MATH 242 — Principles of Analysis
Selected Solutions for Problem Set 7, “B portion”
April 8, 2011

§3.5/15. A comment first: A fairly common idea that people tried to use in solutions for
(a) was this. Let 0 < ¢ < 1. Then 0 < ¢ < 1 as well. Since f(0) < 0 and f(1) > 1,
this means ¢? is between f(0) and f(1). So by the Intermediate Value Theorem there is
some g € [0,1] where f(zg) = ¢2. The problem with this is that the question asked you to
show that there is some ¢ where f(c) = c¢. The xy above will not usually equal c. (Indeed
that statement shows Ve € [0,1],3zg € [0,1] s.t. f(zg) = ¢%.) The correct way to apply
the IVT here is to apply it to a different function. We want to find ¢ where f(c) = ¢2, so

fle)—c*=0.

(a) Let g(z) = f(x)—x?. By Theorem 3.4.10, this is continuous on [0, 1] since f is assumed
to be continuous and z2 is continuous everywhere. Using the assumptions on f, we have

9(0) = f(0) =0 = f(0) <0
g(1) = f(1)=1>0

Hence since k = 0 is a value between ¢(0) and g(1), there is a ¢ € (0,1) where g(c) =
f(e) — ¢ = 0. This shows f(c) = %

(b) Let h(z) = f(z) — g(x). By Theorem 3.4.10, this is continuous on [0, 1] since f, g are
assumed to be continuous. Since f(0) <0, g(0) >0, f(1) > 1, and g(1) < 1, we have

h(0) = f(0) = ¢(0) <0

Hence since k = 0 is a value between h(0) and h(1), there is a ¢ € (0,1) where h(c) =
f(e) — g(c) = 0. This shows f(c) = g(c).

22. This is FALSE. The function

cos(m/x)

flz) =

T

on (0, 1] is one counterexample. Notice that at x,, = % we have

f(1/n) =ncos(nmw) = (—1)"n.

Since x, — 0 as n — oo, the interval (0, 1] contains points where f takes both positive
and negative values that are arbitrarily large in absolute value:

_(n ifniseven
f(1/n) = { —n if n is odd
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It follows that f has no maximum or minimum on (0, 1].

23. (a) This is FALSE. There are many non-continuous functions that have the “interme-
diate value property” (that is, for which the conclusion of the IVT holds). For example,
on [0, 1], the function
2 if0<z<1/2
f@*‘{m—1 if1/2<z<1

has a jump discontinuity at x = 1/2. But it takes every value between f(0) = 0 and
f(1) =1 at least once (most of them twice, in fact).

(b) This is FALSE. Here’s a counterexample, and an explanation: Let

_ fsin(1/x) ifz#0
ﬂw_{o(/> if £ =0

and consider the interval [a,b] = [—1,1]. First, f fails to be continuous at 0 because
lim, o f(z) does not exist. But f does have the “intermediate value property” on every
subinterval [c1,c2] C [—1,1]. We can see this as follows. First, if 0 # [c1, 2], then f
is actually continuous on [c1,cs] and the IVT applies. Next, if 0 € [c1, ¢2], then since f
oscillates more and more quickly as x — 0, f must take every value between —1 and 1
on that interval. This certainly implies that f takes every value between f(c1) and f(c2),
since those are also in the range [—1, 1].

Comment: A lot of people tried to construct a counterexample f by somehow using a pair
c1 and cq in the definition of f. That cannot work here because the property we want
is that f is not continuous, but for all a < ¢; < ¢ < b, the intermediate value property
holds for f on [c1,¢z]. For instance if you tried to make a counterexample with jump
discontinuities at particular ¢; and ¢y, then on closed subintervals straddling one of those
discontinuities there can be some y-values that are omitted by f. So the intermediate value
property would fail for some intervals of x’s.

§3.6/4 Comment: Many people had the correct idea on this one after talking to me in
office hours. However, in order to give a complete proof that

f(x) = sin(2n[z]z)

is not uniformly continuous on R, you have to supply more details than many people did.
Here is a complete argument.

Aiming for a contradiction, suppose f is uniformly continuous on R. Then for all € > 0,
there exists 6 > 0 such that |f(x) — f(2')| < € for all , 2’ with |z — 2’| < 6. However, take
¢ = 1. Assuming there is a § > 0 that works here, we can find n € N such that ﬁ < 9.
Consider x =n and 2’ =n + ﬁ. Then

1
—a'l=— <9



but f(n) = sin(27n?) = 0 and

(b)) )
(oo (s 1))

= sin (27m2 + E)
2
=1

Hence |f(z) — f(2")| = 1, which is not less than £ = 1. This contradiction shows that f is
not uniformly continuous on R.

§4.1/11. Comment: Several people overlooked the fact that the statement to be proved is
an “if and only if” statement, so both implications must be shown.

=: Suppose h(z) is differentiable at ¢. Then the limit of the difference quotient of h:

h'(c) = lim 7}1(%) — hle)

T—cC Tr —cC

must exist. This is equivalent to saying the two one-sided limits

b M@ =) () = R
T—c— r —cC r—ct r —cC
exist and are equal. By the definition of h, though,
o M@ =R L @) = (o)
r—c~ r —cC r—c~ r —cC

and that limit exists and equals f’(c) since we assume f is differentiable at ¢. Similarly,
h(z) —h —
. M@ =B _ @) = gle)
r—ct r—=cC r—ct Tr—cC
and that limit exists and equals ¢’(c) since we assume g is differentiable at c¢. It follows

that f'(c) = ¢'(c).

«: Conversely, suppose f'(¢) = ¢’(c). Then taking the limits of the difference quotients
on only one side, we can say:

o J@ = £O g —g(0)
T—c™ Tr—C r—ct Tr—cC
Because of the way h is defined piecewise, the first limit here is the same as
L h() — (o)

r—c— r —cC
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and the second is " "
iy @) = hle)

r—ct Tr—cC

This shows that the two one-sided limits

i M@ =R h@) = A
T—c— r —cC r—ct r —cC
exist and are equal. Therefore,
h'(c) = lim hiz) = hle)

r—cC Tr — C

must exist, so h is differentiable at c.



