Background

Last time, we introduced the supremum or least upper bound of a subset $S \subseteq \mathbf{R}$. Recall, we say that $s=\sup (S)$ if

- s is an upper bound of $S-x \leq s$ is true for all $x \in S$, and
- if $s^{\prime}<s$, then there exists $x \in S$ such that $x>s^{\prime}$.

The completeness axiom, the crucial property of the real numbers, is:
Completeness Axiom. If S is nonempty and bounded above in \mathbf{R}, then $\sup (S)$ exists in \mathbf{R}.

That is, every nonempty set that is bounded above in \mathbf{R} has a least upper bound in \mathbf{R}. Today, we want to study further properties of the supremum.

Discussion Questions

A) The second defining property of the supremum $s=\sup (S)$ above says: if $s^{\prime}<s$, then there exists $x \in S$ such that $x>s^{\prime}$. Show that this statement is equivalent to saying: If t is any upper bound for S, then $t \geq s$. (Note and Hint: In fact, many analysis books define the supremum using this alternate form, because it clearly shows that $\sup (S)$ is the "least upper bound" for S. The relation between these statements comes from one of our basic logical equivalences!)
B) Let S be a nonempty bounded subset of \mathbf{R}. Show that $s=\sup (S)$ is unique. Method: Assume that two real numbers s, s^{\prime} both satisfy the definition, then deduce that s must equal s^{\prime}.
C) Prove that if $x<y$ are any real numbers, then there exist infinitely many rational numbers r with $x<r<y$. Hint: Last time we showed that there is one such rational number. Try to extend that proof.
D) Let a / b be a rational number written as a fraction in lowest terms with $0<a / b<1$.

1) Show using the Archimedean Property that there exists an integer n such that

$$
\frac{1}{n+1} \leq \frac{a}{b} \leq \frac{1}{n}
$$

2) If n is chosen as in part 1 , show that $a / b-1 /(n+1)$ is a fraction that when written in lowest terms has numerator is less than a.
3) Use the Principle of Strong Induction from Problem Set 3 to show that every rational number a / b as above can be written as a sum:

$$
\frac{a}{b}=\frac{1}{n_{1}}+\cdots+\frac{1}{n_{k}}
$$

for some distinct natural numbers n_{i}. (For instance $49 / 90=1 / 3+1 / 9+1 / 10$.)
Such fractions are often called "Egyptian fractions" because the ancient Egyptians did all of their rational number arithmetic using them (for some reason they didn't like fractions with a numerator different from 1). They wrote all fractions this way, then computed sums and products via tabulations that have survived in ancient papyrus manuscripts - the "Rhind papyrus" is probably the most famous example. It is one of the oldest surviving ancient mathematical documents. There is an interesting discussion of this online at
http://www-gap.dcs.st-and.ac.uk/~history/HistTopics/Egyptian_papyri.html

Assignment

Group writeups due by $5: 00 \mathrm{pm}$ on Monday, October 4.

