Mathematics 242 - Principles of Analysis
 Final Examination Solutions

May 17, 2011
I.
A) State the ε, n_{0} definition of convergence for a sequence of real numbers.

Solution: The sequence x_{n} converges to $c \in \mathbf{R}$ if for every $\varepsilon>0$, there exist $n_{0} \in \mathbf{N}$ such that $\left|x_{n}-c\right|<\varepsilon$ for all $n \geq n_{0}$.
B) Identify $\lim _{n \rightarrow \infty} \frac{2 n^{2}-2}{n^{2}+n}$.

Solution: We have

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{2 n^{2}-2}{n^{2}+n} & =\lim _{n \rightarrow \infty} \frac{2 n^{2}-2}{n^{2}+n} \cdot \frac{\frac{1}{n^{2}}}{\frac{1}{n^{2}}} \\
& =\lim _{n \rightarrow \infty} \frac{2-\frac{2}{n^{2}}}{1+\frac{1}{n}} \\
& =2
\end{aligned}
$$

C) Show that your result in part B is correct using the definition.

Solution: Let $\varepsilon>0$ and take $n_{0}>2 / \varepsilon$. Then for all $n \geq n_{0}, 2 / n<\varepsilon$, so

$$
\begin{aligned}
\left|\frac{2 n^{2}-2}{n^{2}+n}-2\right| & =\left|\frac{-2 n-2}{n^{2}+n}\right| \\
& =\frac{2 n+2}{n^{2}+n} \\
& =\frac{2}{n} \\
& <\varepsilon
\end{aligned}
$$

Therefore, by definition, $\frac{2 n^{2}-2}{n^{2}+n}$ converges to 2 .
II. Show using mathematical induction that the sequence $\left\{x_{n}\right\}$ defined by $x_{1}=1$, and

$$
x_{n}=\sqrt{x_{n-1}+1}, \quad \text { if } n \geq 2
$$

is bounded above by 2 and monotone increasing. Does this imply that $\left\{x_{n}\right\}$ is convergent? If so, say why and find the limit. If not, say why not.
Solution: By assumption $x_{1}=1<2$. Then if $x_{k}<2$, we have $x_{k+1}=\sqrt{x_{k}+1}<$ $\sqrt{2+1}<\sqrt{3}<2$. Hence $x_{n}<2$ for all n by induction.

Similarly, $x_{1}=1$ and $x_{2}=\sqrt{2}$ satisfy $x_{1}<x_{2}$. Assume that $x_{k}<x_{k+1}$. Then by definition

$$
x_{k+1}=\sqrt{x_{k}+1}<\sqrt{x_{k+1}+1}=x_{k+2}
$$

Hence the sequence is monotone strictly increasing by induction.

Since the sequence is monotone increasing and bounded above, the monotone convergence theorem implies that $\left\{x_{n}\right\}$ converges to some c in \mathbf{R} (indeed, $c=\operatorname{lub}\left\{x_{n} \mid n \geq 1\right\}$). From the recurrence relation, taking $\lim _{n \rightarrow \infty}$, and using the continuity of the square root function,

$$
c=\lim _{n \rightarrow \infty} x_{n}=\lim _{n \rightarrow \infty} \sqrt{x_{n-1}+1}=\sqrt{c+1}
$$

This implies $c^{2}=c+1$, so by the quadratic formula, $c=\frac{1 \pm \sqrt{5}}{2}$. Since all the terms $x_{n}>0$, this implies

$$
c=\frac{1+\sqrt{5}}{2} \doteq 1.618
$$

III. The Mean Value Theorem states: If f is continuous on $[a, b]$ and differentiable on (a, b), then there exists $c \in(a, b)$ such that

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

Proof: First, consider the case $f(b)=f(a)$. If f is constant on $[a, b]$, then we can take $c \in(a, b)$ arbitrary. Otherwise, by the Extreme Value Theorem, f must attain a maximum or minimum not equal to $f(a)=f(b)$ at some $c \in(a, b)$. Hence f has a local maximum or minimum at c so it follows from the definition of the derivative that $f^{\prime}(c)=0$. This establishes the special case where $f(b)=f(a)$.

Now consider a general f satisfying the conditions of the theorem, and consider

$$
g(x)=f(x)-\frac{f(b)-f(a)}{b-a}(x-a)
$$

The function g is a linear combination of $f(x)$ and the linear function $x-a$. Hence g is also continuous on $[a, b]$ and differentiable on (a, b). Moreover, $g(b)=f(b)-\frac{f(b)-f(a)}{b-a}(b-a)=$ $f(a)$ and $g(a)=f(a)-0=f(a)$. Therefore, g satisfies the extra condition of the special case. It follows that there exists a $c \in(a, b)$ where $g^{\prime}(c)=0$. But $g^{\prime}(c)=f^{\prime}(c)-\frac{f(b)-f(a)}{b-a}=$ 0 , so $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$, and the theorem is proved.
IV. True/False. For each true statement, give a short proof. For each false statement, give a counterexample.
A) Let f be differentiable and f^{\prime} be continuous on $[a, b]$. If $f^{\prime}(x) \neq 0$ for all $x \in[a, b]$, then $f(x)$ is either increasing on the whole interval $[a, b]$, or decreasing on the whole interval $[a, b]$.
Solution: This is TRUE. Since f^{\prime} is continuous on $[a, b]$, the Extreme and Intermediate Value Theorems can be applied to f^{\prime}. Since f^{\prime} never takes the value 0 on $[a, b]$, either the minimum value of f^{\prime} is strictly greater than zero, or else the maximum value of f^{\prime} is strictly less than zero. In the first case, by one of our consequences of the Mean Value Theorem, f is increasing on $[a, b]$. In the second case, f is decreasing on $[a, b]$.
B) If f is uniformly continuous on $[a, b]$, then f is differentiable at every point in $[a, b]$.

Solution: This is FALSE. By a theorem we proved in class, any continuous function on $[a, b]$ is uniformly continuous. But there are continuous functions that are not differentiable at some $c \in[a, b]$. An example is $f(x)=|x|$ on $[a, b]=[-1,1]$. f is continuous, but is not differentiable at $x=0$.
C) Let $f:[a, b] \rightarrow \mathbf{R}$ be continuous and let $\left\{x_{n}\right\}$ be a sequence with $x_{n} \in[a, b]$ for all n. Then The sequence $\left\{f\left(x_{n}\right)\right\}$ has a convergent subsequence.

Solution: This is TRUE. By the Extreme Value Theorem, the sequence $\left\{f\left(x_{n}\right)\right\}$ is bounded (it lies in the interval $[m, M$] where m, M are the minimum and maximum values of f on the interval). Then the Bolzano-Weierstrass theorem implies that it has a convergent subsequence.
V. Show that

$$
f(x)= \begin{cases}1 & \text { if } 0 \leq x<1 / 2 \\ 2 & \text { if } 1 / 2 \leq x \leq 1\end{cases}
$$

is integrable on $[a, b]=[0,1]$ by considering the upper and lower sums for f. Also, determine the value of $\int_{0}^{1} f$.
Solution: Let $\delta<1 / 2$ and let \mathcal{P}_{δ} be the partition $\{0,1 / 2-\delta, 1 / 2+\delta, 1\}$. Then

$$
\begin{aligned}
L_{\mathcal{P}_{\delta}}(f) & =1 \cdot(1 / 2-\delta)+1 \cdot(2 \delta)+2 \cdot(1 / 2-\delta), \\
U_{\mathcal{P}_{\delta}}(f) & =1 \cdot(1 / 2-\delta)+2 \cdot(2 \delta)+2 \cdot(1 / 2-\delta), \\
U_{\mathcal{P}_{\delta}}(f)-L_{\mathcal{P}_{\delta}}(f) & =2 \delta .
\end{aligned}
$$

Given $\varepsilon>0$, let $\delta<\varepsilon / 2$. Then for any such δ, the difference between the upper and lower sums is $<\varepsilon$. This implies that f is integrable on $[0,1]$. This also shows

$$
\int_{0}^{1} f=\operatorname{glb}\left\{U_{\mathcal{P}_{\delta}}(f) \mid \delta>0\right\}=\frac{3}{2}
$$

since

$$
U_{\mathcal{P}_{\delta}}(f)=1 \cdot(1 / 2-\delta)+2 \cdot(2 \delta)+2 \cdot(1 / 2-\delta)=\frac{3}{2}+\delta
$$

VI.
A) Noting that

$$
\lim _{x \rightarrow 1} \frac{\ln (x)}{x-1}=\lim _{x \rightarrow 1} \frac{\ln (x)-\ln (1)}{x-1}
$$

evaluate the limit. (You may use any calculus facts you need here without proof.)
Solution: Let $f(x)=\ln (x)$. By definition, the limit above computes the derivative $f^{\prime}(1)$. Since $f^{\prime}(x)=1 / x$ by calculus facts, $f^{\prime}(1)=1$, so

$$
\lim _{x \rightarrow 1} \frac{\ln (x)}{x-1}=1
$$

B) Let $x=1+\frac{1}{n}$ in the limit from part A and use that result and the sequential criterion for continuity applied to $f(x)=\exp (x)=e^{x}$ to compute

$$
\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}
$$

Solution: With $x=1+\frac{1}{n} \rightarrow 1$, we have, using properties of logarithms and continuity of the exponential function,

$$
\begin{aligned}
1 & =\lim _{n \rightarrow \infty} \frac{\ln \left(1+\frac{1}{n}\right)}{\frac{1}{n}} \\
& =\lim _{n \rightarrow \infty} \ln \left(\left(1+\frac{1}{n}\right)^{n}\right) \\
\Rightarrow e^{1} & =\lim _{n \rightarrow \infty} \exp \left(\ln \left(1+\frac{1}{n}\right)^{n}\right) .
\end{aligned}
$$

Hence

$$
\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}=e
$$

VII.
A) State the definition of convergence for an infinite series $\sum_{n=1}^{\infty} a_{n}$.

Solution: The series $\sum_{n=1}^{\infty} a_{n}$ converges if the sequence $\left\{s_{k}\right\}$ of partial sums, defined by

$$
s_{k}=\sum_{n=1}^{k} a_{n}
$$

converges to some $S \in \mathbf{R}$ (as a sequence).
B) Does the series $\sum_{n=1}^{\infty} \frac{2^{n}}{5^{n}}$ converge? If so, what is the sum of the series?

Solution: The answer is yes - this is a geometric series with ratio $r=2 / 5$. Since $|r|<1$, the geometric series converges to

$$
\frac{2 / 5}{1-2 / 5}=\frac{2}{3}
$$

C) Does the series $\sum_{n=1}^{\infty} n e^{-n}$ converge? (Use the Integral Test.)

Solution: The terms of the series are $f(n)$ for $f(x)=x e^{-x}$. (Note that $f^{\prime}(x)=$ $e^{-x}(x-1)<0$ for all $x>1$. So $f(x)$ is decreasing to 0 as $x \rightarrow \infty$.) Integrating by parts and using the Fundamental Theorem of Calculus, we have

$$
\begin{aligned}
\lim _{b \rightarrow \infty} \int_{1}^{b} x e^{-x} d x & =\lim _{b \rightarrow \infty}-x e^{-x}-\left.e^{-x}\right|_{1} ^{b} \\
& =\lim _{b \rightarrow \infty}-b e^{-b}+e^{-b}-e^{-b}+2 e^{-1} \\
& =2 e^{-1}
\end{aligned}
$$

Since this is finite, the series converges.
D) Use the Ratio Test to determine the $x \in \mathbf{R}$ for which the series $\sum_{n=1} \frac{n x^{n}}{2^{n}}$ converges absolutely.

Solution: We have

$$
\lim _{n \rightarrow \infty}\left|\frac{(n+1) x^{n+1}}{2^{n+1}} \cdot \frac{2^{n}}{n x^{n}}\right|=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right) \frac{|x|}{2}=\frac{|x|}{2} .
$$

This is <1 if and only if $|x|<2$, or $x \in(-2,2)$. The series converges absolutely for $x \in(-2,2)$, but diverges for $x= \pm 2$.

Extra Credit Let

$$
f= \begin{cases}x+x^{2} \cos (\pi / x) & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}
$$

Show that f is differentiable at all $x \in \mathbf{R}$, but f^{\prime} is not continuous at $x=0$.
Solution: For $x \neq 0$, we can apply the usual derivative rules to see

$$
f^{\prime}(x)=1+2 x \cos (\pi / x)+\pi \sin (\pi / x)
$$

For $x=0$, we must use the definition of the derivative:

$$
\begin{aligned}
f^{\prime}(0) & =\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0} \\
& =\lim _{x \rightarrow 0} \frac{x+x^{2} \cos (\pi / x)}{x} \\
& =\lim _{x \rightarrow 0} 1+x \cos (\pi / x) \\
& =1
\end{aligned}
$$

(note that $\lim _{x \rightarrow 0} x \cos (\pi / x)=0$ by the squeeze theorem). Hence $f^{\prime}(x)$ exists for all $x \in \mathbf{R}$.

Finally, we claim that f^{\prime} fails to be continuous at $x=0$. this is true because

$$
\lim _{x \rightarrow 0} f^{\prime}(x)=\lim _{x \rightarrow 0} 1+2 x \cos (\pi / x)+\pi \sin (\pi / x)
$$

does not exist. The last term, $\sin (\pi / x)$ has no limit as $x \rightarrow 0$, but the other two terms do. It follows that f^{\prime} has a discontinuity at $x=0$.

