C)∩ f(D) just says that we have some x1 ∈ C and some x2 ∈ D such
that f(x1) = y = f(x2). There’s no reason why x1 or x2 must come from C ∩ D. Here is
an explicit example. Let f : R → R be the function defined by f(x) = x2. Let C = {1}
and D = {−1}. Then f(C) = f(D) = {1}, so f(C) ∩ f(D) = {1}. But C ∩ D = ∅, so
f(C ∩ D) = ∅ 6= f(C) ∩ f(D).

6. We did one part of this in class(!) You should be reading your class notes in addition
to working on the problem sets.

12. Comments: This problem is really a continuation of 5 (b) and (c) above. There will be
interconnected problems on many assignments for this course; be sure you can spot them
and can see what steps are necessary for the later problems, without repeating work you

already did! Also, if a problem states an extra hypothesis (like the hypothesis that f is
one-to-one in part (a)), you should ask yourself: Did I use that anywhere? How did I use
it?

(a) We know from 5 (b) above that f(C∩D) ⊂ f(C)∩f(D) for all functions f : A → B and
all subsets C, D ⊂ A. So, what must be proved for this part is that if f is one-to-one, then
f(C)∩f(D) ⊂ f(C∩D) for all C, D. So let C, D be subsets of A, and let y ∈ f(C)∩f(D).
Then by definition we know y ∈ f(C) and y ∈ f(D). Hence, y = f(x1) for some x1 ∈ C
and also (the same) y = f(x2) for some x2 ∈ D. Since f is assumed to be one-to-one, and
f(x1) = y = f(x2), it must be the case that x1 = x2. But then this single element is in
both C and D, hence in C ∩D. It follows that y ∈ f(C ∩D), so f(C)∩ f(D) ⊂ f(C ∩D).

(b) Note: A statement of the form “p if and only if q” means “if p then q, and if q then
p.” To prove a statement of this form, you must supply arguments for both implications.
(This is like the standard plan for showing A = B, since A ⊂ B is equivalent to “if x ∈ A,
then x ∈ B” and B ⊂ A is equivalent to “if x ∈ B, then x ∈ A”).

Part (a) shows the statement “If f is one-to-one, then f(C ∩ D) = f(C) ∩ f(D) for all
C, D ⊂ A.” So that is already known, and what we need to show for this part is the reverse
implication “If f(C ∩ D) = f(C) ∩ f(D) for all subsets C, D of A, then f is one-to-one.”

Let x1, x2 ∈ A and assume f(x1) = f(x2) = y ∈ B. Consider the subsets C = {x1}
and D = {x2} in A. By our hypothesis, we have

f(C ∩ D) = f(C) ∩ f(D) = {y}.
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But in particular, this says C ∩ D 6= ∅ (since otherwise f(C ∩ D) = ∅ too). Therefore, it
must be true that x1 = x2, and hence f is one-to-one.

14. (a) If ad − bc = 0 and a = 0, then bc = 0, so b = 0 or c = 0. In the first case we have
f(x) = 0x+0

cx+d
= 0 for all x so f is constant. In the second case we have f(x) = 0x+b

0x+d
is

constant. On the other hand, if a 6= 0, then we have d = bc

a
and

f(x) =
ax + b

cx + bc

a

=
a(ax + b)

c(ax + b)

=
a

c

is constant again.

(b) Now assume ad− bc 6= 0. We can do most of this part with one algebraic calcula-
tion. Let y = f(x), and try to solve for x as a function of y. If we can do that uniquely,
then f is one-to-one, and we can determine the range and the formula for the inverse
function all at once! The computations:

y =
ax + b

cx + d

(cx + d)y = ax + b

x(cy − a) = −dy + b

x =
−dy + b

cy − a

This shows that as long as y 6= a/c, there is a unique x such that f(x) = y. If y = a/c,
then we get ad − bc = 0 which contradicts our hypothesis. Hence f is one-to-one. The
inverse function is also found from the result of this same calculation:

f−1(x) =
−dx + b

cx − a
.

The domain of f is

domain(f) =
{

R − {−d/c} if c 6= 0
R if c = 0

and the domain of f−1 is

domain
(

f−1
)

=
{

R − {a/c} if c 6= 0
R if c = 0

(c) Finally, we ask, when is f(x) = f−1(x) for all x. If we set f(x) = f−1(x), we get

ax + b

cx + d
=

−dx + b

cx − a
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If this is true for all x in the domains, then

(ax + b)(cx − a) = (cx + d)(−dx + b)

which implies
c(a + d)x2 − (a2 − d2)x − b(a + d) = 0.

The only way this can be satisfied for infinitely many real x is if c(a + d) = 0, a2 − d2 = 0,
and b(a + d) = 0. If b 6= 0 or c 6= 0, this implies a = −d and the middle equation is also
satisfied. If b = c = 0, then a = ±d. Hence the f for which f = f−1 are all linear fractional
mappings of the form

f(x) =
ax + b

cx − a

with b 6= 0 or c 6= 0, and
f(x) = ±x.
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