
Mathematics 242 – Principles of Analysis
Solutions for Midterm Exam 3

May 6, 2011
I. Both parts of this question refer to the function f : R → R defined by f(x) =

x2 − 6x + 3.

A) (20) Consider the regular partitions Pn of the interval [0, 2] and show directly, using
the upper and lower sums, that f is integrable on [0, 2].

Solution: Note that f is decreasing on [0, 2] since f ′(x) = 2x − 6 < 0 for all x with
0 ≤ x ≤ 2. The partition is

Pn = {0, 2/n, 4/n, . . . , 2},

with xi = 2i/n for i = 0, 1, . . . , n. Hence, since f is smallest at the right endpoint in
each subinterval,
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Similarly, f is largest at the left endpoint in each subinterval, so
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Therefore, for any given ε > 0, if n > 16/ε,
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This shows that f is integrable.

B) (15) Explain why the hypothesis of the Mean Value Theorem is satisfied for f on the
interval [1, 5] and find the number c mentioned in the conclusion.
Solution: f is a polynomial function, so it is differentiable, hence continuous every-
where. On the interval [1, 5], f(5)− f(1) = −2− (−2) = 0. The MVT says that there
is some c ∈ (1, 5) where f ′(c) = 0 · (5 − 1) = 0. Since f ′(c) = 2c − 6 = 0, this is true
for c = 3.

II. (15) For which a ≥ 0 is

f(x) =
{

xa sin(1/x) if x 6= 0
0 if x = 0

f continuous at x = 0? For which a ≥ 0 is f differentiable at x = 0?

Solution: Note that this function is not defined for x < 0 for some a. Hence in the limits
below, we will consider the case x → 0+ only. When x → 0− also makes sense, the limits
will be the same. For continuity at x = 0, we must have limx→0+ xa sin(1/x) = f(0) = 0.
This will be true by the squeeze theorem for limits as long as a > 0:

xa · (−1) ≤ xa sin(1/x) ≤ xa · 1

for all x > 0. Hence since limx→0+ xa = 0 if a > 0,

lim
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This is not true with a = 0 since then the limit does not exist. For differentiability at
x = 0, the limit
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must exist. This will be true (and the limit will equal zero) as long as a > 1 (squeeze
theorem again).

III. (20) Show that if f is monotone increasing on [a, b], then f is integrable on [a, b].

Solution: If f is monotone increasing on [a, b] and P = {a = x0 < x1 < · · · < xn−1 < xn =
b} is a regular partition, then
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This is a telescoping sum, which cancels to

(f(b)− f(a))(b− a)

n
.

Given ε > 0, this difference will be < ε as soon as n > (f(b)−f(a))(b−a)
ε

. Therefore f is
integrable on [a, b].

IV. True-False. Say whether each of the following statements is true or false. For true
statements, give short proofs; for false ones give reasons or counterexamples. Do any three

parts. If you submit solutions for all four, then I will consider the other one for Extra
Credit.

A) (10) Let f(x) = ex − e2x. There exists some c ∈ (0, ln(3)) such that f(c) = −2.

Solution: The statement is TRUE. We apply the IVT. First, f is continuous every-
where since the exponentials ex and e2x are differentiable everywhere. On the interval
[0, ln(3)], we have f(0) = 1 − 1 = 0 and f(ln(3)) = 3 − 9 = −6. Since −2 is in the
range between the endpoint values, the (“weak form” of) the IVT implies that there
exists c ∈ (0, ln(3)) such that f(c) = −2.

B) (10) If f is differentiable on (a, b) and there exists a real number B ≥ 0 such that
|f ′(x)| < B for all x ∈ (a, b), then f is uniformly continuous on (a, b).

Solution: This is TRUE. We apply the MVT to f on the interval [x, x′] where a <
x < x′ < b are arbitary. Then there exists a c ∈ (x, x′) such that f(x) − f(x′) =
f ′(c)(x − x′). Taking absolute values, this implies

|f(x)− f(x′)| = |f ′(c)||x − x′| ≤ B|x − x′|.

Given any ε > 0, let δ = ε/B. Then |x−x′| < ε/B implies |f(x)−f(x′)| < B ·ε/B = ε.
This shows uniform continuity of f on (a, b).

C) (10) If A ⊂ R is uncountably infinite, then A contains some nonempty interval (a, b).

Solution: This is FALSE. The Cantor set C is a counterexample. The “quick and
dirty” approach for giving a reason is to recall that C is obtained by removing a
collection of open intervals with total length equal to 1 from the interval [0, 1]. Hence
what is left cannot contain a nonempty open interval (a, b). If so, then C would
contain an interval of length b − a > 0. But that cannot be true since it would say C
and its complement C′ could not fit together inside [0, 1].

Here is a sketch of a better proof as well. Recall that we showed the Cantor set
was uncountably infinite in class using the base-3 description of the elements of the
Cantor set – they are all the numbers in [0, 1] that have base-3 expansions using only
the digits 0, 2. So the elements of the Cantor set are in correspondence with binary
expansions of numbers in [0, 1], which we know is uncountably infinite by the Cantor
diagonal argument. On the other hand, C cannot contain any interval. To see this,



note that if c ∈ C and ε > 0, there will always be elements of the complement of the
Cantor set in (c − ε, c + ε) – just go “far enough out” in the base three expansion
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and change some of the digits. Namely, let n0 be sufficiently large that that the sum

∞
∑

n=n0

2

3n
=

1

3n0−1
< ε.

If we change a base-3 digit an in the expansion of c for some n ≥ n0 from a 0 or 2 to a
1, keeping at least one an = 2 to the right of that 1 so that the number will not be one
of those in which the 1 can be replaced by an alternate expansion with a repeating 2
tail, we get a new number c′. The resulting number c′ will satisfy
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But it will be in the complement of C because of the digit equal to 1.

D) Let f be continuous on [a, b] and assume f(x) > 0 for all x ∈ [a, b]. Then there exists
a constant k > 0 such that f(x) ≥ k > 0 for all x ∈ [a, b].

Solution: This is TRUE. By the Extreme Value Theorem, if k = glb{f(x) | x ∈ [a, b]},
then there exists a c ∈ [a, b] such that f(c) = k. But then by assumption k > 0 and
f(x) ≥ k for all x ∈ [a, b].


