
Mathemati
s 242 { Prin
iples of AnalysisSolutions { Final ExaminationDe
ember 16, 2004I. We have A = f
os(x) : x 2 [0; 3�=4℄g = [�p2=2; 1℄ := [�:707; 1℄and B = fx : 1 < x2 < 4g = (�2;�1) [ (1; 2)so:A) A [ B = (�2;�1) [ [�p2=2; 2).B) For ea
h x 2 A, jx� 2j represents the distan
e along the number line from x to 2. SoC = fjx� 2j : x 2 Ag = [1; 2 +p2=2℄The least upper bound of C is 2 + p22 := 2:707.II. A) We say limn!1 xn = L if for all " > 0, there exist N su
h that jxn � Lj < " for alln � N . (The N 
an be taken to be a natural number or an arbitrary real, as 
onvenient.)B) We have limn!1 3n2 + nn2 + 1 = limn!1 3n2 + nn2 + 1 � 1=n21=n2 = limn!1 3 + 1=n1 + 1=n2 = 3:To prove this, note that ����3n2 + nn2 + 1 � 3���� = jn� 3jn2 + 1There are several ways to pro
eed from here. For instan
e, using the triangle inequality inthe numerator, we 
ould say: jn� 3jn2 + 1 � n+ 3n2 + 1 ;whi
h is � 2nn2 + 1 < 2nn2 = 2nas soon as n � 3. Here's the �nished proof based on this idea: Let " > 0, and letN > max(3; 2" ) Then for all n � N , we have����3n2 + nn2 + 1 � 3���� = jn� 3jn2 + 1 � n+ 3n2 + 1 < 2n < ":III. A) The sequen
e xn = sin(n) is bounded sin
e j sin(n)j � 1 for all n. Hen
e the Bolzano-Weierstrass Theorem says that there exists a 
onvergent subsequen
e xnk = sin(nk) forsome sequen
e of integers nk. 1



B) Consider the sequen
e 
os(nk), using the nk from part A. This is also a boundedsequen
e sin
e j 
os(nk)j � 1 for all k. Hen
e the Bolzano-Weierstrass Theorem impliesthat there is a 
onvergent subsequen
e of this sequen
e, say ynk` = 
os(nk`). Note that thissequen
e 
omes from a subsequen
e of the index sequen
e nk. Hen
e xnk` is a subsequen
eof the 
onvergent sequen
e from part A. So sin
e any subsequen
e of a 
onvergent sequen
eis 
onvergent too, the xnk` is also 
onvergent.Note: A lot of people lost a lot of points on this one be
ause they did not take into a

ountthat the n inside the sin and 
os in the de�nitions of the sequen
es xn and yn is the sameas the index for the sequen
es. You have to 
onsider plugging integer values into the twotrig fun
tions. Things like n�=2 are NOT INTEGERS!IV. A) Let f : D ! R and let 
 be an a

umulation point of D. Then we say limx!
 f(x) =L if for all " > 0, there exist Æ > 0 su
h that jf(x)�Lj < " for all x 2 D with 0 < jx�
j < Æ.B) The limit here is 0. Proof: Let " > 0 and let Æ = p". Then for all x with 0 < jx� 0j <p", we have (using j 
os(1=x)j � 1 for all x 6= 0)jx2 
os(1=x)� 0j = jxj2j 
os(1=x)j � jx2j < (p")2 = ":Note: It is not 
orre
t to evaluate the limit using the limit produ
t rule here. The problemis that limx!0 
os(1=x) does not exist. However, 
os(1=x) is bounded and the other fa
torx2 goes to zero, so the produ
t goes to zero.V. A) f(0) = 0 and f(2) = 1 by 
omputing.B) The denominator x4 + 48 is nonzero for all x 2 R. Hen
e f(x) = 32xx4+48 is 
ontinuousat all x. By the IVT on the interval [0; 2℄, for ea
h k with 0 < k < 1, there is at leastone x 2 (0; 2) su
h that f(x) = k. To �nd a se
ond x satisfying this 
ondition, note thatlimx!+1 f(x) = 0. Hen
e by the IVT again, there is also at least one additional solutionof f(x) = k for x 2 (2;+1).C) (Note: We are interested in applying this statement to the f(x) from the problem,whi
h is di�erentiable at all x. So it suÆ
es to 
onsider the 
ontrapositive statement,assuming that f is di�erentiable: If for some k, f(x1) = f(x2) = k for some x1 6= x2,then f 0(x) = 0 for some x between x1 and x2. This is exa
tly the situation of the spe
ial
ase of the MVT known as Rolle's Theorem. So be
ause the 
ontrapositive statement isequivalent to this one, we have: If f is di�erentiable and f 0(x) 6= 0 for all x 2 I, then forall k, the equation f(x) = k has at most one solution x 2 I.D) Our fun
tion f has derivative f 0(x) = 1536� 96x2x4 + 482



(quotient rule for derivatives!). This is zero for x > 0 only at x = 2. Hen
e by part C,on the intervals (0; 2) and (2;+1), there 
an only be one solution of f(x) = k in ea
hinterval. This means that there are exa
tly two of them all together.VI. The most e
onomi
al way to show that f(x) = x2 + x � 1 is integrable on [0; 3℄ isto note that f(x) is monotone in
reasing on that interval (f 0(x) = 2x + 1 > 0 for allx 2 [0; 3℄.) Hen
e as in the proof of our general theorem, for the regular partition Pn (with�x = 3=n), jU(f; Pn)� L(f; Pn)j = jf(3)� f(0)j 3n = 36n :Sin
e this goes to zero as n ! 1, we know f is integrable. The value is 
omputed usingthe upper sum, for instan
e. As above, �x = 3=n, and the points in the partition arePn = f3i=n : i = 0; 1; : : : ; ng. ThenU(f; Pn) = nXi=1  �3ii �2 + 3ii � 1! 3n= 27n3 nXi=1 i2 + 9n2 nXi=1 i� 3n nXi=1 1= 27n(n+ 1)(2n+ 1)6n3 + 9n(n+ 1)2n2 � 3= 9 + 272n + 92n2 + 92 + 92n � 3= 212 + 18n + 92n2) Z 30 x2 + x� 1 dx = limn!1U(f; Pn) = 212B) See 
lass notes and text.VII. A) True. The sequen
e of partial sums is monotone in
reasing if an � 0. Hen
e if sNis bounded above, that sequen
e 
onverges.B) False. The series is absolutely 
onvergent, sin
e P1n=1 1n3 is a p-series with p = 3 > 1.Conditionally 
onvergent series are ones whereP1i=1 an 
onverges, butP1n=1 janj diverges.C) True. Let xn be any sequen
e with limn!1 xn = 0. Then whether or not xn is rational,we have limn!1 f(xn) = 0 = f(0). This shows limx!0 f(x) = f(0), so f is 
ontinuous atx = 0.
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