Section 6/8. Let R be the relation on \mathbb{R}^2 , defined by

$$(a,b)R(c,d) \Leftrightarrow a+d=b+c$$

First, we show that R is an equivalence relation. First, it is reflexive since a + b = b + aimplies (a, b)R(a, b) for all (a, b). Next, it is symmetric, since if (a, b)R(c, d) then a + d = b + c. Hence c + b = d + a so (c, d)R(a, b). Finally, it is transitive since if (a, b)R(c, d)and (c, d)R(e, f) then a + d = b + c and c + f = d + e. These equations imply that a + d + f = b + c + f = b + d + e, so a + f = b + e, which shows (a, b)R(e, f). The equivalence class of (7, 3) is the set of all (x, y) such that (x, y)R(3, 7), or x + 3 = y + 7. This is the line defined by the equation y = x - 7 in the plane.

Section 7/8. Note that the problem asks for functions $f : \mathbf{N} \to \mathbf{N}$. This means that the domains and ranges must be subsets of the set of natural numbers $\mathbf{N} = \{1, 2, 3, \ldots\}$.

a) The function

$$f(n) = \begin{cases} 1 & \text{if } n = 1\\ n-1 & \text{if } n \ge 2 \end{cases}$$

is not injective since f(1) = f(2) = 1. But it is surjective, since every natural number is in its range.

- b) An injective, but not surjective function is f(n) = 2n. The range is the set of even natural numbers, so f is not surjective. But f is injective since $f(n_1) = f(n_2)$ implies $2n_1 = 2n_2$, so $n_1 = n_2$.
- c) A function that is neither injective nor surjective is

$$f(n) = \begin{cases} n & \text{if } n \text{ is even} \\ 2n & \text{if } n \text{ is odd} \end{cases}$$

The range is the set of even natural numbers, so f is not surjective. Moreover, f is not injective, since f(2) = f(1) = 2.

d) f(n) = n is bijective.

Section 7/10.

- a) We want an example where $f : A \to B$ and $f^{-1}(f(C)) \neq C$ for some $C \subseteq A$. Let $f(x) = x^2$, and let $C = \{1\}$. We have $f^{-1}(f(C)) = \{x : x^2 = 1\} = \{-1, 1\}$.
- b) We want an example where $f(f^{-1}(D)) \neq D$ for some subset $D \subset B$. Let $f(x) = x^2$ again, and take $D = \{-1\}$. Then $f^{-1}(D) = \{x : x^2 = -1\} = \emptyset$ (as long as we take the domain of f to be the set of real numbers, or a subset of the reals). Hence $f(f^{-1}(D)) = \emptyset \neq D$.
- c) We want an example where $f(C_1 \cap C_2) \neq f(C_1) \cap f(C_2)$ for subsets $C_1, C_2 \subset A$. Take $f(x) = x^2$ again, and let $C_1 = \{1\}, C_2 = \{-1\}$. Then $f(C_1 \cap C_2) = \emptyset$, but $f(C_1) = f(C_2) = \{1\}$, so $f(C_1) \cap f(C_2) = \{1\}$.

Section 7/12. Let $f : A \to B$.

- a) We want to show that f injective implies $f^{-1}(f(C))$ for all subsets $C \subset A$. We know $C \subseteq f^{-1}(f(C))$ for all mappings. Hence, we must show that f injective implies $f^{-1}(f(C)) \subseteq C$. Let $x \in f^{-1}(f(C))$. By definition, this means $f(x) \in f(C)$, so f(x) = f(x') for some $x' \in C$. Since f is injective, this implies x = x', so $x \in C$. We have shown $f^{-1}(f(C)) \subseteq C$.
- b) Similarly, we want to show that f surjective implies that $f(f^{-1}(D)) = D$ for all $D \subseteq B$. We know that $f(f^{-1}(D)) \subset D$ for all mappings f and all D. So, we need to show that f surjective implies that $D \subseteq f(f^{-1}(D))$. So let $y \in D$. Since $D \subset B$ and f is surjective, this means that y = f(x) for some $x \in A$. But then by definition, this implies that $x \in f^{-1}(D)$, and $y = f(x) \in f(f^{-1}(D))$. This shows that $D \subseteq f(f^{-1}(D))$.

Section 7/13. We assume that f, g are injective. Let g(f(x)) = g(f(x')). Since g is injective, f(x) = f(x'). But then, since f is injective, x = x'. This shows that the composition $g \circ f$ is injective also.

Section 7/20.

- a) If $f: A \to B$ has a left inverse function g and f(x) = f(x'), then x = g(f(x)) = g(f(x')) = x'. This implies that f is injective. Conversely, suppose f is injective. For each $y \in B$, y is either equal to f(x) for some $x \in A$ or else $y \neq f(x)$ for all $x \in A$. In the first case, since f is injective, there is only one such x, so we can define g(y) = x, where x is the unique element of A for which f(x) = y. If $y \neq f(x)$ for all $x \in A$, then pick some $a \in A$ arbitrarily and define g(y) = a. Doing this we get a function $g: B \to A$, and g(f(x)) = x for all $x \in A$. Hence g is a left inverse of f.
- b) If $f: A \to B$ has a right inverse function g, then f(g(y)) = y for all $y \in B$. This says that every $y \in B$ is in the range of f, so f is surjective. Conversely, if f is surjective, then we must construct a right inverse function g. To do this, since f is surjective, for every $y \in B$, there exists (at least one) $x \in A$ such that f(x) = y. For each y, pick any one such x and define g(y) = x. This gives a function $g: B \to A$ with f(g(y)) = yfor all $y \in B$. Hence g is a right inverse for f.