Mathematics 242 – Principles of Analysis Exam 1 – February 25, 2010

Directions: Read all the questions *carefully* before starting to work. Do all work in the blue exam booklet. There are 100 possible regular points and 10 possible Extra Credit points.

I.

- A) (10) State the LUB Axiom for the real number system.
- B) (10) Prove that if A and B are bounded sets of real numbers with lub(A) < lub(B), then there exists a single $y \in B$ satisfying y > x for all $x \in A$.
- C) (10) Let $A = \bigcap_{n=1}^{\infty} \left(\frac{-1}{2n}, 1 + \frac{1}{2n}\right)$. Explain why A is bounded below and determine glb(A).

II.

- A) (20) Prove that every interval (a, b) with 0 < a < b contains a rational number $\frac{m}{n}$.
- B) (5) Use part A to show that every interval (a, b) with a < b < 0 contains a rational number $\frac{m}{n}$.

III. (15) Let $f : \mathbf{N} \to \mathbf{R}$ be defined by f(1) = 2 and $f(n+1) = \frac{2f(n)-1}{3}$ for all $n \ge 1$. Using mathematical induction, show that f(n) > -1 for all $n \ge 1$.

IV. True-False. For each true statement give a short proof or reason; for each false statement give a counterexample.

- A) (10) If A and B are sets of real numbers with the property that a > b for all $a \in A$ and all $b \in B$, then glb(A) > lub(B).
- B) (10) For all $n \ge 1$, $\sum_{k=0}^{n} {n \choose k} \frac{1}{2^k} = \frac{3^n}{2^n}$.
- C) (10) The smallest c such that $\{x \in \mathbf{R} \mid |x+1| + |x+10| = c\}$ is not empty is c = 11.

Extra Credit (10)

Caution: this problem may be "habit forming." Only attempt after finishing the rest of the exam!

Can you find a 1-1, onto function $f : \mathbf{R} \to (-1, 1]$? If so, describe one by giving formulas or a graph. If there is no such function, prove it.