Mathematics 242 — Principles of Analysis
Solutions Final Examination
December 16, 2004

1. We have
A = {cos(z) : z € [0,37/4]} = [-V2/2,1] = [-.707,1]
and
B={r:1<z*<4}=(-2,-1)U(1,2)

A) AUB=(-2,-1)U[-V2/2,2).
B) For each z € A, |z — 2| represents the distance along the number line from z to 2. So

C={lz—2:2eA}=[1,2+2/2]
The least upper bound of C' is 2 + @ = 2.707.

IT. A) We say lim,,_, o, &, = L if for all € > 0, there exist N such that |z, — L| < ¢ for all
n > N. (The N can be taken to be a natural number or an arbitrary real, as convenient.)

B) We have

. 3n*+n . 3n*+n 1/n? . 34+1/n
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To prove this, note that

3n?+n |n — 3]
L |
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There are several ways to proceed from here. For instance, using the triangle inequality in
the numerator, we could say:

|n — 3| < n+3
n2+1 " n2+1’

which is
2n 2n, 2

“n2+1 n2 n
as soon as n > 3. Here’s the finished proof based on this idea: Let ¢ > 0, and let
N > max(3, 2) Then for all n > N, we have

< E.
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ITI. A) The sequence z,, = sin(n) is bounded since | sin(n)| < 1 for all n. Hence the Bolzano-
Weierstrass Theorem says that there exists a convergent subsequence z,, = sin(ny) for
some sequence of integers ny.



B) Consider the sequence cos(ng), using the ny from part A. This is also a bounded
sequence since |cos(ng)| < 1 for all k. Hence the Bolzano-Weierstrass Theorem implies
that there is a convergent subsequence of this sequence, say Yny, = cos(n,). Note that this
sequence comes from a subsequence of the index sequence ny. Hence Ty, is a subsequence
of the convergent sequence from part A. So since any subsequence of a convergent sequence

is convergent too, the Ty, is also convergent.

Note: A lot of people lost a lot of points on this one because they did not take into account
that the m inside the sin and cos in the definitions of the sequences z,, and ¥, is the same
as the index for the sequences. You have to consider plugging integer values into the two
trig functions. Things like n7/2 are NOT INTEGERS!

IV. A) Let f : D — R and let ¢ be an accumulation point of D. Then we say lim,_,. f(z) =
Liffor alle > 0, there exist 6 > 0 such that |f(z)—L| < eforallzz € D with 0 < |z—¢| < §.

B) The limit here is 0. Proof: Let € > 0 and let § = y/e. Then for all x with 0 < |z — 0| <
Ve, we have (using |cos(1/z)| <1 for all z # 0)

|22 cos(1/z) — 0| = |z|?| cos(1/z)| < |2?| < (VE)? =«.

Note: It is not correct to evaluate the limit using the limit product rule here. The problem
is that lim,_,o cos(1/x) does not exist. However, cos(1/z) is bounded and the other factor
x? goes to zero, so the product goes to zero.

V. A) f(0) =0 and f(2) =1 by computing.

B) The denominator z* + 48 is nonzero for all z € R. Hence f(z) = mfi’zs is continuous
at all z. By the IVT on the interval [0,2], for each k with 0 < k£ < 1, there is at least
one x € (0,2) such that f(z) = k. To find a second x satisfying this condition, note that
limg 100 f(2) = 0. Hence by the IVT again, there is also at least one additional solution
of f(z) =k for x € (2, +00).

C) (Note: We are interested in applying this statement to the f(z) from the problem,
which is differentiable at all z. So it suffices to consider the contrapositive statement,
assuming that f is differentiable: 1f for some k, f(z1) = f(x2) = k for some z1 # xa,
then f’(xz) = 0 for some x between z1 and x5. This is exactly the situation of the special
case of the MVT known as Rolle’s Theorem. So because the contrapositive statement is
equivalent to this one, we have: If f is differentiable and f’(x) # 0 for all z € I, then for
all k, the equation f(x) = k has at most one solution x € I.

D) Our function f has derivative
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(quotient rule for derivatives!). This is zero for x > 0 only at = 2. Hence by part C,
on the intervals (0,2) and (2,+00), there can only be one solution of f(z) = k in each
interval. This means that there are exactly two of them all together.

VI. The most economical way to show that f(z) = x? + z — 1 is integrable on [0, 3] is
to note that f(x) is monotone increasing on that interval (f'(z) = 2z + 1 > 0 for all
x € [0,3].) Hence as in the proof of our general theorem, for the regular partition P, (with
Ax =3/n),
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Since this goes to zero as n — oo, we know f is integrable. The value is computed using
the upper sum, for instance. As above, Az = 3/n, and the points in the partition are

P,={3i/n:i=0,1,...,n}. Then
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B) See class notes and text.

VII. A) True. The sequence of partial sums is monotone increasing if a,, > 0. Hence if sy
is bounded above, that sequence converges.

B) False. The series is absolutely convergent, since chzl n% is a p-series with p =3 > 1.
Conditionally convergent series are ones where Y .7 | a,, converges, but >~ |a,| diverges.

C) True. Let z,, be any sequence with lim,,_, o, #,, = 0. Then whether or not z,, is rational,
we have lim,_, f(z,) = 0 = f(0). This shows lim,_,¢ f(z) = f(0), so f is continuous at
z = 0.



