Mathematics 242 — Principles of Analysis
Solutions for Exam 1 October 7, 2005

I. A) (10) State the Axiom of Completeness for the real number system.
Solution: Every set A C R that is bounded above has a least upper bound s = sup(A) in R.

B) (10) Show that if s = sup(A) for some A C R and ¢ > 0, then there exists some a € A
satisfying s —e < a < s.

Solution: By definition, s is the real smallest number that is an upper bound for A. Since € > 0,
s —e < 0 and hence s — ¢ is not an upper bound for A. This implies that there is
some a € A with s — ¢ < a. a < s because s is an upper bound for A.

C) (10) Let A = U2, (0,1 — 5 ). Explain why A is bounded above and determine sup(A).

Solution: If z € A, then there is some n such that x < % Since % < 1 for all n € N, we get
z < 1 for all z € A. In fact, sup(A) = 1 since if y =1 — e < 1, then the Archimedean
Property implies that there exists n € N such that % < g s801— ﬁ >1—¢=uy.
Hence there exist © € A with £ > y too, and y cannot be an upper bound for A. Since
1 is an upper bound for A, but no y < 1 is, sup(4) = 1.
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B) (15) Prove that z,, = 51"21:21” converges to your limit from part A using the definition.

Solution: Preliminaries: We can use some slightly tricky estimates to reduce the complication
of the N that works for a given ¢ > 0:
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Proof: Let € > 0, and let N € N satisfy N > 5—25 Then for all n > N,
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Hence hmn_,oc m = 5

III. Let (z5,) be the sequence defined by 1 = 2 and z,41 = 2221 for all n > 1.
A) (15) Using mathematical induction, show that x,, > —1 for all n > 1.

Solution: The base case isn =1, and x; = 2 > —1 from the definition of the sequence. For the
induction step, assume xz > —1, and apply the operations on both sides to produce
ZTr+1 on the left:
2up —1 _ 2= -1 _
3 - 3
Hence by induction, z,, > —1 for all n € N.
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B) (15) Using mathematical induction, show that (z,,) is strictly decreasing: z, 11 <
x,, for all n > 1.

Solution: With n = 1, we have x5 = 2(2;_1 =1 < x; = 2. Now assume that rx41 < zx and

apply the operations producing zj, from x4 to both sides:
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This shows z, 11 < z, for all n € N.

IV. True-False. For each true statement give a short proof or reason; for each false state-
ment give a counterexample.

A) (10) If A and B are sets of real numbers with the property that a > b for alla € A
and b € B, then inf(A) > sup(B).



Solution: This is FALSE. It can be true that a > b for all a € A and b € B, but inf(A) =
sup(B). Counterexample to the statement as given: A = {1+ 1:n e N} and B =
{1 + % 'n e N}. All elements of A are strictly bigger than 1, while all elements of B
are strictly less than 1. Hence a > bfor alla € A and b € B. But inf(A) = sup(B) = 1.

B) (10) If r is a nonzero rational number and ¢ is an irrational number, then r¢ is
irrational.

Solution: This is TRUE. Arguing by contradiction, suppose rt € Q. Write r = a/b,rt = ¢/d
with a,b,c,d € Z. Then at/b = c¢/d, or t = (bc)/(ad) € Q. This is a contradiction. so
t must be irrational.



