8.4e/ We must construct a bijective mapping $f:(0,1) \rightarrow \mathbf{R}$. In order to get the whole real line as the image of a function on a finite interval, we expect the graph must have vertical asymptotes at both $x=0$ and $x=1$, say with $\lim _{x \rightarrow 0^{+}} f(x)=-\infty$ and $\lim _{x \rightarrow 1^{-}} f(x)=$ $+\infty$. We recall from calculus that the tangent function has a graph with the right general shape. However $\tan (x)$ has successive vertical asymptotes at $x=-\pi / 2$ and $x=\pi / 2$. So we must shift and "squeeze" the graph horizontally to place the asymptotes at $x=0$ and $x=1$. The function $f(x)=\tan (\pi x-\pi / 2)$ will work for this purpose. Note that $x=0$ corresponds to $-\pi / 2$ and $x=1$ corresponds to $-\pi / 2$. Since $\tan (x)$ is strictly increasing on the open interval $(-\pi / 2, \pi / 2)$, it is injective. It is continuous and surjective onto \mathbf{R}. (A full proof of this requires a result called the Intermediate Value Theorem that we will prove in a few weeks.) Hence our f is a bijection from $(0,1)$ to \mathbf{R}.
8.11/ a) We must show that there is a bijection $f:(0,1) \rightarrow(m, n)$. The linear function with $f(0)=m$ and $f(1)=n$ will work for this purpose, since both endpoints of both intervals are omitted. We obtain $f(x)=(n-m) x+m$. This is injective since

$$
f(x)=f\left(x^{\prime}\right) \Rightarrow(n-m) x+m=(n-m) x^{\prime}+m \Rightarrow(n-m) x=(n-m) x^{\prime} \Rightarrow x=x^{\prime}
$$

The surjectivity can be proved directly here (without recourse to the Intermediate Value Theorem). Given any $y \in(m, n)$, we can solve the equation $y=(n-m) x+m$ for x : $x=\frac{y-m}{n-m}$. If $m<y<n$, we see $0<x<1$.
b) Using part a, we have bijections $f:(0,1) \rightarrow(m, n)$ and $g:(0,1) \rightarrow\left(m^{\prime}, n^{\prime}\right)$. The function $h=g \circ f^{-1}$ maps (m, n) to $\left(m^{\prime}, n^{\prime}\right)$. Moreover h is a bijection since f^{-1} and g are bijections.
10.15/ We assume that $p(n)$ is a collection of statements, one for each $n \in \mathbf{N}$, satisfying

1) $p(1)$ is true, and
2) $p(1) \wedge p(2) \wedge \cdots \wedge p(k) \Rightarrow p(k+1)$ for all $k \geq 1$.

We claim that $p(n)$ is true for all $n \in \mathbf{N}$ (the principle of strong induction). The proof is by contradiction. Let $F=\{n: p(n)$ is false $\}$, so we assume F is nonempty. By the Well-Ordering Principle, F has a smallest element n_{0}. By assumption $1, n_{0}>1$. Hence $n_{0}-1 \in \mathbf{N}$, and $1,2, \ldots, n_{0}-1 \in \mathbf{N} \backslash F$, so $p(1), \ldots, p\left(n_{0}-1\right)$ are all true. Then assumption 2 shows that $p(1) \wedge \cdots \wedge p\left(n_{0}-1\right)$ implies $p\left(n_{0}\right)$ is also true. But this is a contradiction, since $n_{0} \in F$. Therefore F must be empty, and $p(n)$ is true for all $n \in \mathbf{N}$.
10.18 a) Finding a common denominator, we have

$$
\begin{aligned}
\binom{n}{r}+\binom{n}{r-1} & =\frac{n!}{r!(n-r)!}+\frac{n!}{(r-1)!(n-r+1)!} \\
& =\frac{n!((n-r+1)+r)}{r!(n-r+1)!} \\
& =\frac{n!(n+1)}{r!(n-r+1)!} \\
& =\frac{(n+1)!}{r!(n-r+1)!} \\
& =\binom{n+1}{r}
\end{aligned}
$$

b) We must prove that

$$
(a+b)^{n}=\sum_{i=0}\binom{n}{i} a^{n-i} b^{i}=\binom{n}{0} a^{n}+\binom{n}{1} a^{n-1} b+\cdots+\binom{n}{n} b^{n}
$$

This proof will be by induction on n. The base case $n=1$ is true since

$$
(a+b)^{1}=a+b=\binom{1}{0} a+\binom{1}{1} b
$$

Now we assume as our induction hypothesis that

$$
(a+b)^{k}=\binom{k}{0} a^{k}+\binom{k}{1} a^{k-1} b+\cdots+\binom{k}{k} b^{k}
$$

Now we consider $(a+b)^{k+1}$ and use the induction hypothesis:

$$
\begin{aligned}
(a+b)^{k+1}= & (a+b)(a+b)^{k} \\
= & (a+b)\left(\binom{k}{0} a^{k}+\binom{k}{1} a^{k-1} b+\cdots+\binom{k}{k} b^{k}\right) \\
= & \binom{k}{0} a^{k+1}+\binom{k}{1} a^{k} b+\binom{k}{2} a^{k-1} b^{2}+\cdots+\binom{k}{k} a b^{k} \\
& \binom{k}{0} a^{k} b+\binom{k}{1} a^{k-1} b^{2}+\cdots+\binom{k}{k-1} a b^{k}+\binom{k}{k} b^{k+1}
\end{aligned}
$$

We collect like terms and use part a. Then since $\binom{k}{0}=\binom{k+1}{0}=\binom{k}{k}=\binom{k+1}{k+1}=1$,

$$
=\binom{k+1}{0} a^{k+1}+\binom{k+1}{1} a^{k} b+\binom{k+1}{2} a^{k-1} b^{2}+\cdots+\binom{k+1}{k+1} b^{k+1}
$$

