
Mathematics 242 – Principles of Analysis
Final Examination Solutions

May 17, 2011

I.
A) State the ε, n0 definition of convergence for a sequence of real numbers.

Solution: The sequence xn converges to c ∈ R if for every ε > 0, there exist n0 ∈ N

such that |xn − c| < ε for all n ≥ n0.

B) Identify limn→∞
2n2−2
n2+n

.

Solution: We have

lim
n→∞

2n2 − 2

n2 + n
= lim

n→∞

2n2 − 2

n2 + n
·

1
n2

1
n2

= lim
n→∞

2 − 2
n2

1 + 1
n

= 2.

C) Show that your result in part B is correct using the definition.

Solution: Let ε > 0 and take n0 > 2/ε. Then for all n ≥ n0, 2/n < ε, so

∣

∣

∣

∣

2n2 − 2

n2 + n
− 2

∣

∣

∣

∣

=

∣

∣

∣

∣

−2n − 2

n2 + n

∣

∣

∣

∣

=
2n + 2

n2 + n

=
2

n

< ε.

Therefore, by definition, 2n2−2
n2+n

converges to 2.

II. Show using mathematical induction that the sequence {xn} defined by x1 = 1, and

xn =
√

xn−1 + 1, if n ≥ 2

is bounded above by 2 and monotone increasing. Does this imply that {xn} is convergent?
If so, say why and find the limit. If not, say why not.

Solution: By assumption x1 = 1 < 2. Then if xk < 2, we have xk+1 =
√

xk + 1 <√
2 + 1 <

√
3 < 2. Hence xn < 2 for all n by induction.

Similarly, x1 = 1 and x2 =
√

2 satisfy x1 < x2. Assume that xk < xk+1. Then by
definition

xk+1 =
√

xk + 1 <
√

xk+1 + 1 = xk+2.

Hence the sequence is monotone strictly increasing by induction.
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Since the sequence is monotone increasing and bounded above, the monotone conver-
gence theorem implies that {xn} converges to some c in R (indeed, c = lub{xn | n ≥ 1}).
From the recurrence relation, taking limn→∞, and using the continuity of the square root
function,

c = lim
n→∞

xn = lim
n→∞

√

xn−1 + 1 =
√

c + 1.

This implies c2 = c+1, so by the quadratic formula, c = 1±
√

5
2

. Since all the terms xn > 0,
this implies

c =
1 +

√
5

2

.
= 1.618.

III. The Mean Value Theorem states: If f is continuous on [a, b] and differentiable on (a, b),
then there exists c ∈ (a, b) such that

f ′(c) =
f(b) − f(a)

b − a
.

Proof: First, consider the case f(b) = f(a). If f is constant on [a, b], then we can take
c ∈ (a, b) arbitrary. Otherwise, by the Extreme Value Theorem, f must attain a maximum
or minimum not equal to f(a) = f(b) at some c ∈ (a, b). Hence f has a local maximum
or minimum at c so it follows from the definition of the derivative that f ′(c) = 0. This
establishes the special case where f(b) = f(a).

Now consider a general f satisfying the conditions of the theorem, and consider

g(x) = f(x) − f(b) − f(a)

b − a
(x − a).

The function g is a linear combination of f(x) and the linear function x−a. Hence g is also

continuous on [a, b] and differentiable on (a, b). Moreover, g(b) = f(b)− f(b)−f(a)
b−a

(b− a) =
f(a) and g(a) = f(a) − 0 = f(a). Therefore, g satisfies the extra condition of the special

case. It follows that there exists a c ∈ (a, b) where g′(c) = 0. But g′(c) = f ′(c)− f(b)−f(a)
b−a

=

0, so f ′(c) = f(b)−f(a)
b−a

, and the theorem is proved.

IV. True/False. For each true statement, give a short proof. For each false statement, give
a counterexample.

A) Let f be differentiable and f ′ be continuous on [a, b]. If f ′(x) 6= 0 for all x ∈ [a, b],
then f(x) is either increasing on the whole interval [a, b], or decreasing on the whole
interval [a, b].

Solution: This is TRUE. Since f ′ is continuous on [a, b], the Extreme and Intermediate
Value Theorems can be applied to f ′. Since f ′ never takes the value 0 on [a, b], either
the minimum value of f ′ is strictly greater than zero, or else the maximum value of
f ′ is strictly less than zero. In the first case, by one of our consequences of the Mean
Value Theorem, f is increasing on [a, b]. In the second case, f is decreasing on [a, b].
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B) If f is uniformly continuous on [a, b], then f is differentiable at every point in [a, b].

Solution: This is FALSE. By a theorem we proved in class, any continuous function
on [a, b] is uniformly continuous. But there are continuous functions that are not
differentiable at some c ∈ [a, b]. An example is f(x) = |x| on [a, b] = [−1, 1]. f is
continuous, but is not differentiable at x = 0.

C) Let f : [a, b] → R be continuous and let {xn} be a sequence with xn ∈ [a, b] for all n.
Then The sequence {f(xn)} has a convergent subsequence.

Solution: This is TRUE. By the Extreme Value Theorem, the sequence {f(xn)} is
bounded (it lies in the interval [m, M ] where m, M are the minimum and maximum
values of f on the interval). Then the Bolzano-Weierstrass theorem implies that it
has a convergent subsequence.

V. Show that

f(x) =

{

1 if 0 ≤ x < 1/2
2 if 1/2 ≤ x ≤ 1

is integrable on [a, b] = [0, 1] by considering the upper and lower sums for f . Also, deter-

mine the value of
∫ 1

0
f .

Solution: Let δ < 1/2 and let Pδ be the partition {0, 1/2− δ, 1/2 + δ, 1}. Then

LPδ
(f) = 1 · (1/2 − δ) + 1 · (2δ) + 2 · (1/2 − δ),

UPδ
(f) = 1 · (1/2 − δ) + 2 · (2δ) + 2 · (1/2 − δ),

UPδ
(f) − LPδ

(f) = 2δ.

Given ε > 0, let δ < ε/2. Then for any such δ, the difference between the upper and lower
sums is < ε. This implies that f is integrable on [0, 1]. This also shows

∫ 1

0

f = glb{UPδ
(f) | δ > 0} =

3

2
,

since

UPδ
(f) = 1 · (1/2 − δ) + 2 · (2δ) + 2 · (1/2 − δ) =

3

2
+ δ.

VI.
A) Noting that

lim
x→1

ln(x)

x − 1
= lim

x→1

ln(x) − ln(1)

x − 1
,

evaluate the limit. (You may use any calculus facts you need here without proof.)

Solution: Let f(x) = ln(x). By definition, the limit above computes the derivative
f ′(1). Since f ′(x) = 1/x by calculus facts, f ′(1) = 1, so

lim
x→1

ln(x)

x − 1
= 1.
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B) Let x = 1+ 1
n

in the limit from part A and use that result and the sequential criterion
for continuity applied to f(x) = exp(x) = ex to compute

lim
n→∞

(

1 +
1

n

)n

.

Solution: With x = 1+ 1
n
→ 1, we have, using properties of logarithms and continuity

of the exponential function,

1 = lim
n→∞

ln
(

1 + 1
n

)

1
n

= lim
n→∞

ln

((

1 +
1

n

)n)

⇒ e1 = lim
n→∞

exp

(

ln

(

1 +
1

n

)n)

.

Hence

lim
n→∞

(

1 +
1

n

)n

= e.

VII.
A) State the definition of convergence for an infinite series

∑∞
n=1 an.

Solution: The series
∑∞

n=1 an converges if the sequence {sk} of partial sums, defined
by

sk =

k
∑

n=1

an,

converges to some S ∈ R (as a sequence).

B) Does the series
∑∞

n=1
2n

5n converge? If so, what is the sum of the series?

Solution: The answer is yes – this is a geometric series with ratio r = 2/5. Since
|r| < 1, the geometric series converges to

2/5

1 − 2/5
=

2

3
.

C) Does the series
∑∞

n=1 ne−n converge? (Use the Integral Test.)

Solution: The terms of the series are f(n) for f(x) = xe−x. (Note that f ′(x) =
e−x(x − 1) < 0 for all x > 1. So f(x) is decreasing to 0 as x → ∞.) Integrating by
parts and using the Fundamental Theorem of Calculus, we have

lim
b→∞

∫ b

1

xe−x dx = lim
b→∞

−xe−x − e−x
∣

∣

b

1

= lim
b→∞

−be−b + e−b − e−b + 2e−1

= 2e−1
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Since this is finite, the series converges.

D) Use the Ratio Test to determine the x ∈ R for which the series
∑

n=1
nxn

2n converges
absolutely.

Solution: We have

lim
n→∞

∣

∣

∣

∣

(n + 1)xn+1

2n+1
· 2n

nxn

∣

∣

∣

∣

= lim
n→∞

(

1 +
1

n

) |x|
2

=
|x|
2

.

This is < 1 if and only if |x| < 2, or x ∈ (−2, 2). The series converges absolutely for
x ∈ (−2, 2), but diverges for x = ±2.

Extra Credit Let

f =

{

x + x2 cos(π/x) if x 6= 0
0 if x = 0.

Show that f is differentiable at all x ∈ R, but f ′ is not continuous at x = 0.

Solution: For x 6= 0, we can apply the usual derivative rules to see

f ′(x) = 1 + 2x cos(π/x) + π sin(π/x).

For x = 0, we must use the definition of the derivative:

f ′(0) = lim
x→0

f(x) − f(0)

x − 0

= lim
x→0

x + x2 cos(π/x)

x

= lim
x→0

1 + x cos(π/x)

= 1

(note that limx→0 x cos(π/x) = 0 by the squeeze theorem). Hence f ′(x) exists for all
x ∈ R.

Finally, we claim that f ′ fails to be continuous at x = 0. this is true because

lim
x→0

f ′(x) = lim
x→0

1 + 2x cos(π/x) + π sin(π/x)

does not exist. The last term, sin(π/x) has no limit as x → 0, but the other two terms do.
It follows that f ′ has a discontinuity at x = 0.
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