Mathematics 242 – Principles of Analysis Solutions for Exam 1 – February 25, 2011

- I.
- A) State the Axiom of Completeness for the real number system.

Solution: Every nonempty set of real numbers that is bounded above has a least upper bound. (This is an axiom – we take it as an unproved assertion describing properties of the real number system.)

B) Prove that if A and B are bounded sets of real numbers with lub(A) < lub(B), then there exists a single $y \in B$ satisfying y > x for all $x \in A$.

Solution: Since lub(A) < lub(B), lub(A) is not an upper bound for B. Hence there exists at least one $y_0 \in B$ such that $lub(A) < y_0 \leq lub(B)$. (The subscript is one way mathematicians often indicate that they are referring to one particular element of a set.) But then, by definition, every $x \in A$ satisfies $x \leq lub(A)$. So $x < y_0$ for all $x \in A$.

C) Let $A = \bigcap_{n=1}^{\infty} \left(\frac{-1}{2n}, 1 + \frac{1}{2n}\right)$. Explain why A is bounded below and determine glb(A).

Solution: It is certainly true that $\frac{-1}{2}$ is a lower bound for A. But in fact, given any $\varepsilon > 0$, there exist $n \in \mathbf{N}$ such that $\frac{1}{2n} < \varepsilon$, and hence $\frac{-1}{2n} > -\varepsilon$. We can see that A = [0, 1], so glb(A) = 0.

II.

A) Prove that every interval (a, b) with 0 < a < b contains a rational number $\frac{m}{n}$.

Solution: Since **N** is not bounded, there exists $n \in \mathbf{N}$ such that $n > \frac{1}{b-a}$, or equivalently $\frac{1}{n} < b - a$. Pick any one such n and fix it. For that fixed n, let $M = \{m \in \mathbf{N} \mid m > na\}$. This set is not empty (again since **N** is not bounded). So by the Well Ordering Property, it contains a smallest element. Call that m_0 . Now $m_0 > na$, so $\frac{m_0}{n} > a$. On the other hand, $m_0 - 1 \neq M$, so $m_0 - 1 \leq na$. This implies $\frac{m_0}{n} \leq a + \frac{1}{n} < a + b - a = b$. Combining these last facts shows that the rational number $\frac{m_0}{n} \in (a, b)$.

B) Use part A to show that every interval (a, b) with a < b < 0 contains a rational number $\frac{m}{n}$.

Solution: If a < b < 0, then 0 < (-b) < (-a). By part A, there is a rational number $\frac{-m}{n}$ satisfying $(-b) < \frac{-m}{n} < (-a)$. But then, multiplying these inequalities by -1, $a < \frac{m}{n} < b$. Since $\frac{m}{n}$ is also rational, we are done.

III. Let $f : \mathbf{N} \to \mathbf{R}$ be defined by f(1) = 2 and $f(n+1) = \frac{2f(n)-1}{3}$ for all $n \ge 1$. Using mathematical induction, show that f(n) > -1 for all $n \ge 1$.

Solution: The base case is n = 1. By definition, f(1) = 2 > -1. Now assume as the induction hypothesis that f(k) > -1, and consider $f(k+1) = \frac{2f(k)-1}{3}$. Then the properties of order imply

$$2f(k) > -2$$
 hence $2f(k) - 1 > -3$ hence $f(k+1) = \frac{2f(k) - 1}{3} > -1$,

which is what we wanted to show. By the principle of mathematical induction, f(n) > -1 for all $n \ge 1$.

IV. True-False. For each true statement give a short proof or reason; for each false statement give a counterexample.

A) If A and B are sets of real numbers with the property that a > b for all $a \in A$ and all $b \in B$, then glb(A) > lub(B).

Solution: This is FALSE. A counterexample – let $B = (-\infty, 0)$ and $A = (0, \infty)$ in **R**. Then a > b for all $a \in A$ and all $b \in B$. But glb(A) = 0 = lub(B).

B) (10) For all $n \ge 1$, $\sum_{k=0}^{n} {n \choose k} \frac{1}{2^k} = \frac{3^n}{2^n}$.

Solution: This is TRUE. By the binomial theorem,

$$\sum_{k=0}^{n} \binom{n}{k} x^{k} y^{n-k} = (x+y)^{n}$$

for all real numbers x, y. We get the desired equality by making $x = \frac{1}{2}$, y = 1.

C) (10) The smallest c such that $\{x \in \mathbf{R} \mid |x+1| + |x+10| = c\}$ is not empty is c = 11. Solution: This is FALSE. |x+1| + |x+10| represents the sum of the distance from x to -1 and the distance from x to -10 along the number line. For any x with $-10 \le x \le -1$, the sum of these distances will be 9 < 11.

Extra Credit (10) Caution: this problem may be "habit forming." Only attempt after finishing the rest of the exam! Can you find a 1-1, onto function $f : \mathbf{R} \to (-1, 1]$? If so, describe one by giving a formula or a graph. If there is no such function, prove it.

Solution: There is such a function. We can construct one as follows: First take any strictly increasing onto function $f: \mathbf{R} \to (-1, 1)$ such as $f(x) = \frac{2}{\pi} \arctan(x)$. This "misses" 1, of course, so we have to modify f to get 1 in the range. If we define a new function g with g(1) = 1, but g(x) = f(x) for all $x \neq 1$, then we have missed $f(1) = \frac{1}{2}$ in the range of f.

But we can make $g(2) = f(1) = \frac{1}{2}$, then g(3) = f(2), etc. to get a function that is still 1-1 and onto:

$$\begin{cases} g(x) = f(x) = \frac{2}{\pi} \arctan(x) & \text{if } x \notin \mathbf{N} \\ g(1) = 1 & \\ g(n) = f(n-1) & \text{if } n \ge 2 \in \mathbf{N}. \end{cases}$$

(This is a mathematical version of the "Hilbert Hotel" with rooms numbered by $n \in \mathbf{N}$ – there's always room for one more guest if we shift everyone else down one room!)