I. We have

$$
A=\{\cos (x): x \in[0,3 \pi / 4]\}=[-\sqrt{2} / 2,1] \doteq[-.707,1]
$$

and

$$
B=\left\{x: 1<x^{2}<4\right\}=(-2,-1) \cup(1,2)
$$

so:
A) $A \cup B=(-2,-1) \cup[-\sqrt{2} / 2,2)$.
B) For each $x \in A,|x-2|$ represents the distance along the number line from x to 2 . So

$$
C=\{|x-2|: x \in A\}=[1,2+\sqrt{2} / 2]
$$

The least upper bound of C is $2+\frac{\sqrt{2}}{2} \doteq 2.707$.
II. A) We say $\lim _{n \rightarrow \infty} x_{n}=L$ if for all $\varepsilon>0$, there exist N such that $\left|x_{n}-L\right|<\varepsilon$ for all $n \geq N$. (The N can be taken to be a natural number or an arbitrary real, as convenient.)
B) We have

$$
\lim _{n \rightarrow \infty} \frac{3 n^{2}+n}{n^{2}+1}=\lim _{n \rightarrow \infty} \frac{3 n^{2}+n}{n^{2}+1} \cdot \frac{1 / n^{2}}{1 / n^{2}}=\lim _{n \rightarrow \infty} \frac{3+1 / n}{1+1 / n^{2}}=3
$$

To prove this, note that

$$
\left|\frac{3 n^{2}+n}{n^{2}+1}-3\right|=\frac{|n-3|}{n^{2}+1}
$$

There are several ways to proceed from here. For instance, using the triangle inequality in the numerator, we could say:

$$
\frac{|n-3|}{n^{2}+1} \leq \frac{n+3}{n^{2}+1}
$$

which is

$$
\leq \frac{2 n}{n^{2}+1}<\frac{2 n}{n^{2}}=\frac{2}{n}
$$

as soon as $n \geq 3$. Here's the finished proof based on this idea: Let $\varepsilon>0$, and let $N>\max \left(3, \frac{2}{\varepsilon}\right)$ Then for all $n \geq N$, we have

$$
\left|\frac{3 n^{2}+n}{n^{2}+1}-3\right|=\frac{|n-3|}{n^{2}+1} \leq \frac{n+3}{n^{2}+1}<\frac{2}{n}<\varepsilon
$$

III. A) The sequence $x_{n}=\sin (n)$ is bounded $\operatorname{since}|\sin (n)| \leq 1$ for all n. Hence the BolzanoWeierstrass Theorem says that there exists a convergent subsequence $x_{n_{k}}=\sin \left(n_{k}\right)$ for some sequence of integers n_{k}.
B) Consider the sequence $\cos \left(n_{k}\right)$, using the n_{k} from part A. This is also a bounded sequence since $\left|\cos \left(n_{k}\right)\right| \leq 1$ for all k. Hence the Bolzano-Weierstrass Theorem implies that there is a convergent subsequence of this sequence, say $y_{n_{k_{\ell}}}=\cos \left(n_{k_{\ell}}\right)$. Note that this sequence comes from a subsequence of the index sequence n_{k}. Hence $x_{n_{k_{\ell}}}$ is a subsequence of the convergent sequence from part A . So since any subsequence of a convergent sequence is convergent too, the $x_{n_{k_{\ell}}}$ is also convergent.

Note: A lot of people lost a lot of points on this one because they did not take into account that the n inside the sin and cos in the definitions of the sequences x_{n} and y_{n} is the same as the index for the sequences. You have to consider plugging integer values into the two trig functions. Things like $n \pi / 2$ are NOT INTEGERS!
IV. A) Let $f: D \rightarrow \mathbf{R}$ and let c be an accumulation point of D. Then we say $\lim _{x \rightarrow c} f(x)=$ L if for all $\varepsilon>0$, there exist $\delta>0$ such that $|f(x)-L|<\varepsilon$ for all $x \in D$ with $0<|x-c|<\delta$.
B) The limit here is 0 . Proof: Let $\varepsilon>0$ and let $\delta=\sqrt{\varepsilon}$. Then for all x with $0<|x-0|<$ $\sqrt{\varepsilon}$, we have (using $|\cos (1 / x)| \leq 1$ for all $x \neq 0$)

$$
\left|x^{2} \cos (1 / x)-0\right|=|x|^{2}|\cos (1 / x)| \leq\left|x^{2}\right|<(\sqrt{\varepsilon})^{2}=\varepsilon .
$$

Note: It is not correct to evaluate the limit using the limit product rule here. The problem is that $\lim _{x \rightarrow 0} \cos (1 / x)$ does not exist. However, $\cos (1 / x)$ is bounded and the other factor x^{2} goes to zero, so the product goes to zero.
V. A) $f(0)=0$ and $f(2)=1$ by computing.
B) The denominator $x^{4}+48$ is nonzero for all $x \in \mathbf{R}$. Hence $f(x)=\frac{32 x}{x^{4}+48}$ is continuous at all x. By the IVT on the interval [0,2], for each k with $0<k<1$, there is at least one $x \in(0,2)$ such that $f(x)=k$. To find a second x satisfying this condition, note that $\lim _{x \rightarrow+\infty} f(x)=0$. Hence by the IVT again, there is also at least one additional solution of $f(x)=k$ for $x \in(2,+\infty)$.
C) (Note: We are interested in applying this statement to the $f(x)$ from the problem, which is differentiable at all x. So it suffices to consider the contrapositive statement, assuming that f is differentiable: If for some $k, f\left(x_{1}\right)=f\left(x_{2}\right)=k$ for some $x_{1} \neq x_{2}$, then $f^{\prime}(x)=0$ for some x between x_{1} and x_{2}. This is exactly the situation of the special case of the MVT known as Rolle's Theorem. So because the contrapositive statement is equivalent to this one, we have: If f is differentiable and $f^{\prime}(x) \neq 0$ for all $x \in I$, then for all k, the equation $f(x)=k$ has at most one solution $x \in I$.
D) Our function f has derivative

$$
f^{\prime}(x)=\frac{1536-96 x^{2}}{x^{4}+48}
$$

(quotient rule for derivatives!). This is zero for $x>0$ only at $x=2$. Hence by part C, on the intervals $(0,2)$ and $(2,+\infty)$, there can only be one solution of $f(x)=k$ in each interval. This means that there are exactly two of them all together.
VI. The most economical way to show that $f(x)=x^{2}+x-1$ is integrable on [0,3] is to note that $f(x)$ is monotone increasing on that interval $\left(f^{\prime}(x)=2 x+1>0\right.$ for all $x \in[0,3]$.) Hence as in the proof of our general theorem, for the regular partition P_{n} (with $\Delta x=3 / n)$,

$$
\left|U\left(f, P_{n}\right)-L\left(f, P_{n}\right)\right|=|f(3)-f(0)| \frac{3}{n}=\frac{36}{n}
$$

Since this goes to zero as $n \rightarrow \infty$, we know f is integrable. The value is computed using the upper sum, for instance. As above, $\Delta x=3 / n$, and the points in the partition are $P_{n}=\{3 i / n: i=0,1, \ldots, n\}$. Then

$$
\begin{aligned}
U\left(f, P_{n}\right) & =\sum_{i=1}^{n}\left(\left(\frac{3 i}{i}\right)^{2}+\frac{3 i}{i}-1\right) \frac{3}{n} \\
& =\frac{27}{n^{3}} \sum_{i=1}^{n} i^{2}+\frac{9}{n^{2}} \sum_{i=1}^{n} i-\frac{3}{n} \sum_{i=1}^{n} 1 \\
& =\frac{27 n(n+1)(2 n+1)}{6 n^{3}}+\frac{9 n(n+1)}{2 n^{2}}-3 \\
& =9+\frac{27}{2 n}+\frac{9}{2 n^{2}}+\frac{9}{2}+\frac{9}{2 n}-3 \\
& =\frac{21}{2}+\frac{18}{n}+\frac{9}{2 n^{2}} \\
\Rightarrow \int_{0}^{3} x^{2}+x-1 d x=\lim _{n \rightarrow \infty} U\left(f, P_{n}\right) & =\frac{21}{2}
\end{aligned}
$$

B) See class notes and text.
VII. A) True. The sequence of partial sums is monotone increasing if $a_{n} \geq 0$. Hence if s_{N} is bounded above, that sequence converges.
B) False. The series is absolutely convergent, since $\sum_{n=1}^{\infty} \frac{1}{n^{3}}$ is a p-series with $p=3>1$. Conditionally convergent series are ones where $\sum_{i=1}^{\infty} a_{n}$ converges, but $\sum_{n=1}^{\infty}\left|a_{n}\right|$ diverges.
C) True. Let x_{n} be any sequence with $\lim _{n \rightarrow \infty} x_{n}=0$. Then whether or not x_{n} is rational, we have $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=0=f(0)$. This shows $\lim _{x \rightarrow 0} f(x)=f(0)$, so f is continuous at $x=0$.

