I. $f(x)=x^{2}-6 x+3$.
A) Let $\varepsilon>0$ and $\delta<\min \{1, \varepsilon / 5\}$. If $|x-1|<\delta<1$, then $0<x<2$, so $|x-5|<5$. Then since we also have $|x-1|<\varepsilon / 5$:

$$
|f(x)-(-2)|=\left|x^{2}-6 x+5\right|=|x-1||x-5|<(\varepsilon / 5) \cdot 5=\varepsilon
$$

This shows $\lim _{x \rightarrow 1} f(x)=-2$.
B) Note that $f^{\prime}(x)=2 x-6 \geq 0$ on the interval [3,4]. Therefore f is monotone increasing. By the result from question C on Discussion $3, f$ is integrable on that interval. (Alternate way: f is continuous on \mathbf{R}, so by the theorem we proved in class on $11 / 30$, f is integrable on every finite interval.)
II.
A) IVT: Let f be continuous on $[a, b]$. If L is any real number (strictly) between $f(a)$ and $f(b)$, then there exists $c \in(a, b)$ such that $f(c)=L$.
B) $f(x)$ is continuous because $f^{\prime}(x)=-a_{2} \sin (x)$ exists for all real x. Moreover $f(0)=$ $a_{1}+a_{2}>0$ while $f(\pi)=a_{1}-a_{2}<0$. Taking $L=0$ in the IVT, there exists $c \in(0, \pi)$ such that $f(c)=0$.
III. Since $s=\sup f([a, b])$, if $\varepsilon>0$, then $s-\varepsilon$ is not an upper bound for $f([a, b])$. So there exists $x \in[a, b]$ such that $s-\varepsilon<f(x) \leq s$. Apply this with $\varepsilon=\frac{1}{n}$ for each $n \in \mathbf{N}$. This gives a sequence $\left(x_{n}\right)$ in $[a, b]$ such that $s-\frac{1}{n}<f\left(x_{n}\right)<s$ for all $n \in \mathbf{N}$. Since $[a, b]$ is a bounded interval, the Bolzano-Weierstrass theorem implies that there is a subsequence $x_{n_{k}}$ of this sequence converging to some c. By the above $\lim _{k \rightarrow \infty} f\left(x_{n_{k}}\right)=s$. Since the interval is closed, the limit c is also in the interval $[a, b]$. But then by the sequential version of continuity

$$
s=\lim _{k \rightarrow \infty} f\left(x_{n_{k}}\right)=f(c) .
$$

IV.
A) This is FALSE. Let x_{n} be any sequence of rational numbers converging to 3 . Then $\lim _{n \rightarrow \infty} f(x)=9$. On the other hand, if y_{n} is a sequence of irrational numbers converging to 3 , then $\lim _{n \rightarrow \infty} f\left(y_{n}\right)=0$. Since these two sequential limits are different the limit of the function does not exist.
B) This is TRUE. We have

$$
\frac{f(x)-f(0)}{x-0}= \begin{cases}\frac{x^{2}}{x}=x & \text { if } x \text { is rational } \\ 0 & \text { if } x \text { is irrational }\end{cases}
$$

Either way, if $|x|<\delta=\varepsilon$, then

$$
\left|\frac{f(x)-f(0)}{x-0}-0\right|<\varepsilon
$$

whenever $|x|<\varepsilon$. So the limit of the difference quotient exists and

$$
f^{\prime}(0)=\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}=0
$$

C) This is FALSE. If we pick any partition $P=\left\{x_{i}: i=0, \ldots, n\right\}$ of the interval, then each subinterval contains rational numbers arbitrarily close to the right-hand endpoint of the subinterval. Hence $M_{i}=x_{i}^{2}$. On the other hand $m_{i}=0$ since every subinterval also contains irrational numbers. Since all the $x_{i}^{2}>1$, The difference

$$
U(f, P)-L(f, P)=\sum_{i=1}^{n}\left(M_{i}-m_{i}\right) \Delta x_{i}=\sum_{i=1}^{n} x_{i}^{2} \Delta x_{i}>\sum_{i=1}^{n} \Delta x_{i}=1
$$

This shows f is not integrable on [1,2].
D) This is FALSE. $s=\sup f([-\sqrt{2}, \sqrt{2}])=2$ but there is no x in the interval where $f(x)=2$. (Note $\pm \sqrt{2}$ are irrational, so $f(\pm \sqrt{2})=0$).

