MATH 242 - Principles of Analysis Selected Solutions for Problem Set 7, "B portion"

April 8, 2011
$\S 3.5 / 15$. A comment first: A fairly common idea that people tried to use in solutions for (a) was this. Let $0<c<1$. Then $0<c^{2}<1$ as well. Since $f(0)<0$ and $f(1)>1$, this means c^{2} is between $f(0)$ and $f(1)$. So by the Intermediate Value Theorem there is some $x_{0} \in[0,1]$ where $f\left(x_{0}\right)=c^{2}$. The problem with this is that the question asked you to show that there is some c where $f(c)=c^{2}$. The x_{0} above will not usually equal c. (Indeed that statement shows $\forall c \in[0,1], \exists x_{0} \in[0,1]$ s.t. $f\left(x_{0}\right)=c^{2}$.) The correct way to apply the IVT here is to apply it to a different function. We want to find c where $f(c)=c^{2}$, so $f(c)-c^{2}=0$.
(a) Let $g(x)=f(x)-x^{2}$. By Theorem 3.4.10, this is continuous on $[0,1]$ since f is assumed to be continuous and x^{2} is continuous everywhere. Using the assumptions on f, we have

$$
\begin{aligned}
& g(0)=f(0)-0=f(0)<0 \\
& g(1)=f(1)-1>0
\end{aligned}
$$

Hence since $k=0$ is a value between $g(0)$ and $g(1)$, there is a $c \in(0,1)$ where $g(c)=$ $f(c)-c^{2}=0$. This shows $f(c)=c^{2}$.
(b) Let $h(x)=f(x)-g(x)$. By Theorem 3.4.10, this is continuous on $[0,1]$ since f, g are assumed to be continuous. Since $f(0)<0, g(0) \geq 0, f(1)>1$, and $g(1) \leq 1$, we have

$$
\begin{aligned}
& h(0)=f(0)-g(0)<0 \\
& h(1)=f(1)-g(1)>0
\end{aligned}
$$

Hence since $k=0$ is a value between $h(0)$ and $h(1)$, there is a $c \in(0,1)$ where $h(c)=$ $f(c)-g(c)=0$. This shows $f(c)=g(c)$.
22. This is FALSE. The function

$$
f(x)=\frac{\cos (\pi / x)}{x}
$$

on $(0,1]$ is one counterexample. Notice that at $x_{n}=\frac{1}{n}$ we have

$$
f(1 / n)=n \cos (n \pi)=(-1)^{n} n
$$

Since $x_{n} \rightarrow 0$ as $n \rightarrow \infty$, the interval $(0,1]$ contains points where f takes both positive and negative values that are arbitrarily large in absolute value:

$$
f(1 / n)= \begin{cases}n & \text { if } n \text { is even } \\ -n & \text { if } n \text { is odd }\end{cases}
$$

It follows that f has no maximum or minimum on $(0,1]$.
23. (a) This is FALSE. There are many non-continuous functions that have the "intermediate value property" (that is, for which the conclusion of the IVT holds). For example, on $[0,1]$, the function

$$
f(x)= \begin{cases}2 x & \text { if } 0 \leq x \leq 1 / 2 \\ 2 x-1 & \text { if } 1 / 2<x \leq 1\end{cases}
$$

has a jump discontinuity at $x=1 / 2$. But it takes every value between $f(0)=0$ and $f(1)=1$ at least once (most of them twice, in fact).
(b) This is FALSE. Here's a counterexample, and an explanation: Let

$$
f(x)= \begin{cases}\sin (1 / x) & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}
$$

and consider the interval $[a, b]=[-1,1]$. First, f fails to be continuous at 0 because $\lim _{x \rightarrow 0} f(x)$ does not exist. But f does have the "intermediate value property" on every subinterval $\left[c_{1}, c_{2}\right] \subset[-1,1]$. We can see this as follows. First, if $0 \neq\left[c_{1}, c_{2}\right]$, then f is actually continuous on $\left[c_{1}, c_{2}\right]$ and the IVT applies. Next, if $0 \in\left[c_{1}, c_{2}\right]$, then since f oscillates more and more quickly as $x \rightarrow 0, f$ must take every value between -1 and 1 on that interval. This certainly implies that f takes every value between $f\left(c_{1}\right)$ and $f\left(c_{2}\right)$, since those are also in the range $[-1,1]$.

Comment: A lot of people tried to construct a counterexample f by somehow using a pair c_{1} and c_{2} in the definition of f. That cannot work here because the property we want is that f is not continuous, but for all $a \leq c_{1}<c_{2} \leq b$, the intermediate value property holds for f on $\left[c_{1}, c_{2}\right.$]. For instance if you tried to make a counterexample with jump discontinuities at particular c_{1} and c_{2}, then on closed subintervals straddling one of those discontinuities there can be some y-values that are omitted by f. So the intermediate value property would fail for some intervals of x 's.
§3.6/4 Comment: Many people had the correct idea on this one after talking to me in office hours. However, in order to give a complete proof that

$$
f(x)=\sin (2 \pi[x] x)
$$

is not uniformly continuous on \mathbf{R}, you have to supply more details than many people did. Here is a complete argument.

Aiming for a contradiction, suppose f is uniformly continuous on \mathbf{R}. Then for all $\varepsilon>0$, there exists $\delta>0$ such that $\left|f(x)-f\left(x^{\prime}\right)\right|<\varepsilon$ for all x, x^{\prime} with $\left|x-x^{\prime}\right|<\delta$. However, take $\varepsilon=1$. Assuming there is a $\delta>0$ that works here, we can find $n \in \mathbf{N}$ such that $\frac{1}{4 n}<\delta$. Consider $x=n$ and $x^{\prime}=n+\frac{1}{4 n}$. Then

$$
\left|x-x^{\prime}\right|=\frac{1}{4 n}<\delta
$$

but $f(n)=\sin \left(2 \pi n^{2}\right)=0$ and

$$
\begin{aligned}
f\left(n+\frac{1}{4 n}\right) & =\sin \left(2 \pi\left[n+\frac{1}{4 n}\right]\left(n+\frac{1}{4 n}\right)\right) \\
& =\sin \left(2 \pi n\left(n+\frac{1}{4 n}\right)\right) \\
& =\sin \left(2 \pi n^{2}+\frac{\pi}{2}\right) \\
& =1
\end{aligned}
$$

Hence $\left|f(x)-f\left(x^{\prime}\right)\right|=1$, which is not less than $\varepsilon=1$. This contradiction shows that f is not uniformly continuous on \mathbf{R}.
$\S 4.1 / 11$. Comment: Several people overlooked the fact that the statement to be proved is an "if and only if" statement, so both implications must be shown.
\Rightarrow : Suppose $h(x)$ is differentiable at c. Then the limit of the difference quotient of h :

$$
h^{\prime}(c)=\lim _{x \rightarrow c} \frac{h(x)-h(c)}{x-c}
$$

must exist. This is equivalent to saying the two one-sided limits

$$
\lim _{x \rightarrow c^{-}} \frac{h(x)-h(c)}{x-c}, \quad \lim _{x \rightarrow c^{+}} \frac{h(x)-h(c)}{x-c}
$$

exist and are equal. By the definition of h, though,

$$
\lim _{x \rightarrow c^{-}} \frac{h(x)-h(c)}{x-c}=\lim _{x \rightarrow c^{-}} \frac{f(x)-f(c)}{x-c}
$$

and that limit exists and equals $f^{\prime}(c)$ since we assume f is differentiable at c. Similarly,

$$
\lim _{x \rightarrow c^{+}} \frac{h(x)-h(c)}{x-c}=\lim _{x \rightarrow c^{+}} \frac{g(x)-g(c)}{x-c}
$$

and that limit exists and equals $g^{\prime}(c)$ since we assume g is differentiable at c. It follows that $f^{\prime}(c)=g^{\prime}(c)$.
\Leftarrow : Conversely, suppose $f^{\prime}(c)=g^{\prime}(c)$. Then taking the limits of the difference quotients on only one side, we can say:

$$
\lim _{x \rightarrow c^{-}} \frac{f(x)-f(c)}{x-c}=\lim _{x \rightarrow c^{+}} \frac{g(x)-g(c)}{x-c}
$$

Because of the way h is defined piecewise, the first limit here is the same as

$$
\lim _{x \rightarrow c^{-}} \frac{h(x)-h(c)}{x-c}
$$

and the second is

$$
\lim _{x \rightarrow c^{+}} \frac{h(x)-h(c)}{x-c}
$$

This shows that the two one-sided limits

$$
\lim _{x \rightarrow c^{-}} \frac{h(x)-h(c)}{x-c}, \quad \lim _{x \rightarrow c^{+}} \frac{h(x)-h(c)}{x-c}
$$

exist and are equal. Therefore,

$$
h^{\prime}(c)=\lim _{x \rightarrow c} \frac{h(x)-h(c)}{x-c}
$$

must exist, so h is differentiable at c.

