Mathematics 242 - Principles of Analysis

Solutions for Midterm Exam 3
May 6, 2011
I. Both parts of this question refer to the function $f: \mathbf{R} \rightarrow \mathbf{R}$ defined by $f(x)=$ $x^{2}-6 x+3$.
A) (20) Consider the regular partitions \mathcal{P}_{n} of the interval [0,2] and show directly, using the upper and lower sums, that f is integrable on $[0,2]$.

Solution: Note that f is decreasing on $[0,2]$ since $f^{\prime}(x)=2 x-6<0$ for all x with $0 \leq x \leq 2$. The partition is

$$
\mathcal{P}_{n}=\{0,2 / n, 4 / n, \ldots, 2\}
$$

with $x_{i}=2 i / n$ for $i=0,1, \ldots, n$. Hence, since f is smallest at the right endpoint in each subinterval,

$$
\begin{aligned}
L_{\mathcal{P}_{n}}(f) & =\sum_{i=1}^{n}\left((2 i / n)^{2}-6 \cdot(2 i / n)+3\right) \frac{2}{n} \\
& =\frac{8}{n^{3}} \sum_{i=1}^{n} i^{2}-\frac{24}{n^{2}} \sum_{i=1}^{n} i+\frac{6}{n} \sum_{i=1}^{n} 1 \\
& =\frac{8}{n^{3}} \cdot \frac{n(n+1)(2 n+1)}{6}-\frac{24}{n^{2}} \cdot \frac{n(n+1)}{2}+6 \\
& =\frac{4}{3}+\frac{4}{n}+\frac{4}{3 n^{2}}-12-\frac{12}{n}+6 \\
& =\frac{-10}{3}-\frac{8}{n}+\frac{4}{3 n^{2}}
\end{aligned}
$$

Similarly, f is largest at the left endpoint in each subinterval, so

$$
\begin{aligned}
U_{\mathcal{P}_{n}}(f) & =\sum_{i=1}^{n}\left((2(i-1) / n)^{2}-6 \cdot(2(i-1) / n)+3\right) \frac{2}{n} \\
& =\frac{8}{n^{3}} \sum_{i=1}^{n-1} i^{2}-\frac{24}{n^{2}} \sum_{i=1}^{n-1} i+\frac{6}{n} \sum_{i=1}^{n} 1 \\
& =\frac{8}{n^{3}} \cdot \frac{(n-1) n(2 n-1)}{6}-\frac{24}{n^{2}} \cdot \frac{(n-1) n}{2}+6 \\
& =\frac{8}{3}-\frac{4}{n}+\frac{4}{3 n^{2}}-12+\frac{12}{n}+6 \\
& =\frac{-10}{3}+\frac{8}{n}+\frac{4}{3 n^{2}}
\end{aligned}
$$

Therefore, for any given $\varepsilon>0$, if $n>16 / \varepsilon$,

$$
U_{\mathcal{P}_{n}}(f)-L_{\mathcal{P}_{n}}(f)=\frac{16}{n}<\varepsilon .
$$

This shows that f is integrable.
B) (15) Explain why the hypothesis of the Mean Value Theorem is satisfied for f on the interval $[1,5]$ and find the number c mentioned in the conclusion.
Solution: f is a polynomial function, so it is differentiable, hence continuous everywhere. On the interval $[1,5], f(5)-f(1)=-2-(-2)=0$. The MVT says that there is some $c \in(1,5)$ where $f^{\prime}(c)=0 \cdot(5-1)=0$. Since $f^{\prime}(c)=2 c-6=0$, this is true for $c=3$.
II. (15) For which $a \geq 0$ is

$$
f(x)= \begin{cases}x^{a} \sin (1 / x) & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}
$$

f continuous at $x=0$? For which $a \geq 0$ is f differentiable at $x=0$?
Solution: Note that this function is not defined for $x<0$ for some a. Hence in the limits below, we will consider the case $x \rightarrow 0^{+}$only. When $x \rightarrow 0^{-}$also makes sense, the limits will be the same. For continuity at $x=0$, we must have $\lim _{x \rightarrow 0^{+}} x^{a} \sin (1 / x)=f(0)=0$. This will be true by the squeeze theorem for limits as long as $a>0$:

$$
x^{a} \cdot(-1) \leq x^{a} \sin (1 / x) \leq x^{a} \cdot 1
$$

for all $x>0$. Hence since $\lim _{x \rightarrow 0^{+}} x^{a}=0$ if $a>0$,

$$
\lim _{x \rightarrow 0^{+}} x^{a} \sin (1 / x)=0=f(0) .
$$

This is not true with $a=0$ since then the limit does not exist. For differentiability at $x=0$, the limit

$$
\lim _{x \rightarrow 0^{+}} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0^{+}} x^{a-1} \sin (1 / x)
$$

must exist. This will be true (and the limit will equal zero) as long as $a>1$ (squeeze theorem again).
III. (20) Show that if f is monotone increasing on $[a, b]$, then f is integrable on $[a, b]$.

Solution: If f is monotone increasing on $[a, b]$ and $\mathcal{P}=\left\{a=x_{0}<x_{1}<\cdots<x_{n-1}<x_{n}=\right.$ $b\}$ is a regular partition, then

$$
U_{\mathcal{P}}(f)-L_{\mathcal{P}}(f)=\sum_{i=1} f\left(x_{i}\right) \frac{b-a}{n}-\sum_{i=0}^{n-1} f\left(x_{i}\right) \frac{b-a}{n} .
$$

This is a telescoping sum, which cancels to

$$
\frac{(f(b)-f(a))(b-a)}{n} .
$$

Given $\varepsilon>0$, this difference will be $<\varepsilon$ as soon as $n>\frac{(f(b)-f(a))(b-a)}{\varepsilon}$. Therefore f is integrable on $[a, b]$.
IV. True-False. Say whether each of the following statements is true or false. For true statements, give short proofs; for false ones give reasons or counterexamples. Do any three parts. If you submit solutions for all four, then I will consider the other one for Extra Credit.
A) (10) Let $f(x)=e^{x}-e^{2 x}$. There exists some $c \in(0, \ln (3))$ such that $f(c)=-2$.

Solution: The statement is TRUE. We apply the IVT. First, f is continuous everywhere since the exponentials e^{x} and $e^{2 x}$ are differentiable everywhere. On the interval $[0, \ln (3)]$, we have $f(0)=1-1=0$ and $f(\ln (3))=3-9=-6$. Since -2 is in the range between the endpoint values, the ("weak form" of) the IVT implies that there exists $c \in(0, \ln (3))$ such that $f(c)=-2$.
B) (10) If f is differentiable on (a, b) and there exists a real number $B \geq 0$ such that $\left|f^{\prime}(x)\right|<B$ for all $x \in(a, b)$, then f is uniformly continuous on (a, b).

Solution: This is TRUE. We apply the MVT to f on the interval $\left[x, x^{\prime}\right]$ where $a<$ $x<x^{\prime}<b$ are arbitary. Then there exists a $c \in\left(x, x^{\prime}\right)$ such that $f(x)-f\left(x^{\prime}\right)=$ $f^{\prime}(c)\left(x-x^{\prime}\right)$. Taking absolute values, this implies

$$
\left|f(x)-f\left(x^{\prime}\right)\right|=\left|f^{\prime}(c)\right|\left|x-x^{\prime}\right| \leq B\left|x-x^{\prime}\right| .
$$

Given any $\varepsilon>0$, let $\delta=\varepsilon / B$. Then $\left|x-x^{\prime}\right|<\varepsilon / B$ implies $\left|f(x)-f\left(x^{\prime}\right)\right|<B \cdot \varepsilon / B=\varepsilon$. This shows uniform continuity of f on (a, b).
C) (10) If $A \subset \mathbf{R}$ is uncountably infinite, then A contains some nonempty interval (a, b).

Solution: This is FALSE. The Cantor set C is a counterexample. The "quick and dirty" approach for giving a reason is to recall that C is obtained by removing a collection of open intervals with total length equal to 1 from the interval $[0,1]$. Hence what is left cannot contain a nonempty open interval (a, b). If so, then C would contain an interval of length $b-a>0$. But that cannot be true since it would say C and its complement C^{\prime} could not fit together inside $[0,1]$.

Here is a sketch of a better proof as well. Recall that we showed the Cantor set was uncountably infinite in class using the base-3 description of the elements of the Cantor set - they are all the numbers in $[0,1]$ that have base- 3 expansions using only the digits 0,2 . So the elements of the Cantor set are in correspondence with binary expansions of numbers in $[0,1]$, which we know is uncountably infinite by the Cantor diagonal argument. On the other hand, C cannot contain any interval. To see this,
note that if $c \in C$ and $\varepsilon>0$, there will always be elements of the complement of the Cantor set in $(c-\varepsilon, c+\varepsilon)$ - just go "far enough out" in the base three expansion

$$
c=\sum_{n=1}^{\infty} \frac{a_{n}}{3^{n}}
$$

and change some of the digits. Namely, let n_{0} be sufficiently large that that the sum

$$
\sum_{n=n_{0}}^{\infty} \frac{2}{3^{n}}=\frac{1}{3^{n_{0}-1}}<\varepsilon
$$

If we change a base- 3 digit a_{n} in the expansion of c for some $n \geq n_{0}$ from a 0 or 2 to a 1 , keeping at least one $a_{n}=2$ to the right of that 1 so that the number will not be one of those in which the 1 can be replaced by an alternate expansion with a repeating 2 tail, we get a new number c^{\prime}. The resulting number c^{\prime} will satisfy

$$
\left|c-c^{\prime}\right|<\sum_{n=n_{0}}^{\infty} \frac{2}{3^{n}}<\varepsilon
$$

But it will be in the complement of C because of the digit equal to 1 .
D) Let f be continuous on $[a, b]$ and assume $f(x)>0$ for all $x \in[a, b]$. Then there exists a constant $k>0$ such that $f(x) \geq k>0$ for all $x \in[a, b]$.
Solution: This is TRUE. By the Extreme Value Theorem, if $k=\operatorname{glb}\{f(x) \mid x \in[a, b]\}$, then there exists a $c \in[a, b]$ such that $f(c)=k$. But then by assumption $k>0$ and $f(x) \geq k$ for all $x \in[a, b]$.

