
Mathematis 242 { Priniples of AnalysisSolutions { Final ExaminationDeember 16, 2004I. We have A = fos(x) : x 2 [0; 3�=4℄g = [�p2=2; 1℄ := [�:707; 1℄and B = fx : 1 < x2 < 4g = (�2;�1) [ (1; 2)so:A) A [ B = (�2;�1) [ [�p2=2; 2).B) For eah x 2 A, jx� 2j represents the distane along the number line from x to 2. SoC = fjx� 2j : x 2 Ag = [1; 2 +p2=2℄The least upper bound of C is 2 + p22 := 2:707.II. A) We say limn!1 xn = L if for all " > 0, there exist N suh that jxn � Lj < " for alln � N . (The N an be taken to be a natural number or an arbitrary real, as onvenient.)B) We have limn!1 3n2 + nn2 + 1 = limn!1 3n2 + nn2 + 1 � 1=n21=n2 = limn!1 3 + 1=n1 + 1=n2 = 3:To prove this, note that ����3n2 + nn2 + 1 � 3���� = jn� 3jn2 + 1There are several ways to proeed from here. For instane, using the triangle inequality inthe numerator, we ould say: jn� 3jn2 + 1 � n+ 3n2 + 1 ;whih is � 2nn2 + 1 < 2nn2 = 2nas soon as n � 3. Here's the �nished proof based on this idea: Let " > 0, and letN > max(3; 2" ) Then for all n � N , we have����3n2 + nn2 + 1 � 3���� = jn� 3jn2 + 1 � n+ 3n2 + 1 < 2n < ":III. A) The sequene xn = sin(n) is bounded sine j sin(n)j � 1 for all n. Hene the Bolzano-Weierstrass Theorem says that there exists a onvergent subsequene xnk = sin(nk) forsome sequene of integers nk. 1



B) Consider the sequene os(nk), using the nk from part A. This is also a boundedsequene sine j os(nk)j � 1 for all k. Hene the Bolzano-Weierstrass Theorem impliesthat there is a onvergent subsequene of this sequene, say ynk` = os(nk`). Note that thissequene omes from a subsequene of the index sequene nk. Hene xnk` is a subsequeneof the onvergent sequene from part A. So sine any subsequene of a onvergent sequeneis onvergent too, the xnk` is also onvergent.Note: A lot of people lost a lot of points on this one beause they did not take into aountthat the n inside the sin and os in the de�nitions of the sequenes xn and yn is the sameas the index for the sequenes. You have to onsider plugging integer values into the twotrig funtions. Things like n�=2 are NOT INTEGERS!IV. A) Let f : D ! R and let  be an aumulation point of D. Then we say limx! f(x) =L if for all " > 0, there exist Æ > 0 suh that jf(x)�Lj < " for all x 2 D with 0 < jx�j < Æ.B) The limit here is 0. Proof: Let " > 0 and let Æ = p". Then for all x with 0 < jx� 0j <p", we have (using j os(1=x)j � 1 for all x 6= 0)jx2 os(1=x)� 0j = jxj2j os(1=x)j � jx2j < (p")2 = ":Note: It is not orret to evaluate the limit using the limit produt rule here. The problemis that limx!0 os(1=x) does not exist. However, os(1=x) is bounded and the other fatorx2 goes to zero, so the produt goes to zero.V. A) f(0) = 0 and f(2) = 1 by omputing.B) The denominator x4 + 48 is nonzero for all x 2 R. Hene f(x) = 32xx4+48 is ontinuousat all x. By the IVT on the interval [0; 2℄, for eah k with 0 < k < 1, there is at leastone x 2 (0; 2) suh that f(x) = k. To �nd a seond x satisfying this ondition, note thatlimx!+1 f(x) = 0. Hene by the IVT again, there is also at least one additional solutionof f(x) = k for x 2 (2;+1).C) (Note: We are interested in applying this statement to the f(x) from the problem,whih is di�erentiable at all x. So it suÆes to onsider the ontrapositive statement,assuming that f is di�erentiable: If for some k, f(x1) = f(x2) = k for some x1 6= x2,then f 0(x) = 0 for some x between x1 and x2. This is exatly the situation of the speialase of the MVT known as Rolle's Theorem. So beause the ontrapositive statement isequivalent to this one, we have: If f is di�erentiable and f 0(x) 6= 0 for all x 2 I, then forall k, the equation f(x) = k has at most one solution x 2 I.D) Our funtion f has derivative f 0(x) = 1536� 96x2x4 + 482



(quotient rule for derivatives!). This is zero for x > 0 only at x = 2. Hene by part C,on the intervals (0; 2) and (2;+1), there an only be one solution of f(x) = k in eahinterval. This means that there are exatly two of them all together.VI. The most eonomial way to show that f(x) = x2 + x � 1 is integrable on [0; 3℄ isto note that f(x) is monotone inreasing on that interval (f 0(x) = 2x + 1 > 0 for allx 2 [0; 3℄.) Hene as in the proof of our general theorem, for the regular partition Pn (with�x = 3=n), jU(f; Pn)� L(f; Pn)j = jf(3)� f(0)j 3n = 36n :Sine this goes to zero as n ! 1, we know f is integrable. The value is omputed usingthe upper sum, for instane. As above, �x = 3=n, and the points in the partition arePn = f3i=n : i = 0; 1; : : : ; ng. ThenU(f; Pn) = nXi=1  �3ii �2 + 3ii � 1! 3n= 27n3 nXi=1 i2 + 9n2 nXi=1 i� 3n nXi=1 1= 27n(n+ 1)(2n+ 1)6n3 + 9n(n+ 1)2n2 � 3= 9 + 272n + 92n2 + 92 + 92n � 3= 212 + 18n + 92n2) Z 30 x2 + x� 1 dx = limn!1U(f; Pn) = 212B) See lass notes and text.VII. A) True. The sequene of partial sums is monotone inreasing if an � 0. Hene if sNis bounded above, that sequene onverges.B) False. The series is absolutely onvergent, sine P1n=1 1n3 is a p-series with p = 3 > 1.Conditionally onvergent series are ones whereP1i=1 an onverges, butP1n=1 janj diverges.C) True. Let xn be any sequene with limn!1 xn = 0. Then whether or not xn is rational,we have limn!1 f(xn) = 0 = f(0). This shows limx!0 f(x) = f(0), so f is ontinuous atx = 0.
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