Mathematics 242 - Principles of Analysis
 Selected Solutions - Problem Set 1, "B portion"

February 6, 2011
§1.1/
3. (a) A question like this is asking for a specific counterexample to the statement ($A-$ $B) \cup B=A$ - an explicit example that shows the statement is not true. You can find a simple example where this fails whenever $A-B$ and $B-A$ are nonempty. For instance, let

$$
A=\{1,2\}, B=\{2,3\}
$$

Then $A-B=\{1\}$ so $(A-B) \cup B=\{1,2,3\} \neq A$.
(b) From examples like this (and/or Venn diagrams), we can see that the correct statement should be $(A-B) \cup B=A \cup B$. Here are two different "styles" of proofs of this, equally correct.

Proof 1: We will show the two inclusions $(A-B) \cup B \subset A \cup B$ and $A \cup B \subset(A-B) \cup B$. First, let $x \in(A-B) \cup B$. then $x \in A-B$ or $x \in B$ by the definition of the union. Hence by part (d) of problem 2 (part (g) of Theorem 1.1.3), $x \in A$ and $x \notin B$, or $x \in B$. This shows $x \in A$ or $x \in B$, so $x \in A \cup B$. Hence $(A-B) \cup B \subset A \cup B$. For the other inclusion, let $x \in A \cup B$. Then $x \in A$ or $x \in B$. If $x \in B$, then $x \in(A-B) \cup B$ by definition of the union. On the other hand if $x \notin B$, then it must be true that $x \in A$, and hence $x \in A \cap B^{c}=A-B$ (using part (d) of problem 2 again). This shows $A \cup B \subset(A-B) \cup B$ and hence the equality we want. //

Proof 2: For this proof, we will use several parts of Theorem 1.1.3 that incorporate the sort of element-by-element arguments in Proof 1. We have

$$
\begin{aligned}
(A-B) \cup B & =\left(A \cap B^{c}\right) \cup B(\text { by } 1.1 .3(g)) \\
& =(A \cup B) \cap\left(B^{c} \cup B\right)(\text { by 1.1.3(e) }) \\
& =(A \cup B) \cap X(\text { by 1.1.3(b) }) \\
& =A \cup B(\text { by def. of universal set })
\end{aligned}
$$

§1.2/
5. Let $f: A \rightarrow B$ be a function and $C, D \subset A$.
(a) We want to show $f(C \cup D)=f(C) \cup f(D)$ (subsets of B), and we will do this by showing each set is contained in the other. First, let $y \in f(C \cup D)$. Then $y=f(x)$ for some $x \in C \cup D$. Hence $y=f(x)$ for some $x \in C$ or some $x \in D$. If $x \in C$, then $y=f(x) \in f(C)$; if $x \in D$, then $y=f(x) \in f(D)$. Hence $y \in f(C) \cup f(D)$. This shows $f(C \cup D) \subset f(C) \cup f(D)$. For the reverse inclusion, suppose $y \in f(C) \cup f(D)$. Then
$y \in f(C)$ or $y \in f(D)$. In the first case, $y=f(x)$ for some $x \in C$; in the second $y=f(x)$ for some $x \in D$. Either way, $y=f(x)$ for some $x \in C \cup D$ since then $x \in C$ or $x \in D$. It follows that $y \in f(C \cup D)$ and $f(C) \cup f(D) \subset f(C \cup D)$.
(b) We want to show $f(C \cap D) \subset f(C) \cap f(D)$. Let $y \in f(C \cap D)$. Then $y=f(x)$ for some $x \in C \cap D$. Hence $y=f(x)$ for some $x \in C$ which also satisfies $x \in D$. Hence $y \in f(C)$ and $y \in f(D)$, so $y \in f(C) \cup f(D)$. This shows $f(C \cap D) \subset f(C) \cap f(D)$.
(c) If we think carefully about how the reverse inclusion might fail, then it should be clear that knowing $y \in f(C) \cap f(D)$ just says that we have some $x_{1} \in C$ and some $x_{2} \in D$ such that $f\left(x_{1}\right)=y=f\left(x_{2}\right)$. There's no reason why x_{1} or x_{2} must come from $C \cap D$. Here is an explicit example. Let $f: \mathbf{R} \rightarrow \mathbf{R}$ be the function defined by $f(x)=x^{2}$. Let $C=\{1\}$ and $D=\{-1\}$. Then $f(C)=f(D)=\{1\}$, so $f(C) \cap f(D)=\{1\}$. But $C \cap D=\emptyset$, so $f(C \cap D)=\emptyset \neq f(C) \cap f(D)$.
6. We did one part of this in class(!) You should be reading your class notes in addition to working on the problem sets.
12. Comments: This problem is really a continuation of $5(\mathrm{~b})$ and (c) above. There will be interconnected problems on many assignments for this course; be sure you can spot them and can see what steps are necessary for the later problems, without repeating work you already did! Also, if a problem states an extra hypothesis (like the hypothesis that f is one-to-one in part (a)), you should ask yourself: Did I use that anywhere? How did I use it?
(a) We know from 5 (b) above that $f(C \cap D) \subset f(C) \cap f(D)$ for all functions $f: A \rightarrow B$ and all subsets $C, D \subset A$. So, what must be proved for this part is that if f is one-to-one, then $f(C) \cap f(D) \subset f(C \cap D)$ for all C, D. So let C, D be subsets of A, and let $y \in f(C) \cap f(D)$. Then by definition we know $y \in f(C)$ and $y \in f(D)$. Hence, $y=f\left(x_{1}\right)$ for some $x_{1} \in C$ and also (the same) $y=f\left(x_{2}\right)$ for some $x_{2} \in D$. Since f is assumed to be one-to-one, and $f\left(x_{1}\right)=y=f\left(x_{2}\right)$, it must be the case that $x_{1}=x_{2}$. But then this single element is in both C and D, hence in $C \cap D$. It follows that $y \in f(C \cap D)$, so $f(C) \cap f(D) \subset f(C \cap D)$.
(b) Note: A statement of the form "p if and only if q" means "if p then q, and if q then p." To prove a statement of this form, you must supply arguments for both implications. (This is like the standard plan for showing $A=B$, since $A \subset B$ is equivalent to "if $x \in A$, then $x \in B$ " and $B \subset A$ is equivalent to "if $x \in B$, then $x \in A$ ").

Part (a) shows the statement "If f is one-to-one, then $f(C \cap D)=f(C) \cap f(D)$ for all $C, D \subset A$." So that is already known, and what we need to show for this part is the reverse implication "If $f(C \cap D)=f(C) \cap f(D)$ for all subsets C, D of A, then f is one-to-one."

Let $x_{1}, x_{2} \in A$ and assume $f\left(x_{1}\right)=f\left(x_{2}\right)=y \in B$. Consider the subsets $C=\left\{x_{1}\right\}$ and $D=\left\{x_{2}\right\}$ in A. By our hypothesis, we have

$$
f(C \cap D)=f(C) \cap f(D)=\{y\}
$$

But in particular, this says $C \cap D \neq \emptyset$ (since otherwise $f(C \cap D)=\emptyset$ too). Therefore, it must be true that $x_{1}=x_{2}$, and hence f is one-to-one.
14. (a) If $a d-b c=0$ and $a=0$, then $b c=0$, so $b=0$ or $c=0$. In the first case we have $f(x)=\frac{0 x+0}{c x+d}=0$ for all x so f is constant. In the second case we have $f(x)=\frac{0 x+b}{0 x+d}$ is constant. On the other hand, if $a \neq 0$, then we have $d=\frac{b c}{a}$ and

$$
\begin{aligned}
f(x) & =\frac{a x+b}{c x+\frac{b c}{a}} \\
& =\frac{a(a x+b)}{c(a x+b)} \\
& =\frac{a}{c}
\end{aligned}
$$

is constant again.
(b) Now assume $a d-b c \neq 0$. We can do most of this part with one algebraic calculation. Let $y=f(x)$, and try to solve for x as a function of y. If we can do that uniquely, then f is one-to-one, and we can determine the range and the formula for the inverse function all at once! The computations:

$$
\begin{aligned}
y & =\frac{a x+b}{c x+d} \\
(c x+d) y & =a x+b \\
x(c y-a) & =-d y+b \\
x & =\frac{-d y+b}{c y-a}
\end{aligned}
$$

This shows that as long as $y \neq a / c$, there is a unique x such that $f(x)=y$. If $y=a / c$, then we get $a d-b c=0$ which contradicts our hypothesis. Hence f is one-to-one. The inverse function is also found from the result of this same calculation:

$$
f^{-1}(x)=\frac{-d x+b}{c x-a}
$$

The domain of f is

$$
\text { domain }(f)= \begin{cases}\mathbf{R}-\{-d / c\} & \text { if } c \neq 0 \\ \mathbf{R} & \text { if } c=0\end{cases}
$$

and the domain of f^{-1} is

$$
\text { domain }\left(f^{-1}\right)= \begin{cases}\mathbf{R}-\{a / c\} & \text { if } c \neq 0 \\ \mathbf{R} & \text { if } c=0\end{cases}
$$

(c) Finally, we ask, when is $f(x)=f^{-1}(x)$ for all x. If we set $f(x)=f^{-1}(x)$, we get

$$
\frac{a x+b}{c x+d}=\frac{-d x+b}{c x-a}
$$

If this is true for all x in the domains, then

$$
(a x+b)(c x-a)=(c x+d)(-d x+b)
$$

which implies

$$
c(a+d) x^{2}-\left(a^{2}-d^{2}\right) x-b(a+d)=0
$$

The only way this can be satisfied for infinitely many real x is if $c(a+d)=0, a^{2}-d^{2}=0$, and $b(a+d)=0$. If $b \neq 0$ or $c \neq 0$, this implies $a=-d$ and the middle equation is also satisfied. If $b=c=0$, then $a= \pm d$. Hence the f for which $f=f^{-1}$ are all linear fractional mappings of the form

$$
f(x)=\frac{a x+b}{c x-a}
$$

with $b \neq 0$ or $c \neq 0$, and

$$
f(x)= \pm x
$$

