
MATH 242 – Principles of Analysis
Solutions for Exam 2 – April 1, 2011

I.
A) (20) State and prove the Monotone Convergence Theorem for sequences. (You may

give the proof in the case that the sequence is monotone increasing.)

Solution: The Theorem says that every bounded monotone sequence in R converges
to some real number a. If {xn} is monotone increasing, let a = lub({xn | n ≥ 1}).
then for all ε > 0, a − ε is not an upper bound for {xn | n ≥ 1}. Hence there exists
some n0 such that a − ε < xn0

≤ a. Since the sequence is monotone increasing, for
all n ≥ n0, we have a − ε < xn0

≤ xn ≤ a. But this implies that |xn − a| < ε for all
n ≥ n0. Hence xn → a.

B) (10) Suppose that xn is a sequence of strictly negative numbers and xn+1/xn ≤ 1 for
all n ≥ 1. Show that limn→∞ xn = a exists in R and satisfies a ≤ 0.

Solution: Since the xn < 0, from the inequality xn+1/xn ≤ 1, we get xn+1 ≥ xn for
all n ≥ 1. (The inequality reverses when we multiply by the negative number xn.)
This implies the sequence is monotone increasing. Since it is also bounded above by
0, part (A) shows that xn → a for some a ≤ 0.

II. (20) Suppose {xn} is a sequence such that |xn − 10| < 100 for all n ≥ 1. Show that
there exists some number a ∈ [−90, 110] and a subsequence {xnk

} such that xnk
→ a.

State any “big theorems” you are using.

Solution: Since |xn − 10| < 100 for all n, it follows that −100 < xn − 10 < 100, so
−90 < xn < 110. Hence |xn| ≤ 110 for all n, so this is a bounded sequence. By the
Bolzano-Weierstrass theorem, there must be a convergent subsequence xnk

→ a for
some a ∈ R. The limit must also lie in the interval [−90, 110] because of the “order
limit theorem” (Corollary 2.2.8 in our text). This result says: If a ≤ xn ≤ b for all n,
and xn → c, then a ≤ c ≤ b also.

III. (20) Show using the ε, δ definition that limx→2 x2 − x = 2.

Solution: (“prep”: |x2 − x − 2| = |x − 2||x + 1|. If |x − 2| < 1, then 1 < x < 3, so
|x + 1| satisfies 2 < |x + 1| < 4.)

proof: Given ε > 0, let δ = min
(

1, ε

4

)

. Then for all x with 0 < |x− 2| < δ, 1 < x < 3,
so |x + 1| < 4. Therefore, for all such x,

|x2 − x − 2| = |x − 2||x + 1| <
ε

4
· 4 = ε.

This shows limx→2 x2 − x = 2.//



IV. True/False. For each true statement, give a short proof. For each false statement, give
a counterexample or reason.

A) (10) If {xn} diverges, then for all a ∈ R, there exist ε0 > 0 and n0 ∈ N such that
|xn − a| ≥ ε0 for all n ≥ n0.

Solution 1: This is FALSE. A counterexample is the sequence xn = (−1)n. If a = 1
(or a = −1), note there is no n0 and no ε0 > 0 such that |xn − a| ≥ ε0 for all n ≥ n0

because |(−1)n − 1| = 0 for all even n. (Similarly, |(−1)n + 1| = 0 for all odd n.)

Solution 2: We can also see that this is FALSE if we think of the meaning of the
statement: For all a ∈ R, xn 6→ a (that is, xn does not converge to a.). In symbolic
form, by negating the definition of the statement xn → a, this says

∀a, ∃ε0 > 0, ∀n0, ∃n ≥ n0, s.t. |xn − a| ≥ ε0.

(Note: the quantifier on the n is ∃, not ∀. The given statement would certainly imply
that the sequence does not converge to a, but it is not necessarily true for divergent
sequences, as the example in the first solution shows.)

B) (10) It is possible to find a function f : R → R that is continuous at c =
√

2, with
f(
√

2) = 0, but satisfying f(x) = 1 for all rational x.

Solution 1: This is FALSE. If {xn} is any sequence of rational numbers with xn →
√

2,
then by a standard property of continuous functions, f(xn) → f(

√
2). But f(xn) = 1

for all n, and f(
√

2) = 0. So this is not possible.

Solution 2: We can also see that this is FALSE if we apply the definition of continuity
directly. Aiming for a contradiction, suppose there were such a function. Then for all
ε > 0, there would exist δ > 0 such that |f(x)−f(

√
2)| < ε for all x with |x−

√
2| < δ.

If f(
√

2) = 0 and we take ε < 1, then the interval defined by |y − 0| < ε does not
contain 1. But every interval defined by |x −

√
2| < δ for δ > 0 contains rational

numbers x and for those x, f(x) = 1. This is a contradiction which shows no such f
exist.

C) (10) The sequence defined by x1 = 1 and xn =
√

3xn−1 + 1 for n ≥ 2 is monotone
increasing.

Solution: This is TRUE. We have x1 = 1 and x2 =
√

4 = 2. so x2 > x1. This is the
base case for an induction. Assume xk+1 ≥ xk for a given k. Then by the induction
hypothesis,

xk+2 =
√

3xk+1 + 1 ≥
√

3xk + 1 = xk+1.

Therefore {xn} is increasing by induction.

Extra Credit. (10) Assume that {xn} is a sequence that converges to a. Construct a new
sequence {yn} by making yn the average of the first n terms in {xn}: yn = x1+x2+···+xn

n
.

Show that yn also converges to a.



Solution: Here’s the idea. By the triangle inequality, note that

|yn − a| =

∣

∣

∣

∣

x1 + x2 + · · · + xn

n
− a

∣

∣

∣

∣

=
1

n
|x1 + x2 + · · ·+ xn − na|

≤ 1

n
(|x1 − a| + · · ·+ |xn − a|) .

Since {xn} converges to a, recall that we know the sequence is bounded. This implies
that there exists M such that |xn − a| ≤ M for all n as well. Now, given ε > 0, there
exists N such that |xn − a| < ε/2 for all n ≥ N . So if n ≥ N , continuing from the
last line above,

≤ 1

n
(|x1 − a| + · · ·+ |xN−1 − a|) +

n − N + 1

n

ε

2

<
NM

n
+

ε

2
.

Since we can think of the N that works here as fixed, but n is still allowed to grow, note
that we can now find n large enough so that NM

n
< ε

2
as well by taking n > 2NM

ε
.

In other words, given ε > 0, we take n0 = max(N, 2NM

ε
). Then n ≥ n0 implies

|yn − a| < ε.


