Mathematics 242 — Principles of Analysis
Final Examination Solutions
May 17, 2011

L.
A) State the €, ng definition of convergence for a sequence of real numbers.

Solution: The sequence x,, converges to ¢ € R if for every € > 0, there exist ng € N
such that |z, — c| < € for all n > ny.

B) Identify lim,, . 2n’—2

n2+n

Solution: We have

o2mP-2 . m?r-2 L
lim 5 = lim — -
n—oo N +n n—oo N +n —

9_ 2

. 2

= lim .

n—>ool—|—ﬁ

=2.

C) Show that your result in part B is correct using the definition.

Solution: Let € > 0 and take ng > 2/¢. Then for all n > ng, 2/n < ¢, so

2n2 —2 —2n — 2
9=z~
n?+n n?+n
B 2n + 2
 n24n
2
n
< €.
2n?—2

Therefore, by definition, converges to 2.

n2+n

II. Show using mathematical induction that the sequence {z,} defined by z; = 1, and

Tp = \/Tp_1+ 1, if n>2

is bounded above by 2 and monotone increasing. Does this imply that {z,} is convergent?
If so, say why and find the limit. If not, say why not.

Solution: By assumption 1 = 1 < 2. Then if x; < 2, we have zp11 = Vo +1 <
V241 < /3 < 2. Hence z,, < 2 for all n by induction.
Similarly, ; = 1 and o = V2 satisfy 1 < 2. Assume that z;, < ZTk+1. Then by

definition
Tht1 = VT +1 < \/Tpq1 +1 = zp)40.

Hence the sequence is monotone strictly increasing by induction.
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Since the sequence is monotone increasing and bounded above, the monotone conver-
gence theorem implies that {x, } converges to some ¢ in R (indeed, ¢ = lub{z,, | n > 1}).
From the recurrence relation, taking lim,, ..., and using the continuity of the square root

function,
c= lim z,, = lim /z,—-1+1=+vc+1.
n—oo

n—oo

This implies ¢? = ¢+ 1, so by the quadratic formula, ¢ = % Since all the terms x,, > 0,

this implies
1 +2\/3 = 1.618.

III. The Mean Value Theorem states: If f is continuous on [a, b] and differentiable on (a, b),
then there exists ¢ € (a, b) such that

Proof: First, consider the case f(b) = f(a). If f is constant on [a,b], then we can take
¢ € (a,b) arbitrary. Otherwise, by the Extreme Value Theorem, f must attain a maximum
or minimum not equal to f(a) = f(b) at some ¢ € (a,b). Hence f has a local maximum
or minimum at ¢ so it follows from the definition of the derivative that f’(¢) = 0. This
establishes the special case where f(b) = f(a).

Now consider a general f satisfying the conditions of the theorem, and consider

The function g is a linear combination of f(z) and the linear function  —a. Hence g is also
continuous on [a, b] and differentiable on (a,b). Moreover, g(b) = f(b) — W(b —a) =
f(a) and g(a) = f(a) — 0 = f(a). Therefore, g satisfies the extra condition of the special
case. It follows that there exists a ¢ € (a, b) where g’(¢) = 0. But ¢'(¢) = f'(¢)— w =

0, so f'(¢) = W, and the theorem is proved.

IV. True/False. For each true statement, give a short proof. For each false statement, give
a counterexample.

A) Let f be differentiable and f’ be continuous on [a,b]. If f'(x) # 0 for all z € [a, b],
then f(x) is either increasing on the whole interval [a, D], or decreasing on the whole
interval [a, b].

Solution: This is TRUE. Since f” is continuous on [a, b], the Extreme and Intermediate
Value Theorems can be applied to f’. Since f’ never takes the value 0 on [a, b], either
the minimum value of f’ is strictly greater than zero, or else the maximum value of
f’ is strictly less than zero. In the first case, by one of our consequences of the Mean
Value Theorem, f is increasing on [a, b]. In the second case, f is decreasing on [a, b].
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B) If f is uniformly continuous on [a, b], then f is differentiable at every point in [a, b].

Solution: This is FALSE. By a theorem we proved in class, any continuous function
on [a,b] is uniformly continuous. But there are continuous functions that are not
differentiable at some ¢ € [a,b]. An example is f(x) = |z| on [a,b] = [-1,1]. f is
continuous, but is not differentiable at z = 0.

C) Let f:[a,b] — R be continuous and let {z,} be a sequence with z,, € [a,b] for all n.
Then The sequence {f(x,)} has a convergent subsequence.

Solution: This is TRUE. By the Extreme Value Theorem, the sequence {f(z,)} is
bounded (it lies in the interval [m, M] where m, M are the minimum and maximum
values of f on the interval). Then the Bolzano-Weierstrass theorem implies that it
has a convergent subsequence.

V. Show that /
(1 ifo<a<1/2
f(x)_{z if1/2<z<1
is integrable on [a, b] = [0, 1] by considering the upper and lower sums for f. Also, deter-

mine the value of fol f.

Solution: Let 6 < 1/2 and let Ps be the partition {0,1/2 —6,1/2+ §,1}. Then

Lo, (f) =1-(1/2—6) +1-(26) +2-(1/2 - 5),
Upy(f) =1-(1/2=06)+2-(20) +2-(1/2 = 9),
UPa(f) _L’Pé(f> = 20.

Given € > 0, let 0 < £/2. Then for any such §, the difference between the upper and lower
sums is < . This implies that f is integrable on [0, 1]. This also shows

1
| £ =emn 15> 0 =3,

since

Ups(f):1-(1/2—5)+2-(25)+2-(1/2—5):g+5.

VL

A) Noting that
lim In(z) — lim In(z) — ln(1)7
x—1x — 1 r—1 €r — 1

evaluate the limit. (You may use any calculus facts you need here without proof.)
Solution: Let f(x) = In(x). By definition, the limit above computes the derivative
f'(1). Since f'(z) = 1/x by calculus facts, f/(1) =1, so

1
im 22) _
z—1x —1
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B)

VIL
A)

Let z =1+ % in the limit from part A and use that result and the sequential criterion
for continuity applied to f(z) = exp(z) = e to compute

1 n
lim (1 + —) .
n—oo n

Solution: With z = 1+ % — 1, we have, using properties of logarithms and continuity
of the exponential function,

1 n
=e = limexp(In|1 —) )
n—oo n
Hence
n

lim (1 + —) =e

n— oo n
State the definition of convergence for an infinite series Y -~ a.

Solution: The series Y -, a,, converges if the sequence {s;} of partial sums, defined

by )
Sk = Z Gn,
n=1

converges to some S € R (as a sequence).
Does the series o | 27 converge? If so, what is the sum of the series?

Solution: The answer is yes — this is a geometric series with ratio r = 2/5. Since
|r| < 1, the geometric series converges to

2/5 2

1-2/5 3
Does the series Y-, ne”"™ converge? (Use the Integral Test.)

Solution: The terms of the series are f(n) for f(x) = xe™*. (Note that f/'(z) =
e "(x—1) <0 forall x >1. So f(z) is decreasing to 0 as z — 00.) Integrating by
parts and using the Fundamental Theorem of Calculus, we have

b

) _ ) _ _1b
lim ze ¥ dr=lim —ze * —e¢ m}
b—o0 1 b—o0o 1
= lim —be ?+e?—e b 427!
b—o0o
=2¢7 !
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Since this is finite, the series converges.

D) Use the Ratio Test to determine the € R for which the series > _; ”Qi"n converges
absolutely.

Solution: We have

| (n Dt 2n
lim .
2n—|—1 nx"

n—oo

: LY [z _ =]
= lim (14— )2 =51

This is < 1 if and only if |z| < 2, or € (—2,2). The series converges absolutely for
€ (—2,2), but diverges for x = £2.

Extra Credit Let
f:{x-l-xzcos(w/x) ifz#0
0 if  =0.

Show that f is differentiable at all z € R, but f’ is not continuous at x = 0.

Solution: For x # 0, we can apply the usual derivative rules to see
f(x) =1+ 2z cos(mw/z) + wsin(n/x).
For x = 0, we must use the definition of the derivative:

t—0 -0
x + 22 cos(m/x)

= lim

z—0 x
= lir% 1+ x cos(m/x)
=1

(note that lim, gz cos(w/x) = 0 by the squeeze theorem). Hence f’(x) exists for all
r e R.
Finally, we claim that f’ fails to be continuous at = = 0. this is true because

lim f/(z) = lim 1 + 2z cos(w/x) + 7sin(nw/x)

x—0 z—0

does not exist. The last term, sin(7/z) has no limit as z — 0, but the other two terms do.
It follows that f’ has a discontinuity at x = 0.



