I.
A) The Monotone Convergence Theorem says: Every monotone bounded sequence in \mathbf{R} is convergent. Proof (in monotone increasing case): Say $\left(x_{n}\right)$ is a monotone increasing sequence that is bounded above. By the Axiom of Completeness, $a=\sup \left\{x_{n}: n \in \mathbf{N}\right\}$ exists in \mathbf{R}. By a result we know about least upper bounds, for all $\varepsilon>0$, there exists some N such that $a-\varepsilon<x_{N} \leq a$. But then since the sequence is monotone increasing, $a-\varepsilon<x_{N} \leq x_{n} \leq a$ for all $n \geq N$. It follows that $\left|x_{n}-a\right|<\varepsilon$ for all $n \geq N$, so by definition the sequence converges to a.
B) Since $x_{n}<0$, we have $x_{n+1} \geq x_{n}$ for all n. This means that the sequence is monotone increasing and bounded above by 0 . Hence part A shows that $\lim _{n \rightarrow \infty} x_{n}=a$ for some real number a. Furthermore $a \leq 0$ by the Order Limit Theorem since $x_{n}<0$ for all n.
II.
A) The Bolzano-Weierstrass theorem says that every bounded sequence has a convergent subsequence.
B) We have $\left|x_{n}\right|=|\sin (n)| \leq 1$ for all n. Hence x_{n} is a bounded sequence and the Bolzano-Weierstrass theorem applies. There is a subsequence $x_{n_{k}}$ that converges.
III.
A) $\lim _{k \rightarrow \infty} k a_{k}=4$ means that for $\epsilon=1$, for instance, there exists a natural number N such that $k a_{k}>4-1=3$ for all $k>N$. Then $a_{k}>\frac{3}{k}$ for these k, and the series $\sum_{k} a_{k}$ diverges by comparison with the series $\sum_{k} \frac{3}{k}$. So there are no such examples.
B) Any convergent series of negative terms is an example, for instance $\sum_{k=0}^{\infty} \frac{-1}{2^{k}}$.
IV.
A) $\sum_{k=1}^{\infty} \frac{1}{5 k+3}$ diverges by the comparison test: For all $k>3: 5 k+3<6 k$, so $\frac{1}{5 k+3}>\frac{1}{6 k}$. The series $\sum_{k=1}^{\infty} \frac{1}{6 k}$ diverges because it is a constant times the harmonic series. However $\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{5 k+3}$ converges by the Alternating Series Test since $\frac{1}{5 k+3}$ is strictly decreasing as $k \rightarrow \infty$ and $\lim _{k \rightarrow \infty} \frac{1}{5 k+3}=0$. The given series is conditionally convergent.
B) This is a geometric series with ratio $\frac{-1}{7}$. Since $\left|\frac{-1}{7}\right|<1$ it is absolutely convergent.
V. Using the Ratio Test,

$$
\lim _{k \rightarrow \infty}\left|\frac{(x-3)^{k+1}}{(k+1) 6^{k+1}} \cdot \frac{k 6^{k}}{(x-3)^{k}}\right|=\lim _{k \rightarrow \infty}|x-3|\left(\frac{k+1}{6 k}\right)=\frac{|x-3|}{6}
$$

This is <1 when $|x-3|<6$, or $-3<x<9$. The series converges absolutely for these x and diverges for $x>9$ and $x<-3$. When $x=9$ we get the harmonic series which
diverges. When $x=-3$, then we get the alternating harmonic series which converges by the Alternating Series Test. Hence the whole interval of convergence is $-3 \leq x<9$.

Extra Credit. Let $\varepsilon>0$. Since x_{n} converges to a there exists a natural number N_{1} such that $\left|x_{n}-a\right|<\varepsilon / 2$ whenever $n \geq N_{1}$. So when $n \geq N_{1}$, we have by the triangle inequality

$$
\begin{aligned}
\left|y_{n}-a\right| & =\left|\frac{x_{1}+x_{2}+\cdots+x_{n}-n a}{n}\right| \\
& \leq \frac{1}{n}\left(\left|x_{1}-a\right|+\cdots+\left|x_{N_{1}-1}-a\right|+\left|x_{N_{1}}-a\right|+\cdots+\left|x_{n}-a\right|\right) \\
& \leq \frac{1}{n}\left(\left|x_{1}-a\right|+\cdots+\left|x_{N_{1}-1}-a\right|\right)+\frac{n-N_{1}+1}{n} \varepsilon / 2 \\
& <\frac{1}{n}\left(\left|x_{1}-a\right|+\cdots+\left|x_{N_{1}-1}-a\right|\right)+\varepsilon / 2
\end{aligned}
$$

Now, using the Hint, notice that for all k, there exists a real number M such that $\left|x_{k}-a\right| \leq$ M (a convergent sequence is bounded). Therefore, the last term above is bounded above by $\frac{N_{1}-1}{n} M$. Given ε, N_{1} is fixed as above. But if we take n sufficiently large, say $n>N_{2}$ for some N_{2}, then we can make $\frac{N_{1}-1}{n} M<\varepsilon / 2$ also. Therefore $\left|y_{n}-a\right|<\varepsilon$ for all $n>\max \left(N_{1}, N_{2}\right)$.

