I.
A) The sequence $\left(x_{n}\right)$ converges to L if for every $\varepsilon>0$, there exists an $N \in \mathbf{N}$ such that $\left|x_{n}-L\right|<\varepsilon$ whenever $n \geq N$.
B)

$$
\lim _{n \rightarrow \infty} \frac{5 n^{2}+3 n+1}{n^{2}+4 n}=\lim _{n \rightarrow \infty} \frac{5+\frac{3}{n}+\frac{1}{n^{2}}}{1+\frac{4}{n}}=5
$$

by the Algebraic Limit Theorem.
C) Given $\varepsilon>0$, let $N>\frac{17}{\varepsilon}$. Then for all $n \geq N, \frac{17}{n}<\frac{17}{N}<\varepsilon$, so

$$
\begin{aligned}
\left|\frac{5 n^{2}+3 n+1}{n^{2}+4 n}-5\right| & =\frac{|-17 n+1|}{n^{2}+4 n} \\
& =\frac{17 n-1}{n^{2}+4 n} \\
& <\frac{17 n}{n^{2}} \\
& =\frac{17}{n}<\varepsilon
\end{aligned}
$$

This shows the limit of the sequence is 5 as claimed.
II. First we show x_{n} is bounded above by 2 by induction. The base case is $n=1$, where $x_{1}=1 \leq 2$ is clear. Then assume $x_{k} \leq 2$. We have $x_{k+1}=\sqrt{x_{k}+1} \leq \sqrt{2+1}=\sqrt{3} \leq 2$. So x_{n} is bounded above by 2 for all n.

Next we show that x_{n} is monotone increasing. We have $x_{2}=\sqrt{2}>1=x_{1}$ for the base case. Next assume $x_{k}>x_{k-1}$. Then

$$
x_{k+1}=\sqrt{x_{k}+1}>\sqrt{x_{k-1}+1}=x_{k}
$$

So the sequence is monotone (strictly) increasing.
Finally, we know the sequence converges to some $L \leq 2$ by the monotone convergence theorem. To find L we take $\lim _{n \rightarrow \infty}$ in the equation $x_{n}=\sqrt{x_{n}+1}$, so $L=\sqrt{L+1}$, or $L^{2}-L-1=0$. This gives $L=\frac{1 \pm \sqrt{5}}{2}$ by the quadratic formula. The limit must be positive, so $L=\frac{1+\sqrt{5}}{2}$.
III. The Bolzano-Weierstrass theorem is the statement that every bounded sequence has a convergent subsequence. See the class notes and text for the proof.
IV.
A) The infinite series $\sum_{n=1}^{\infty} a_{n}$ converges if and only if the sequence of partial sums: $S_{N}=\sum_{n=1}^{N} a_{n}$ converges to some $L \in \mathbf{R}$.
B) This is a geometric series with first term $a=15 / 7$ and ratio $r=3 / 7$, which is less than 1 in absolute value. Hence the series converges to

$$
\frac{a}{1-r}=\frac{15 / 7}{1-3 / 7}=\frac{15}{4} .
$$

C) $f(n)=\frac{1}{n+\ln (n)}$ is decreasing with n and $\lim _{n \rightarrow \infty} \frac{1}{n+\ln (n)}=0$. Hence the series converges by the Alternating Series Test. The series of absolute values is $\sum_{n=1}^{\infty} \frac{1}{n+\ln (n)}$. Since $\ln (n)<n$ for all $n \geq 1$, we have $n+\ln (n)<2 n$ and $\frac{1}{n+\ln (n)}>\frac{1}{2 n}$. The series $\sum_{n=1}^{\infty} \frac{1}{2 n}$ diverges (it's a constant times the harmonic series). Hence by the comparison test, $\sum_{n=1}^{\infty} \frac{1}{n+\ln (n)}$ diverges too. With the alternating signs, the series is conditionally convergent.
D)

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right| & =\lim _{n \rightarrow \infty}\left|\frac{(-1)^{n+1}(n+1)^{2} \cdot 2^{n}}{(-1)^{n} n^{2} 2^{n+1}}\right| \\
& =\lim _{n \rightarrow \infty} \frac{1}{2}\left(1+\frac{1}{n}\right)^{2} \\
& =\frac{1}{2}<1
\end{aligned}
$$

Hence, the series converges absolutely.
V.
A) No, $f(x)$ is not continuous at $x=0$. Let $x_{n}=\frac{1}{n}$ (all rational. Then $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=$ $\left(\frac{1}{n}\right)^{2}-1=-1$. But if $y_{n}=\frac{\sqrt{2}}{n}$ (all irrational), then $\lim _{n \rightarrow \infty} f\left(y_{n}\right)=\lim _{n \rightarrow \infty} 2\left(\frac{\sqrt{2}}{n}\right)-$ $2=-2$. Since the two sequential limits are different, $f(x)$ is not continuous at $x=0$, since $\lim _{x \rightarrow 1} f(x)$ does not exist.
B) Yes, $f(x)$ is continuous at $x=1$. Note that

$$
|f(x)-f(1)|= \begin{cases}\left|x^{2}-1\right|=|x+1||x-1| & \text { if } x \text { is rational } \\ 2|x-1| & \text { if } x \text { is irrational }\end{cases}
$$

Given $\varepsilon>0$, let $\delta=\min \{1, \varepsilon / 3\}$. Then if $|x-1|<\delta$, we have $0<1-\delta<x<1+\delta<2$, so $1<x+1<3$. Hence in either case (x rational or irrational), $|f(x)-f(1)|<3 \cdot \varepsilon / 3<$ ε or $|f(x)-f(1)|<2 \varepsilon / 3<\varepsilon$. This shows that $\lim _{x \rightarrow 1} f(x)=f(1)$ so f is continuous at $x=1$.
VI.
A) This is TRUE. By contraposition, if f changes sign on the interval, then the Intermediate Value Theorem shows $f(x)=0$ for some $x \in[a, b]$. Hence if $f(x)$ is never zero, then it is either always positive or always negative.
B) This is TRUE. By the Extreme Value Theorem, f attains its minimum at some $c \in$ $[a, b]: f(x) \geq f(c)$ for all $x \in[a, b]$. But we are given that $f(c)>0$, so we can take $m=f(c)$.
C) This is FALSE. Counterexample: $f:(-1,1) \rightarrow \mathbf{R}$ is continuous on the open interval, but the range $f(-1,1)=[0,1)$ which is not open.
VII. By the definition,

$$
\begin{aligned}
f^{\prime}(0) & =\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0} \\
& =\lim _{x \rightarrow 0} \frac{x^{3} \sin (1 / x)+3 x}{x} \\
& =\lim _{x \rightarrow 0} x^{2} \sin (1 / x)+3 \\
& =3
\end{aligned}
$$

(Note $\sin (1 / x)$ is bounded so $\lim _{x \rightarrow 0} x^{2} \sin (1 / x)=0$.)
VIII. For the regular partition P_{n} of $[1,3]$ we have $\Delta x=2 / n x_{i}=1+2 i / n$ for $i=0, \ldots, n$. The function $f(x)=x^{2}+5$ is increasing on the interval $[1,3]$, so

$$
U\left(f, P_{n}\right)=\sum_{i=1}^{n}\left((1+2 i / n)^{2}+5\right) \frac{2}{n}
$$

and

$$
L\left(f, P_{n}\right)=\sum_{i=0}^{n-1}\left((1+2 i / n)^{2}+5\right) \frac{2}{n}
$$

Hence $U\left(f, P_{n}\right)-L\left(f, P_{n}\right)=(14-6) \frac{2}{n}=\frac{16}{n}$. This can be made $<\varepsilon$ by taking $\frac{n>18}{\varepsilon}$. Hence f is integrable on $[1,3]$. The value of the integral is

$$
\begin{aligned}
\int_{1}^{3} x^{2}+5 d x & =\lim _{n \rightarrow \infty} U\left(f, P_{n}\right) \\
& =\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left((1+2 i / n)^{2}+5\right) \frac{2}{n} \\
& =\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(6+4 i / n+4 i^{2} / n^{2}\right) \frac{2}{n} \\
& =\lim _{n \rightarrow \infty} 12+\frac{8}{n^{2}} \sum_{i=1}^{\infty} i+\frac{8}{n^{3}} \sum_{i=1}^{\infty} i^{2} \\
& =\lim _{n \rightarrow \infty} 12+\frac{4 n(n+1)}{n^{2}}+\frac{4 n(n+1)(2 n+1)}{3 n^{3}} \\
& =12+4+8 / 3=56 / 3
\end{aligned}
$$

IX.
A) This limit computes $\frac{d}{d x} \ln (x)$ at $x=1$. By calculus we know $\frac{d}{d x} \ln (x)=\frac{1}{x}$, so

$$
\lim _{h \rightarrow 0}=\frac{\ln (1+h)}{h}=1
$$

B) Writing $h=1 / n$, this shows

$$
1=\lim _{n \rightarrow \infty} n \cdot \ln \left(1+\frac{1}{n}\right)=\lim _{n \rightarrow \infty} \ln \left(1+\frac{1}{n}\right)^{n}
$$

Write $x_{n}=\ln \left(1+\frac{1}{n}\right)^{n}$. Then the sequential criterion for continuity shows

$$
\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}=\lim _{n \rightarrow \infty} e^{x_{n}}=e^{\lim _{n \rightarrow \infty} x_{n}}=e
$$

Extra Credit. Since f is continous, it is integrable on $[1, B]$ for all $B>1$. Since f is decreasing, the lower sum for the partition $P=\{1,2, \ldots, N\}$ on $[1, N]$ is the sum

$$
\sum_{n=2}^{N} f(n)=L(f, P)<\int_{1}^{N} f(x) d x<\lim _{B \rightarrow \infty} \int_{1}^{B} f(x) d x=L
$$

Hence the partial sums of the series are bounded above by a fixed number L. By the Monotone Convergence Theorem, the partial sums converge to a finite limit, so $\sum_{n=1}^{\infty} f(n)$ converges.

To see that $\sum_{n=1} \frac{1}{n^{\alpha}}$ converges for all $\alpha>1$, note that

$$
\lim _{B \rightarrow \infty} \int_{1}^{B} \frac{1}{x^{\alpha}} d x=\left.\lim _{B \rightarrow \infty} \frac{x^{-\alpha+1}}{-\alpha+1}\right|_{1} ^{B}=\lim _{B \rightarrow \infty} \frac{B^{1-\alpha}-1}{1-\alpha}
$$

Since $\alpha>1,1-\alpha<0$ so this limit exists, and equals $\frac{1}{\alpha-1}$. Hence the sum converges by the first part of the question.

