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§2.3/15. The idea of this problem is to show that if we assume that every bounded
monotone sequence converges, then it follows that every nonempty set A that is bounded
above has a least upper bound. (In other words, we will show that the statement of the
Completeness Axiom follows from the Monotone Convergence Theorem. We proved the
opposite implication in class, and both of these statements are also equivalent to the Nested
Interval Theorem(!)) So we start with a set A ⊂ R that is bounded above. We construct
two sequences xn and yn as described in the problem. We take x1 ∈ A an arbitrary element
and we let y1 in R be any upper bound for A. Then assuming xn and yn have already
been constructed, let zn = xn+yn

2
and consider two possible cases for determining xn+1

and yn+1:

• Case 1: If zn is an upper bound for A, then we let xn+1 = xn and yn+1 = zn.
• Case 2: If, on the other hand zn is not an upper bound for A, then there exists some

a′ ∈ A with a′ > zn, so we let xn+1 = a′ and yn+1 = yn.

We note the following:

• By construction, xn ∈ A for all n and yn is an upper bound of A for all n.
• The sequence {xn} is monotone increasing and bounded above by y1 since all xn ∈ A.
• The sequence {yn} is monotone decreasing and bounded below by any xm.

(a) It follows now that {xn} and {yn} are both convergent sequences, since our hypothesis
is that every bounded monotone sequence in R converges.

(b) Since zn is the midpoint of the line segment from xn to yn for each n, we note that for
all n ≥ 1,

yn+1 − xn+1 ≤
1

2
(yn − xn).

(We have equality in Case 1 and the strict inequality in Case 2 as above.) If we “unwind”
this back to the beginning of the construction, we see

yn+1 − xn+1 ≤
1

2
(yn − xn)

≤
1

22
(yn−1 − xn−1)

...

≤
1

2n
(y1 − x1).

Hence if we let n → ∞, we see that

lim
n→∞

(yn − xn) = 0,
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since 1

2n → 0 as n → ∞. That implies

lim
n→∞

yn = lim
n→∞

xn

by part (a) and Theorem 2.2.5a.

(c) Call the limit of {xn} and {yn} α ∈ R. We want to show that α satisfies the properties
of the least upper bound of A. First, since every yn is an upper bound for A, we have
x ≤ yn for all x ∈ A and all n. It follows from Theorem 2.2.7 that x ≤ α for all x ∈ A.
Hence α is an upper bound for A. On the other hand, if ε > 0, then since xn → α, there
exist n0 ∈ N such that α − ε < xn ≤ α for all n ≥ n0. Since the xn ∈ A for all n, this
implies that α − ε is not an upper bound for A. It follows that α = lub(A).

§2.5/12. Both parts of this are TRUE. For part (a) suppose that we have an sequence of
positive numbers {xn} with xn → 0 as n → ∞. Then we want to show how to produce
a strictly decreasing subsequence. We can take xn1

= x1 to start. Now suppose we have
found

xn1
> · · · > xnk

.

Letting ε = xnk
in the definition of convergence we see that there exists some N0 such

that |xn − 0| = xn < ε = xnk
for all n ≥ N0. Letting nk+1 be any one such integer that is

also > nk we get xnk+1
satisfying

xn1
> · · · > xnk

> xnk+1
.

By induction, this shows there exists a strictly decreasing subsequence.
Now for (b), if infinitely many xn > 0, then we can apply the same reasoning as in

(a) to get a strictly decreasing subsequence chosen from the positive terms in the whole
sequence. If there are not infinitely many xn > 0, then there must be infinitely many
xn < 0 and we can repeat essentially the same argument above with the negative terms.
We can let n1 be any index such that xn1

< 0. Then assuming we have found

xn1
< · · · < xnk

,

let ε = |xnk
| in the definition of convergence. we see that there exists some N0 such that

|xn − 0| = |xn| < ε = |xnk
| for all n ≥ N0. Letting nk+1 be any one such integer that is

also > nk and such that xnk+1
< 0, we get xnk+1

satisfying |xnk+1
| < |xnk

|, which implies
xnk+1

> xnk
(since both are negative). Hence

xn1
< · · · < xnk

< xnk+1
.

By induction, this shows there exists a strictly increasing subsequence.

13. We suppose that {xn} is a bounded sequence with the property that every convergent
subsequence converges to the same limit a. Aiming for a contradiction, suppose xn 6→ a.

2



This is equivalent to saying there exists some ε0 > 0 such that for all n0 ∈ N, |xn−a| ≥ ε0

for some n ≥ n0.
Let ε0 > 0 be any fixed number for which it is true that

(*) for all n0 ∈ N, |xn − a| ≥ ε0 for some n ≥ n0.

We claim that there is a subsequence {xnk
} with the property that |xnk

− a| ≥ ε0

for all k ∈ N. To see this, we apply (*) above with n0 = 1, and we get a first term
xn1

for n1 ≥ 1 satisfying |xn1
− a| ≥ ε0. Then assuming that xn1

, . . . , xnk
have been

constructed, apply the statement (*) above with n0 = nk + 1. We get nk+1 ≥ nk + 1 such
that |xnk+1

−a| ≥ ε0. Continuing in the same way (i.e. by induction) this shows our claim.
It is clear that the subsequence {xn} constructed here cannot converge to a since all the

terms are uniformly bounded away from a. Moreover, no subsequence of this subsequence
can converge to a either, for the same reason.

However, since the original sequence was bounded, this subsequence is bounded too.
Hence the Bolzano-Weierstrass theorem applies and shows that there must be a convergent
subsequence of the {xnk

}. That convergent subsequence is also a subsequence of the
original {xn}. Hence the assumption implies it must converge to a. This contradicts what
we said in the last paragraph.

Hence xn must converge to a. (Wow!)
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