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§3.5/15. A comment first: A fairly common idea that people tried to use in solutions for
(a) was this. Let 0 < c < 1. Then 0 < c2 < 1 as well. Since f(0) < 0 and f(1) > 1,
this means c2 is between f(0) and f(1). So by the Intermediate Value Theorem there is
some x0 ∈ [0, 1] where f(x0) = c2. The problem with this is that the question asked you to
show that there is some c where f(c) = c2. The x0 above will not usually equal c. (Indeed
that statement shows ∀c ∈ [0, 1], ∃x0 ∈ [0, 1] s.t. f(x0) = c2.) The correct way to apply
the IVT here is to apply it to a different function. We want to find c where f(c) = c2, so
f(c) − c2 = 0.

(a) Let g(x) = f(x)−x2. By Theorem 3.4.10, this is continuous on [0, 1] since f is assumed
to be continuous and x2 is continuous everywhere. Using the assumptions on f , we have

g(0) = f(0) − 0 = f(0) < 0

g(1) = f(1) − 1 > 0

Hence since k = 0 is a value between g(0) and g(1), there is a c ∈ (0, 1) where g(c) =
f(c) − c2 = 0. This shows f(c) = c2.

(b) Let h(x) = f(x) − g(x). By Theorem 3.4.10, this is continuous on [0, 1] since f, g are
assumed to be continuous. Since f(0) < 0, g(0) ≥ 0, f(1) > 1, and g(1) ≤ 1, we have

h(0) = f(0) − g(0) < 0

h(1) = f(1) − g(1) > 0

Hence since k = 0 is a value between h(0) and h(1), there is a c ∈ (0, 1) where h(c) =
f(c) − g(c) = 0. This shows f(c) = g(c).

22. This is FALSE. The function

f(x) =
cos(π/x)

x

on (0, 1] is one counterexample. Notice that at xn = 1

n
we have

f(1/n) = n cos(nπ) = (−1)nn.

Since xn → 0 as n → ∞, the interval (0, 1] contains points where f takes both positive
and negative values that are arbitrarily large in absolute value:

f(1/n) =
{

n if n is even
−n if n is odd
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It follows that f has no maximum or minimum on (0, 1].

23. (a) This is FALSE. There are many non-continuous functions that have the “interme-
diate value property” (that is, for which the conclusion of the IVT holds). For example,
on [0, 1], the function

f(x) =

{

2x if 0 ≤ x ≤ 1/2
2x − 1 if 1/2 < x ≤ 1

has a jump discontinuity at x = 1/2. But it takes every value between f(0) = 0 and
f(1) = 1 at least once (most of them twice, in fact).

(b) This is FALSE. Here’s a counterexample, and an explanation: Let

f(x) =
{

sin(1/x) if x 6= 0
0 if x = 0

and consider the interval [a, b] = [−1, 1]. First, f fails to be continuous at 0 because
limx→0 f(x) does not exist. But f does have the “intermediate value property” on every

subinterval [c1, c2] ⊂ [−1, 1]. We can see this as follows. First, if 0 6= [c1, c2], then f
is actually continuous on [c1, c2] and the IVT applies. Next, if 0 ∈ [c1, c2], then since f
oscillates more and more quickly as x → 0, f must take every value between −1 and 1
on that interval. This certainly implies that f takes every value between f(c1) and f(c2),
since those are also in the range [−1, 1].

Comment: A lot of people tried to construct a counterexample f by somehow using a pair
c1 and c2 in the definition of f . That cannot work here because the property we want
is that f is not continuous, but for all a ≤ c1 < c2 ≤ b, the intermediate value property
holds for f on [c1, c2]. For instance if you tried to make a counterexample with jump
discontinuities at particular c1 and c2, then on closed subintervals straddling one of those
discontinuities there can be some y-values that are omitted by f . So the intermediate value
property would fail for some intervals of x’s.

§3.6/4 Comment: Many people had the correct idea on this one after talking to me in
office hours. However, in order to give a complete proof that

f(x) = sin(2π[x]x)

is not uniformly continuous on R, you have to supply more details than many people did.
Here is a complete argument.

Aiming for a contradiction, suppose f is uniformly continuous on R. Then for all ε > 0,
there exists δ > 0 such that |f(x)− f(x′)| < ε for all x, x′ with |x−x′| < δ. However, take
ε = 1. Assuming there is a δ > 0 that works here, we can find n ∈ N such that 1

4n
< δ.

Consider x = n and x′ = n + 1

4n
. Then

|x − x′| =
1

4n
< δ,
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but f(n) = sin(2πn2) = 0 and

f

(

n +
1

4n

)

= sin

(

2π

[

n +
1

4n

](

n +
1

4n

))

= sin

(

2πn

(

n +
1

4n

))

= sin
(

2πn2 +
π

2

)

= 1

Hence |f(x)− f(x′)| = 1, which is not less than ε = 1. This contradiction shows that f is
not uniformly continuous on R.

§4.1/11. Comment: Several people overlooked the fact that the statement to be proved is
an “if and only if” statement, so both implications must be shown.

⇒: Suppose h(x) is differentiable at c. Then the limit of the difference quotient of h:

h′(c) = lim
x→c

h(x) − h(c)

x − c

must exist. This is equivalent to saying the two one-sided limits

lim
x→c

−

h(x) − h(c)

x − c
, lim

x→c
+

h(x) − h(c)

x − c

exist and are equal. By the definition of h, though,

lim
x→c

−

h(x) − h(c)

x − c
= lim

x→c
−

f(x) − f(c)

x − c
,

and that limit exists and equals f ′(c) since we assume f is differentiable at c. Similarly,

lim
x→c

+

h(x) − h(c)

x − c
= lim

x→c
+

g(x)− g(c)

x − c
,

and that limit exists and equals g′(c) since we assume g is differentiable at c. It follows
that f ′(c) = g′(c).

⇐: Conversely, suppose f ′(c) = g′(c). Then taking the limits of the difference quotients
on only one side, we can say:

lim
x→c

−

f(x) − f(c)

x − c
= lim

x→c
+

g(x) − g(c)

x − c
.

Because of the way h is defined piecewise, the first limit here is the same as

lim
x→c

−

h(x) − h(c)

x − c
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and the second is

lim
x→c

+

h(x) − h(c)

x − c
.

This shows that the two one-sided limits

lim
x→c

−

h(x) − h(c)

x − c
, lim

x→c
+

h(x) − h(c)

x − c

exist and are equal. Therefore,

h′(c) = lim
x→c

h(x) − h(c)

x − c

must exist, so h is differentiable at c.
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