I. From Abbott: 4.5.2, 4.5.3 (of course, you are supposed to prove your assertion!), 4.5.7, 5.2.3, 5.2.4.

Additional Problems

II.
A) Show that if $f(x)$ is any polynomial of odd degree, then f has a real root (that is a real number c where $f(c)=0)$.
B) Suppose that $f(x)$ is a polynomial of even degree and that there exist $a \neq b$ in \mathbf{R} such that $f(a)<0<f(b)$. Show that f has at least two distinct real roots.
C) True or False: Any polynomial of even degree with a real root has at least two distinct real roots.
III. Show that the equation $x^{2}=3^{x}$ has at least one real solution.
IV.
A) Suppose f is continuous on $[0,1]$ with $f(0)<0$ and $f(1)>1$. Prove that there is at least one point $c \in(0,1)$ where $f(c)=c^{2}$.
B) Generalize your reasoning from part A to show that if f is as before and g is any continuous function on $[0,1]$ with $g(0) \geq 0, g(1) \leq 1$, the there is at least one point $c \in(0,1)$ where $f(c)=g(c)$.

