I. Decide whether or not each of the following infinite series converges, and justify your claim using one of the results in sections 2.4 and 2.7 of Abbott:
A)

$$
\sum_{n=0}^{\infty} \frac{1}{\sqrt{2 n+1}}
$$

B)

$$
\sum_{n=0}^{\infty} \frac{1}{(2 n+1)^{2}}
$$

C)

$$
\sum_{n=0}^{\infty}(-1)^{n} \frac{2^{n}}{3^{2 n}}
$$

D)

$$
\sum_{n=0}^{\infty}(-1)^{n} \frac{n^{3}+n}{2 n^{3}+n+1}
$$

II.
A) For which $x \in[0,2 \pi]$ does the series

$$
\sum_{n=1}^{\infty} \sin ^{n}(x)
$$

converge? What is the sum for those x ?
B) For which $x \in \mathbf{R}$ does the series

$$
\sum_{n=1}^{\infty} e^{n x}
$$

converge? What is the sum for those x ?
III. From Abbott: 2.7.3, 2.7.4, 2.7.9.
IV. Use the Ratio Test (Exercise 2.7.9 above) to determine for which $x \in \mathbf{R}$ the series

$$
\sum_{n=0}^{\infty} \frac{(x-1)^{n}}{3^{n}}
$$

converges. (Hint: The Ratio Test will give an open interval of values of x on which the series converges absolutely. What happens at the endpoints of that interval?)

