October 7, 2004

Discussion Questions

A) The second defining property of the supremum $s=\sup (S)$ above says: if $s^{\prime}<s$, then there exists $x \in S$ such that $x>s^{\prime}$. Show that this statement is equivalent to saying: If t is any upper bound for S, then $t \geq s$. (Note and Hint: In fact, many analysis books define the supremum using this alternate form, because it clearly shows that $\sup (S)$ is the "least upper bound" for S. The relation between these statements comes from one of our basic logical equivalences!)

Solution: The form given in question A for saying $s=\sup (S)$ is the contrapositive of the book's definition: Book: If $s^{\prime}<s$, then s^{\prime} is not an upper bound for S (that is, there exists an $x \in S$ such that $x>s^{\prime}$). Contrapositive of this is: If s^{\prime} is an upper bound for S, then $s^{\prime} \geq s$. Replacing s^{\prime} by t we get exactly what is here.
B) Let S be a nonempty bounded subset of \mathbf{R}. Show that $s=\sup (S)$ is unique. Method: Assume that two real numbers s, s^{\prime} both satisfy the definition, then deduce that s must equal s^{\prime}.

Solution: Using the form from problem A, let s and s^{\prime} both satisfy the defining properties of $\sup (S)$. Since s is $\sup (S)$, and s^{\prime} is an upper bound for S, we get from A, $s \leq s^{\prime}$. Similarly, since s^{\prime} is $\sup (S)$ and s is an upper bound for $S, s^{\prime} \leq s$. These two inequalities show $s=s^{\prime}$.
C) Prove that if $x<y$ are any real numbers, then there exist infinitely many rational numbers r with $x<r<y$. Hint: Last time we showed that there is one such rational number. Try to extend that proof.

Solution: In class we showed that given any reals $x<y$, there exists a rational number r_{1} with $x<r_{1}<y$. Repeat the same argument, with r_{1} playing the role of y. There exists a rational number r_{2} with $x<r_{2}<r_{1}<y$. Continuing in the same way, we can find a sequence of rational numbers $r_{n}, n \in \mathbf{N}$ such that $x<\cdots<r_{n}<\cdots<r_{2}<r_{1}<y$ for all n. The r_{i} are distinct by construction, so there are infinitely many rationals between x and y (a whole denumerable set of them).
D) Let a / b be a rational number written as a fraction in lowest terms with $0<a / b<1$.

1) Show using the Archimedean Property that there exists an integer n such that

$$
\frac{1}{n+1} \leq \frac{a}{b} \leq \frac{1}{n}
$$

Solution: Consider the number $b / a>1$. By the Archimedean Property of N, there exists a natural number n such that $n \leq b / a \leq n+1$. Then inverting (and correspondingly reversing the inequalities), we have

$$
\frac{1}{n+1} \leq \frac{a}{b} \leq \frac{1}{n}
$$

as claimed. Note: We cannot have equality in both cases, so we could always write one of these as a strict inequality. If a / b happens to equal the reciprocal of a natural number we could make $a=1 /(n+1)$, for instance.
2) If n is chosen as in part 1 , show that $a / b-1 /(n+1)$ is a fraction that when written in lowest terms has numerator is less than a.

Solution: We have $a / b-1 /(n+1)=(a(n+1)-b) /(b(n+1))$. If this fraction is not already in lowest terms, then canceling common factors can only make the numerator smaller. Hence to prove what we want here, it suffices to show that

$$
a(n+1)-b<a .
$$

From the proof of part $1, a n<b \leq a(n+1)$, so subtracting $a(n+1)$ everywhere, $-a<$ $b-a(n+1)<0$. Reversing signs (and switching the inequalities correspondingly), $a>$ $a(n+1)-b$, which is what we wanted to show.
3) Use the Principle of Strong Induction from Problem Set 3 to show that every rational number a / b as above can be written as a sum:

$$
\frac{a}{b}=\frac{1}{n_{1}}+\cdots+\frac{1}{n_{k}}
$$

for some distinct natural numbers n_{i}. (For instance $49 / 90=1 / 3+1 / 9+1 / 10$.)
Solution: The result from part 2 says that if we find the integer n with $1 /(n+1) \leq a / b<$ $1 / n$, then the difference $a / b-1 /(n+1)$, written in lowest terms, must have a smaller numerator than a / b. This means that we should try to set up an induction argument where the "induction variable", so to speak, is the integer a in the numerator of the fraction.

The base case for the induction is numbers of the form $a / b=1 / b$ (where $a=1$). These are already written in unit fraction, or "Egyptian" form. So the base case requires no proof (:)). Now consider any $0<a / b<1$ in lowest terms. By part 2 , there exists an integer $n+1$ such that $a / b-1 /(n+1)$ has numerator $<a$ when written in lowest terms. By strong induction, this means that we can write

$$
\frac{a}{b}-\frac{1}{(n+1)}=\frac{1}{n_{1}}+\cdots+\frac{1}{n_{k}}
$$

for some distinct integers n_{1}, \ldots, n_{k}. But then

$$
\frac{a}{b}=\frac{1}{(n+1)}+\frac{1}{n_{1}}+\cdots+\frac{1}{n_{k}}
$$

and the only thing left to prove is that $n+1, n_{1}, \ldots, n_{k}$ must all be distinct. Since n_{1}, \ldots, n_{k} are distinct, this just means that we need to show $n+1 \neq n_{i}$ for $i=1, \ldots, k$. Aiming for a contradiction, suppose on the contrary that $n+1=n_{i}$ for some i, and for convenience, renumber so that $i=1$. Then $a / b-2 /(n+1)=1 / n_{2}+\cdots+1 / n_{k}>0$. But for $n>1$, we always have $2 /(n+1)>1 / n$. This implies that $a / b-1 / n>a / b-2 /(n+1)>0$. But note that n was chosen to make $1 /(n+1) \leq a / b<1 / n$, so $a / b-1 / n<0$. Hence, we have found a contradiction because $a / b-1 / n$ cannot be both positive and negative. Hence the denominators $n+1, n_{1}, n_{2}, \ldots, n_{k}$ are all distinct.

