
Mathematics 242 – Principles of Analysis
Solutions for Exam 1 – February 25, 2011

I.
A) State the Axiom of Completeness for the real number system.

Solution: Every nonempty set of real numbers that is bounded above has a least upper
bound. (This is an axiom – we take it as an unproved assertion describing properties
of the real number system.)

B) Prove that if A and B are bounded sets of real numbers with lub(A) < lub(B), then
there exists a single y ∈ B satisfying y > x for all x ∈ A.

Solution: Since lub(A) < lub(B), lub(A) is not an upper bound for B. Hence there
exists at least one y0 ∈ B such that lub(A) < y0 ≤ lub(B). (The subscript is one
way mathematicians often indicate that they are referring to one particular element
of a set.) But then, by definition, every x ∈ A satisfies x ≤ lub(A). So x < y0 for all
x ∈ A.

C) Let A = ∩∞

n=1

(

−1
2n

, 1 + 1
2n

)

. Explain why A is bounded below and determine glb(A).

Solution: It is certainly true that −1
2 is a lower bound for A. But in fact, given any

ε > 0, there exist n ∈ N such that 1
2n

< ε, and hence −1
2n

> −ε. We can see that
A = [0, 1], so glb(A) = 0.

II.
A) Prove that every interval (a, b) with 0 < a < b contains a rational number m

n
.

Solution: Since N is not bounded, there exists n ∈ N such that n > 1
b−a

, or

equivalently 1
n

< b − a. Pick any one such n and fix it. For that fixed n, let
M = {m ∈ N | m > na}. This set is not empty (again since N is not bounded).
So by the Well Ordering Property, it contains a smallest element. Call that m0. Now
m0 > na, so m0

n
> a. On the other hand, m0 − 1 6= M , so m0 − 1 ≤ na. This implies

m0

n
≤ a + 1

n
< a + b − a = b. Combining these last facts shows that the rational

number m0

n
∈ (a, b).

B) Use part A to show that every interval (a, b) with a < b < 0 contains a rational
number m

n
.

Solution: If a < b < 0, then 0 < (−b) < (−a). By part A, there is a rational number
−m
n

satisfying (−b) < −m
n

< (−a). But then, multiplying these inequalities by −1,
a < m

n
< b. Since m

n
is also rational, we are done.

III. Let f : N → R be defined by f(1) = 2 and f(n + 1) = 2f(n)−1
3

for all n ≥ 1. Using
mathematical induction, show that f(n) > −1 for all n ≥ 1.
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Solution: The base case is n = 1. By definition, f(1) = 2 > −1. Now assume as

the induction hypothesis that f(k) > −1, and consider f(k + 1) = 2f(k)−1
3 . Then the

properties of order imply

2f(k) > −2

hence 2f(k)− 1 > −3

hence f(k + 1) =
2f(k) − 1

3
> −1,

which is what we wanted to show. By the principle of mathematical induction, f(n) >
−1 for all n ≥ 1.

IV. True-False. For each true statement give a short proof or reason; for each false state-
ment give a counterexample.

A) If A and B are sets of real numbers with the property that a > b for all a ∈ A and all
b ∈ B, then glb(A) > lub(B).

Solution: This is FALSE. A counterexample – let B = (−∞, 0) and A = (0,∞) in R.
Then a > b for all a ∈ A and all b ∈ B. But glb(A) = 0 = lub(B).

B) (10) For all n ≥ 1,
∑n

k=0

(

n
k

)

1
2k = 3n

2n .

Solution: This is TRUE. By the binomial theorem,

n
∑

k=0

(

n

k

)

xkyn−k = (x + y)n

for all real numbers x, y. We get the desired equality by making x = 1
2 , y = 1.

C) (10) The smallest c such that {x ∈ R | |x + 1| + |x + 10| = c} is not empty is c = 11.

Solution: This is FALSE. |x + 1| + |x + 10| represents the sum of the distance from
x to −1 and the distance from x to −10 along the number line. For any x with
−10 ≤ x ≤ −1, the sum of these distances will be 9 < 11.

Extra Credit (10) Caution: this problem may be “habit forming.” Only attempt after

finishing the rest of the exam! Can you find a 1-1, onto function f : R → (−1, 1]? If so,
describe one by giving a formula or a graph. If there is no such function, prove it.

Solution: There is such a function. We can construct one as follows: First take any strictly
increasing onto function f : R → (−1, 1) such as f(x) = 2

π
arctan(x). This “misses” 1, of

course, so we have to modify f to get 1 in the range. If we define a new function g with
g(1) = 1, but g(x) = f(x) for all x 6= 1, then we have missed f(1) = 1

2 in the range of f .
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But we can make g(2) = f(1) = 1
2 , then g(3) = f(2), etc. to get a function that is still 1-1

and onto:






g(x) = f(x) = 2
π

arctan(x) if x /∈ N

g(1) = 1
g(n) = f(n − 1) if n ≥ 2 ∈ N.

.

(This is a mathematical version of the “Hilbert Hotel” with rooms numbered by n ∈ N –
there’s always room for one more guest if we shift everyone else down one room!)
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