I. A) (10) State the Axiom of Completeness for the real number system.

Solution: Every set $A \subset \mathbf{R}$ that is bounded above has a least upper bound $s=\sup (A)$ in \mathbf{R}.
B) (10) Show that if $s=\sup (A)$ for some $A \subset \mathbf{R}$ and $\varepsilon>0$, then there exists some $a \in A$ satisfying $s-\varepsilon<a \leq s$.

Solution: By definition, s is the real smallest number that is an upper bound for A. Since $\varepsilon>0$, $s-\varepsilon<0$ and hence $s-\varepsilon$ is not an upper bound for A. This implies that there is some $a \in A$ with $s-\varepsilon<a$. $a \leq s$ because s is an upper bound for A.
C) (10) Let $A=\cup_{n=1}^{\infty}\left(0,1-\frac{1}{2 n}\right)$. Explain why A is bounded above and determine $\sup (A)$.

Solution: If $x \in A$, then there is some n such that $x<\frac{1}{2 n}$. Since $\frac{1}{2 n}<1$ for all $n \in \mathbf{N}$, we get $x<1$ for all $x \in A$. In fact, $\sup (A)=1$ since if $y=1-\varepsilon<1$, then the Archimedean Property implies that there exists $n \in \mathbf{N}$ such that $\frac{1}{2 n}<\varepsilon$, so $1-\frac{1}{2 n}>1-\varepsilon=y$. Hence there exist $x \in A$ with $x>y$ too, and y cannot be an upper bound for A. Since 1 is an upper bound for A, but no $y<1$ is, $\sup (A)=1$.
II. A) (5) Find

$$
\lim _{n \rightarrow \infty} \frac{2 n^{2}-1}{5 n^{2}+2 n}
$$

using the Algebraic Limit Theorem.

Solution:

$$
\lim _{n \rightarrow \infty} \frac{2 n^{2}-1}{5 n^{2}+2 n}=\lim _{n \rightarrow \infty} \frac{2-\frac{1}{n^{2}}}{5+\frac{2}{n}}=\frac{2}{5}
$$

B) (15) Prove that $x_{n}=\frac{2 n^{2}-1}{5 n^{2}+2 n}$ converges to your limit from part A using the definition.

Solution: Preliminaries: We can use some slightly tricky estimates to reduce the complication of the N that works for a given $\varepsilon>0$:

$$
\begin{aligned}
\left|\frac{2 n^{2}-1}{5 n^{2}+2 n}-\frac{2}{5}\right| & =\frac{4 n+5}{25 n^{2}+10 n} \\
& <\frac{4 n+5}{25 n^{2}} \\
& <\frac{5 n+5}{25 n^{2}} \\
& =\frac{n+1}{5 n^{2}} \\
& <\frac{2 n}{5 n^{2}}=\frac{2}{5 n}
\end{aligned}
$$

Proof: Let $\varepsilon>0$, and let $N \in \mathbf{N}$ satisfy $N>\frac{2}{5 \varepsilon}$. Then for all $n \geq N$,

$$
\begin{aligned}
\left|\frac{2 n^{2}-1}{5 n^{2}+2 n}-\frac{2}{5}\right| & =\frac{4 n+5}{25 n^{2}+10 n} \\
& <\frac{4 n+5}{25 n^{2}} \\
& <\frac{5 n+5}{25 n^{2}} \\
& =\frac{n+1}{5 n^{2}} \\
& <\frac{2 n}{5 n^{2}} \\
& \leq \frac{2}{5 N} \\
& <\varepsilon
\end{aligned}
$$

Hence $\lim _{n \rightarrow \infty} \frac{2 n^{2}-1}{5 n^{2}+2 n}=\frac{2}{5}$.
III. Let $\left(x_{n}\right)$ be the sequence defined by $x_{1}=2$ and $x_{n+1}=\frac{2 x_{n}-1}{3}$ for all $n \geq 1$.
A) (15) Using mathematical induction, show that $x_{n} \geq-1$ for all $n \geq 1$.

Solution: The base case is $n=1$, and $x_{1}=2 \geq-1$ from the definition of the sequence. For the induction step, assume $x_{k} \geq-1$, and apply the operations on both sides to produce x_{k+1} on the left:

$$
x_{k+1}=\frac{2 x_{k}-1}{3} \geq \frac{2(-1)-1}{3}=-1 .
$$

Hence by induction, $x_{n} \geq-1$ for all $n \in \mathbf{N}$.
B) (15) Using mathematical induction, show that $\left(x_{n}\right)$ is strictly decreasing: $x_{n+1}<$ x_{n} for all $n \geq 1$.

Solution: With $n=1$, we have $x_{2}=\frac{2(2)-1}{3}=1<x_{1}=2$. Now assume that $x_{k+1}<x_{k}$ and apply the operations producing x_{k} from x_{k+1} to both sides:

$$
x_{k+2}=\frac{2 x_{k+1}-1}{3}<\frac{2 x_{k}-1}{3}=x_{k+1} .
$$

This shows $x_{n+1}<x_{n}$ for all $n \in \mathbf{N}$.
IV. True-False. For each true statement give a short proof or reason; for each false statement give a counterexample.
A) (10) If A and B are sets of real numbers with the property that $a>b$ for all $a \in A$ and $b \in B$, then $\inf (A)>\sup (B)$.

Solution: This is FALSE. It can be true that $a>b$ for all $a \in A$ and $b \in B$, but $\inf (A)=$ $\sup (B)$. Counterexample to the statement as given: $A=\left\{1+\frac{1}{n}: n \in \mathbf{N}\right\}$ and $B=$ $\left\{1+\frac{1}{n}: n \in \mathbf{N}\right\}$. All elements of A are strictly bigger than 1 , while all elements of B are strictly less than 1 . Hence $a>b$ for all $a \in A$ and $b \in B$. But $\inf (A)=\sup (B)=1$.
B) (10) If r is a nonzero rational number and t is an irrational number, then $r t$ is irrational.

Solution: This is TRUE. Arguing by contradiction, suppose $r t \in \mathbf{Q}$. Write $r=a / b, r t=c / d$ with $a, b, c, d \in \mathbf{Z}$. Then $a t / b=c / d$, or $t=(b c) /(a d) \in \mathbf{Q}$. This is a contradiction. so t must be irrational.

