Section $6 / 8$. Let R be the relation on \mathbf{R}^{2}, defined by

$$
(a, b) R(c, d) \Leftrightarrow a+d=b+c
$$

First, we show that R is an equivalence relation. First, it is reflexive since $a+b=b+a$ implies $(a, b) R(a, b)$ for all (a, b). Next, it is symmetric, since if $(a, b) R(c, d)$ then $a+d=$ $b+c$. Hence $c+b=d+a$ so $(c, d) R(a, b)$. Finally, it is transitive since if $(a, b) R(c, d)$ and $(c, d) R(e, f)$ then $a+d=b+c$ and $c+f=d+e$. These equations imply that $a+d+f=b+c+f=b+d+e$, so $a+f=b+e$, which shows $(a, b) R(e, f)$. The equivalence class of $(7,3)$ is the set of all (x, y) such that $(x, y) R(3,7)$, or $x+3=y+7$. This is the line defined by the equation $y=x-7$ in the plane.

Section $7 / 8$. Note that the problem asks for functions $f: \mathbf{N} \rightarrow \mathbf{N}$. This means that the domains and ranges must be subsets of the set of natural numbers $\mathbf{N}=\{1,2,3, \ldots\}$.
a) The function

$$
f(n)= \begin{cases}1 & \text { if } n=1 \\ n-1 & \text { if } n \geq 2\end{cases}
$$

is not injective since $f(1)=f(2)=1$. But it is surjective, since every natural number is in its range.
b) An injective, but not surjective function is $f(n)=2 n$. The range is the set of even natural numbers, so f is not surjective. But f is injective since $f\left(n_{1}\right)=f\left(n_{2}\right)$ implies $2 n_{1}=2 n_{2}$, so $n_{1}=n_{2}$.
c) A function that is neither injective nor surjective is

$$
f(n)= \begin{cases}n & \text { if } n \text { is even } \\ 2 n & \text { if } n \text { is odd }\end{cases}
$$

The range is the set of even natural numbers, so f is not surjective. Moreover, f is not injective, since $f(2)=f(1)=2$.
d) $f(n)=n$ is bijective.

Section 7/10.
a) We want an example where $f: A \rightarrow B$ and $f^{-1}(f(C)) \neq C$ for some $C \subseteq A$. Let $f(x)=x^{2}$, and let $C=\{1\}$. We have $f^{-1}(f(C))=\left\{x: x^{2}=1\right\}=\{-1,1\}$.
b) We want an example where $f\left(f^{-1}(D)\right) \neq D$ for some subset $D \subset B$. Let $f(x)=x^{2}$ again, and take $D=\{-1\}$. Then $f^{-1}(D)=\left\{x: x^{2}=-1\right\}=\emptyset$ (as long as we take the domain of f to be the set of real numbers, or a subset of the reals). Hence $f\left(f^{-1}(D)\right)=\emptyset \neq D$.
c) We want an example where $f\left(C_{1} \cap C_{2}\right) \neq f\left(C_{1}\right) \cap f\left(C_{2}\right)$ for subsets $C_{1}, C_{2} \subset A$. Take $f(x)=x^{2}$ again, and let $C_{1}=\{1\}, C_{2}=\{-1\}$. Then $f\left(C_{1} \cap C_{2}\right)=\emptyset$, but $f\left(C_{1}\right)=f\left(C_{2}\right)=\{1\}$, so $f\left(C_{1}\right) \cap f\left(C_{2}\right)=\{1\}$.

Section 7/12. Let $f: A \rightarrow B$.
a) We want to show that f injective implies $f^{-1}(f(C))$ for all subsets $C \subset A$. We know $C \subseteq f^{-1}(f(C))$ for all mappings. Hence, we must show that f injective implies $f^{-1}(f(C)) \subseteq C$. Let $x \in f^{-1}(f(C))$. By definition, this means $f(x) \in f(C)$, so $f(x)=f\left(x^{\prime}\right)$ for some $x^{\prime} \in C$. Since f is injective, this implies $x=x^{\prime}$, so $x \in C$. We have shown $f^{-1}(f(C)) \subseteq C$.
b) Similarly, we want to show that f surjective implies that $f\left(f^{-1}(D)\right)=D$ for all $D \subseteq B$. We know that $f\left(f^{-1}(D)\right) \subset D$ for all mappings f and all D. So, we need to show that f surjective implies that $D \subseteq f\left(f^{-1}(D)\right)$. So let $y \in D$. Since $D \subset B$ and f is surjective, this means that $y=f(x)$ for some $x \in A$. But then by definition, this implies that $x \in f^{-1}(D)$, and $y=f(x) \in f\left(f^{-1}(D)\right)$. This shows that $D \subseteq f\left(f^{-1}(D)\right)$.

Section $7 / 13$. We assume that f, g are injective. Let $g(f(x))=g\left(f\left(x^{\prime}\right)\right)$. Since g is injective, $f(x)=f\left(x^{\prime}\right)$. But then, since f is injective, $x=x^{\prime}$. This shows that the composition $g \circ f$ is injective also.

Section $7 / 20$.
a) If $f: A \rightarrow B$ has a left inverse function g and $f(x)=f\left(x^{\prime}\right)$, then $x=g(f(x))=$ $g\left(f\left(x^{\prime}\right)\right)=x^{\prime}$. This implies that f is injective. Conversely, suppose f is injective. For each $y \in B, y$ is either equal to $f(x)$ for some $x \in A$ or else $y \neq f(x)$ for all $x \in A$. In the first case, since f is injective, there is only one such x, so we can define $g(y)=x$, where x is the unique element of A for which $f(x)=y$. If $y \neq f(x)$ for all $x \in A$, then pick some $a \in A$ arbitrarily and define $g(y)=a$. Doing this we get a function $g: B \rightarrow A$, and $g(f(x))=x$ for all $x \in A$. Hence g is a left inverse of f.
b) If $f: A \rightarrow B$ has a right inverse function g, then $f(g(y))=y$ for all $y \in B$. This says that every $y \in B$ is in the range of f, so f is surjective. Conversely, if f is surjective, then we must construct a right inverse function g. To do this, since f is surjective, for every $y \in B$, there exists (at least one) $x \in A$ such that $f(x)=y$. For each y, pick any one such x and define $g(y)=x$. This gives a function $g: B \rightarrow A$ with $f(g(y))=y$ for all $y \in B$. Hence g is a right inverse for f.

