A) For the regular partition P_{n} of $[0,2]$ with n smaller intervals we have $\Delta x=\frac{2}{n}$ and $x_{i}=\frac{2 i}{n}$. The function $f(x)=1-6 x^{2}$ is decreasing on [0,2] (since $f^{\prime}(x)=-12 x \leq 0$ on the interval). Hence

$$
\begin{aligned}
U\left(f, P_{n}\right) & =\sum_{i=1}^{n}\left(1-6\left(\frac{2(i-1)}{n}\right)^{2}\right) \frac{2}{n} \\
& =\frac{2}{n} \sum_{i=1}^{n} 1-\frac{48}{n^{3}} \sum_{i=1}^{n-1} i^{2} \\
& =2-\frac{48}{n^{3}} \sum_{i=1}^{n-1} i^{2}
\end{aligned}
$$

Similarly

$$
\begin{aligned}
L\left(f, P_{n}\right) & =\sum_{i=1}^{n}\left(1-6\left(\frac{2 i}{n}\right)^{2}\right) \frac{2}{n} \\
& =2-\frac{48}{n^{3}} \sum_{i=1}^{n} i^{2}
\end{aligned}
$$

Hence,

$$
U\left(f, P_{n}\right)-L\left(f, P_{n}\right)=\frac{48}{n^{3}} n^{2}=\frac{48}{n}
$$

If we are given $\varepsilon>0$, then $\frac{48}{n}<\varepsilon$ whenever $n>\frac{48}{\varepsilon}$. So we have that f is integrable. The value of the integral is found by taking

$$
\begin{aligned}
\lim _{n \rightarrow \infty} L\left(f, P_{n}\right) & =\lim _{n \rightarrow \infty}\left(2-\frac{48}{n^{3}} \sum_{i=1}^{n} i^{2}\right) \\
& =\lim _{n \rightarrow \infty}\left(2-\frac{48}{n^{3}} \cdot \frac{n(n+1)(2 n+1)}{6}\right) \\
& =2-16=-14
\end{aligned}
$$

B) The answer is NO: $f(x)$ is not integrable on $[0,1]$ (or on any other interval $[a, b]$ with $b>a)$. The reason is that since every such interval contains both rational and irrational numbers. So for every partition P, we have $M_{i}=1$ all i, and $m_{i}=0$ all i. Hence

$$
U(f, P)=\sum_{i=1}^{n} M_{i} \Delta x_{i}=\sum_{i=1}^{n} \Delta x_{i}=1
$$

while

$$
L(f, P)=\sum_{i=1}^{n} m_{i} \Delta x_{i}=0
$$

Given $\varepsilon<1$, there is no partition P such that $U(f, P)-L(f, P)<\varepsilon$. Hence f is not integrable.
C) Consider the regular partition P_{n} of $[a, b]$ into n equal subintervals: $P_{n}=\left\{x_{i}: 0 \leq i \leq\right.$ $n\}$ with $x_{i}-x_{i-1}=(b-a) / n$ for all i. Then since f is increasing $M_{i}=f\left(x_{i}\right)$ for all i and

$$
U\left(f, P_{n}\right)=\frac{(b-a)}{n} \sum_{i=1}^{n} f\left(x_{i}\right)
$$

Similarly, $m_{i}=f\left(x_{i-1}\right)$ for each i and

$$
L\left(f, P_{n}\right)=\frac{(b-a)}{n} \sum_{i=1}^{n} f\left(x_{i-1}\right)=\frac{(b-a)}{n} \sum_{i=0}^{n-1} f\left(x_{i}\right)
$$

In the difference $U\left(f, P_{n}\right)-L\left(f, P_{n}\right)$, all the terms except the last one in U and the first one in L cancel (i.e. the sum "telescopes"), leaving

$$
U\left(f, P_{n}\right)-L\left(f, P_{n}\right)=(b-a)(f(b)-f(a)) \cdot \frac{1}{n}
$$

(note $x_{n}=b$ and $x_{0}=a$). Since $(b-a)(f(b)-f(a))$ is constant, we have $\lim _{n \rightarrow \infty} U\left(f, P_{n}\right)-$ $L\left(f, P_{n}\right)=0$. Therefore by Theorem 7.2.8, f is integrable on $[a, b]$.
D) Let $\varepsilon>0$. Since f is integrable on $[a, c]$, there is a partition P_{1} of $[a, c]$ such that $U\left(f, P_{1}\right)-L\left(f, P_{1}\right)<\varepsilon / 2$. Similarly, since f is integrable on $[c, b]$ there is a partition P_{2} of $[c, b]$ such that $U\left(f, P_{2}\right)-L\left(f, P_{2}\right)<\varepsilon / 2$. Let $P_{\varepsilon}=P_{1} \cup P_{2}$. This gives a partition of $[a, b]$. From the definitions, $U\left(f, P_{\varepsilon}\right)=U\left(f, P_{1}\right)+U\left(f, P_{2}\right)$ and $L\left(f, P_{\varepsilon}\right)=L\left(f, P_{1}\right)+L\left(f, P_{2}\right)$. This shows that

$$
U\left(f, P_{\varepsilon}\right)-L\left(f, P_{\varepsilon}\right)=\left(U\left(f, P_{1}\right)-L\left(f, P_{1}\right)\right)+\left(U\left(f, P_{2}\right)-L\left(f, P_{2}\right)\right)<\varepsilon / 2+\varepsilon / 2=\varepsilon
$$

Therefore, f is integrable on $[a, b]$. To see the relation $\int_{a}^{b} f=\int_{a}^{c} f+\int_{c}^{b} f$, note for all $\varepsilon>0$, there is a partition $P_{\varepsilon}=P_{1} \cup P_{2}$ as above, such that

$$
\begin{aligned}
\left|\int_{a}^{b} f-\left(\int_{a}^{c} f+\int_{c}^{b} f\right)\right| & =\left|\int_{a}^{b} f-L\left(f, P_{\varepsilon}\right)-\left(\int_{a}^{c} f-L\left(f, P_{1}\right)\right)-\left(\int_{c}^{b} f-L\left(f, P_{2}\right)\right)\right| \\
& \leq\left|\int_{a}^{b} f-L\left(f, P_{\varepsilon}\right)\right|+\left|\int_{a}^{c} f-L\left(f, P_{1}\right)\right|+\left|\int_{c}^{b} f-L\left(f, P_{2}\right)\right| \\
& <\varepsilon+\varepsilon / 2+\varepsilon / 2
\end{aligned}
$$

(The last inequalities follow since $L(f, P)<\int_{a}^{b} f<U(f, P)$.) Since $\varepsilon>0$ is arbitrary, this shows $\int_{a}^{b} f-\left(\int_{a}^{c} f+\int_{c}^{b} f\right)=0$

