I.
A) State the Axiom of Completeness for the real number system.

Solution: Every nonempty set of real numbers that is bounded above has a least upper bound. (This is an axiom - we take it as an unproved assertion describing properties of the real number system.)
B) Prove that if A and B are bounded sets of real numbers with $\operatorname{lub}(A)<\operatorname{lub}(B)$, then there exists a single $y \in B$ satisfying $y>x$ for all $x \in A$.

Solution: Since $\operatorname{lub}(A)<\operatorname{lub}(B), \operatorname{lub}(A)$ is not an upper bound for B. Hence there exists at least one $y_{0} \in B$ such that $\operatorname{lub}(A)<y_{0} \leq \operatorname{lub}(B)$. (The subscript is one way mathematicians often indicate that they are referring to one particular element of a set.) But then, by definition, every $x \in A$ satisfies $x \leq \operatorname{lub}(A)$. So $x<y_{0}$ for all $x \in A$.
C) Let $A=\cap_{n=1}^{\infty}\left(\frac{-1}{2 n}, 1+\frac{1}{2 n}\right)$. Explain why A is bounded below and determine $\operatorname{glb}(A)$. Solution: It is certainly true that $\frac{-1}{2}$ is a lower bound for A. But in fact, given any $\varepsilon>0$, there exist $n \in \mathbf{N}$ such that $\frac{1}{2 n}<\varepsilon$, and hence $\frac{-1}{2 n}>-\varepsilon$. We can see that $A=[0,1]$, so $\operatorname{glb}(A)=0$.
II.
A) Prove that every interval (a, b) with $0<a<b$ contains a rational number $\frac{m}{n}$.

Solution: Since \mathbf{N} is not bounded, there exists $n \in \mathbf{N}$ such that $n>\frac{1}{b-a}$, or equivalently $\frac{1}{n}<b-a$. Pick any one such n and fix it. For that fixed n, let $M=\{m \in \mathbf{N} \mid m>n a\}$. This set is not empty (again since \mathbf{N} is not bounded). So by the Well Ordering Property, it contains a smallest element. Call that m_{0}. Now $m_{0}>n a$, so $\frac{m_{0}}{n}>a$. On the other hand, $m_{0}-1 \neq M$, so $m_{0}-1 \leq n a$. This implies $\frac{m_{0}}{n} \leq a+\frac{1}{n}<a+b-a=b$. Combining these last facts shows that the rational number $\frac{m_{0}}{n} \in(a, b)$.
B) Use part A to show that every interval (a, b) with $a<b<0$ contains a rational number $\frac{m}{n}$.

Solution: If $a<b<0$, then $0<(-b)<(-a)$. By part A, there is a rational number $\frac{-m}{n}$ satisfying $(-b)<\frac{-m}{n}<(-a)$. But then, multiplying these inequalities by -1 , $a<\frac{m}{n}<b$. Since $\frac{m}{n}$ is also rational, we are done.
III. Let $f: \mathbf{N} \rightarrow \mathbf{R}$ be defined by $f(1)=2$ and $f(n+1)=\frac{2 f(n)-1}{3}$ for all $n \geq 1$. Using mathematical induction, show that $f(n)>-1$ for all $n \geq 1$.

Solution: The base case is $n=1$. By definition, $f(1)=2>-1$. Now assume as the induction hypothesis that $f(k)>-1$, and consider $f(k+1)=\frac{2 f(k)-1}{3}$. Then the properties of order imply

$$
\begin{aligned}
& 2 f(k)>-2 \\
& \text { hence } 2 f(k)-1>-3 \\
& \text { hence } f(k+1)=\frac{2 f(k)-1}{3}>-1,
\end{aligned}
$$

which is what we wanted to show. By the principle of mathematical induction, $f(n)>$ -1 for all $n \geq 1$.
IV. True-False. For each true statement give a short proof or reason; for each false statement give a counterexample.
A) If A and B are sets of real numbers with the property that $a>b$ for all $a \in A$ and all $b \in B$, then $\operatorname{glb}(A)>\operatorname{lub}(B)$.

Solution: This is FALSE. A counterexample - let $B=(-\infty, 0)$ and $A=(0, \infty)$ in \mathbf{R}. Then $a>b$ for all $a \in A$ and all $b \in B$. But $\operatorname{glb}(A)=0=\operatorname{lub}(B)$.
B) (10) For all $n \geq 1, \sum_{k=0}^{n}\binom{n}{k} \frac{1}{2^{k}}=\frac{3^{n}}{2^{n}}$.

Solution: This is TRUE. By the binomial theorem,

$$
\sum_{k=0}^{n}\binom{n}{k} x^{k} y^{n-k}=(x+y)^{n}
$$

for all real numbers x, y. We get the desired equality by making $x=\frac{1}{2}, y=1$.
C) (10) The smallest c such that $\{x \in \mathbf{R}||x+1|+|x+10|=c\}$ is not empty is $c=11$.

Solution: This is FALSE. $|x+1|+|x+10|$ represents the sum of the distance from x to -1 and the distance from x to -10 along the number line. For any x with $-10 \leq x \leq-1$, the sum of these distances will be $9<11$.

Extra Credit (10) Caution: this problem may be "habit forming." Only attempt after finishing the rest of the exam! Can you find a 1-1, onto function $f: \mathbf{R} \rightarrow(-1,1]$? If so, describe one by giving a formula or a graph. If there is no such function, prove it.

Solution: There is such a function. We can construct one as follows: First take any strictly increasing onto function $f: \mathbf{R} \rightarrow(-1,1)$ such as $f(x)=\frac{2}{\pi} \arctan (x)$. This "misses" 1 , of course, so we have to modify f to get 1 in the range. If we define a new function g with $g(1)=1$, but $g(x)=f(x)$ for all $x \neq 1$, then we have missed $f(1)=\frac{1}{2}$ in the range of f.

But we can make $g(2)=f(1)=\frac{1}{2}$, then $g(3)=f(2)$, etc. to get a function that is still 1-1 and onto:

$$
\begin{cases}g(x)=f(x)=\frac{2}{\pi} \arctan (x) & \text { if } x \notin \mathbf{N} \\ g(1)=1 & \\ g(n)=f(n-1) & \text { if } n \geq 2 \in \mathbf{N}\end{cases}
$$

(This is a mathematical version of the "Hilbert Hotel" with rooms numbered by $n \in \mathbf{N}$ there's always room for one more guest if we shift everyone else down one room!)

