I. From Abbott: 4.5.2, 4.5.3 (of course, you are supposed to prove your assertion!), 4.5.7, 5.2.3, 5.2.4.

Additional Problems

II.
A) Show that if \(f(x) \) is any polynomial of odd degree, then \(f \) has a real root (that is a real number \(c \) where \(f(c) = 0 \)).
B) Suppose that \(f(x) \) is a polynomial of even degree and that there exist \(a \neq b \) in \(\mathbb{R} \) such that \(f(a) < 0 < f(b) \). Show that \(f \) has at least two distinct real roots.
C) True or False: Any polynomial of even degree with a real root has at least two distinct real roots.

III. Show that the equation \(x^2 = 3^x \) has at least one real solution.

IV.
A) Suppose \(f \) is continuous on \([0, 1]\) with \(f(0) < 0 \) and \(f(1) > 1 \). Prove that there is at least one point \(c \in (0, 1) \) where \(f(c) = c^2 \).
B) Generalize your reasoning from part A to show that if \(f \) is as before and \(g \) is any continuous function on \([0, 1]\) with \(g(0) \geq 0 \), \(g(1) \leq 1 \), the there is at least one point \(c \in (0, 1) \) where \(f(c) = g(c) \).