Mathematics 242 – Principles of Analysis Solutions for Exam 1 – October 7, 2005

I. A) (10) State the Axiom of Completeness for the real number system.

Solution: Every set $A \subset \mathbf{R}$ that is bounded above has a least upper bound $s = \sup(A)$ in \mathbf{R} .

B) (10) Show that if $s = \sup(A)$ for some $A \subset \mathbf{R}$ and $\varepsilon > 0$, then there exists some $a \in A$ satisfying $s - \varepsilon < a \leq s$.

- Solution: By definition, s is the real smallest number that is an upper bound for A. Since $\varepsilon > 0$, $s \varepsilon < 0$ and hence $s \varepsilon$ is not an upper bound for A. This implies that there is some $a \in A$ with $s \varepsilon < a$. $a \leq s$ because s is an upper bound for A.
 - C) (10) Let $A = \bigcup_{n=1}^{\infty} \left(0, 1 \frac{1}{2n}\right)$. Explain why A is bounded above and determine $\sup(A)$.
- Solution: If $x \in A$, then there is some n such that $x < \frac{1}{2n}$. Since $\frac{1}{2n} < 1$ for all $n \in \mathbf{N}$, we get x < 1 for all $x \in A$. In fact, $\sup(A) = 1$ since if $y = 1 \varepsilon < 1$, then the Archimedean Property implies that there exists $n \in \mathbf{N}$ such that $\frac{1}{2n} < \varepsilon$, so $1 \frac{1}{2n} > 1 \varepsilon = y$. Hence there exist $x \in A$ with x > y too, and y cannot be an upper bound for A. Since 1 is an upper bound for A, but no y < 1 is, $\sup(A) = 1$.

II. A) (5) Find

$$\lim_{n \to \infty} \frac{2n^2 - 1}{5n^2 + 2n}$$

using the Algebraic Limit Theorem.

Solution:

$$\lim_{n \to \infty} \frac{2n^2 - 1}{5n^2 + 2n} = \lim_{n \to \infty} \frac{2 - \frac{1}{n^2}}{5 + \frac{2}{n}} = \frac{2}{5}$$

B) (15) Prove that $x_n = \frac{2n^2 - 1}{5n^2 + 2n}$ converges to your limit from part A using the definition.

Solution: Preliminaries: We can use some slightly tricky estimates to reduce the complication of the N that works for a given $\varepsilon > 0$:

$$\left|\frac{2n^2 - 1}{5n^2 + 2n} - \frac{2}{5}\right| = \frac{4n + 5}{25n^2 + 10n}$$
$$< \frac{4n + 5}{25n^2}$$
$$< \frac{5n + 5}{25n^2}$$
$$= \frac{n + 1}{5n^2}$$
$$< \frac{2n}{5n^2} = \frac{2}{5n}$$

Proof: Let $\varepsilon > 0$, and let $N \in \mathbf{N}$ satisfy $N > \frac{2}{5\varepsilon}$. Then for all $n \ge N$,

$$\left|\frac{2n^2 - 1}{5n^2 + 2n} - \frac{2}{5}\right| = \frac{4n + 5}{25n^2 + 10n}$$

$$< \frac{4n + 5}{25n^2}$$

$$< \frac{5n + 5}{25n^2}$$

$$= \frac{n + 1}{5n^2}$$

$$< \frac{2n}{5n^2}$$

$$\leq \frac{2}{5N}$$

$$< \varepsilon$$

Hence $\lim_{n \to \infty} \frac{2n^2 - 1}{5n^2 + 2n} = \frac{2}{5}$.

III. Let (x_n) be the sequence defined by $x_1 = 2$ and $x_{n+1} = \frac{2x_n - 1}{3}$ for all $n \ge 1$.

- A) (15) Using mathematical induction, show that $x_n \ge -1$ for all $n \ge 1$.
- Solution: The base case is n = 1, and $x_1 = 2 \ge -1$ from the definition of the sequence. For the induction step, assume $x_k \ge -1$, and apply the operations on both sides to produce x_{k+1} on the left:

$$x_{k+1} = \frac{2x_k - 1}{3} \ge \frac{2(-1) - 1}{3} = -1.$$

Hence by induction, $x_n \ge -1$ for all $n \in \mathbf{N}$.

B) (15) Using mathematical induction, show that (x_n) is strictly decreasing: $x_{n+1} < x_n$ for all $n \ge 1$.

Solution: With n = 1, we have $x_2 = \frac{2(2)-1}{3} = 1 < x_1 = 2$. Now assume that $x_{k+1} < x_k$ and apply the operations producing x_k from x_{k+1} to both sides:

$$x_{k+2} = \frac{2x_{k+1} - 1}{3} < \frac{2x_k - 1}{3} = x_{k+1}.$$

This shows $x_{n+1} < x_n$ for all $n \in \mathbf{N}$.

IV. True-False. For each true statement give a short proof or reason; for each false statement give a counterexample.

A) (10) If A and B are sets of real numbers with the property that a > b for all $a \in A$ and $b \in B$, then $\inf(A) > \sup(B)$.

Solution: This is FALSE. It can be true that a > b for all $a \in A$ and $b \in B$, but $\inf(A) = \sup(B)$. Counterexample to the statement as given: $A = \{1 + \frac{1}{n} : n \in \mathbb{N}\}$ and $B = \{1 + \frac{1}{n} : n \in \mathbb{N}\}$. All elements of A are strictly bigger than 1, while all elements of B are strictly less than 1. Hence a > b for all $a \in A$ and $b \in B$. But $\inf(A) = \sup(B) = 1$.

B) (10) If r is a nonzero rational number and t is an irrational number, then rt is irrational.

Solution: This is TRUE. Arguing by contradiction, suppose $rt \in \mathbf{Q}$. Write r = a/b, rt = c/d with $a, b, c, d \in \mathbf{Z}$. Then at/b = c/d, or $t = (bc)/(ad) \in \mathbf{Q}$. This is a contradiction. so t must be irrational.