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PREFACE.

HIS book is the reproduction of a Paper, the
several parts of which appeared in Hermathena
during the last eleven years. The favourable ‘recep-
tion which from the first it met with on the part of
many competent authorities, as well in this country
as on the Continent, and the desire which has been
expressed in several quarters that the Articles should
be collected and published in a volume, have led to
this publication.

I have prefixed headings to the chapters, and
introduced some additional diagrams. I have also
added some notes and an index. Some changes, too,
were necessitated by the new form of the Work; and
I have made a few corrections, which are indicated
for the most part by brackets. With these exceptions
the book is textually the same as the Paper in Her-
mathena. In this Paper great pains were taken to
ensure accuracy in the references: these I have since
checked, and I trust that they will now be found
quite reliable.



vi Preface.

It has been, throughout, my aim to state clearly
the facts as known to us from the original sources,
and to make a distinct separation between them and
conjectures, however probable the latter might be.

The bust in the frontispiece is taken from
Gronovius, Zhesaurus Graecarum Antiguitatum, Vol.
II., Tab. 49. The inscription under it in the
‘engraving is :—

ARCHYTAS

Pythagoricus Mechanicis Clarus
Ex Nummo aereo apud Fulvium Ursinum.

Ample references are given. in the notes to the
authors whose works I have studied.

It only remains for me now to express my warmest
thanks and acknowledgments, in the first place, to
my friend DrR. Joun K. INGRAM, Senior Fellow of
Trinity College, Dublin, to whom this Work from
its inception and during its course is much indebted.
Indeed it would scarcely have been written but for
the hospitable reception afforded to it in the pages of
Hermathena, which periodical, edited by DRr. INGRAM,
enabled me to publish the results of my labours
gradually. In the midst of his many and arduous
duties, and of his own important literary work, he
has been always ready to assist me by his kind en-
couragement and sound judgment. '



Preface. vii

I have, in the next place, to acknowledge my great
obligations to my late friend and colleague Dr. ]61-1N
F. Davigs, Professor of Latin in Queen’s College,
Galway, whose recent death I deplore. In the later
Articles in FHermathena 1 was much aided by his
counsel and valuable suggestions: he kindly super-
vised all the translations that were not purely mathe-
matical ; he carefully revised the proofs, and added
some critical notes. Nor can I close this reference
to Dr. Davies without dwelling for a moment on
his rare qualifications as a scholar, his disinterested
love of learning, and the nobleness of his personal
character.

In conclusion, I have to express my thanks to
the Provost and Senior Fellows of Trinity College,
" Dublin, for including this Work in the Dublin Uni-
versity Press Series.

GEORGE J. ALLMAN.

QUEEN's COLLEGE, GALWAY,
January roth, 1889.
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Page 49, note 77, for Dr. h. read Dr. Ch.

Page 114, note 35, ,, solution ,, solutions.
Page 122, note 47, ,, 1]5 " :/f~
a

Page 140, line 23, ,, discreet ,, discrete.
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GREEK GEOMETRY

FROM

THALES TO EUCLID.

INTRODUCTION.

Object of this Work.—Authorities on the Early History of Geometry.—The
Historic Summary of Proclus.

N studying the development of Greek Science, two

periods must be carefully distinguished.

The founders of Greek philosophy—Thales and Pytha-
goras—were also the founders of Greek Science, and from
the time of Thales to that of Euclid and the foundation of
the Museum of Alexandria, the development of science was,
for the most part, the work of the Greek philosophers.
‘With the foundation of the School of Alexandria, a second
period commences; and henceforth,- until the end of the
scientific evolution of Greece, the cultivation of science

11t has been frequently observed, and is indeed generally admitted, that the
present century is characterised by the importance which is attached to historical
researches, and by a widely diffused taste for the philosophy of history.
In Mathematics, we have evidence of these prevailing views and tastes in two
distinct ways :—
1°. The publication of many recent works on the history of Mathematics, ¢.g.—
Ammeth, A., die Geschichte der reinen Mathematik, Stuttgart, 1852;
*Bretschneider, C. A., die Geometrie und die Geometer vor Euklides, Leipzig,

B



2 Greck Geometry from Thales to Euclid.

was separated from that of philosophy, and pursued for
its own sake.

In this work I propose to give some account of the pro-
gress of geometry during the first of these periods, and also
to notice briefly the chief organs of its development.

For authorities on the early history of geometry we are
dependent on scattered notices in ancient writers, many of
which have been taken from a work which has unfortu-
nately been lost—the History of Geometry by Eudemus of
Rhodes, one of the principal pupils of Aristotle. A sum-
mary of the history of geometry during the whole period
of which I am about to treat has been preserved by Pro-
clus, who most probably derived it from the work of
Eudemus. I give it here at length, because I shall fre-
quently have occasion to refer to it in the following
pages.

After attributing the origin of geometry to the Egyp-
tians, who, according to the old story, were obliged to in-
vent it in order to restore the landmarks which had been
destroyed by the inundation of the Nile, and observing
that it is by no means strange that the invention of the
sciences should have originated in practical needs, and that,

1870; Suter, H., Geschichle der mathematischen Wissenschaften (1st Part),
Zurich, 1873; *Hankel, H., sur Geschichte der Mathematik in Alterthum und
Mittel-alter, Leipzig, 1874 (a posthumous work) ; *Hoefer, F., Histoire des Mathé-
matiques, Paris, 1874. (This forms the fifth volume by M. Hoefer on the
history of the sciences, all being parts of the Histoire Universelle, published
under the direction of M. Duruy.) In studying this subject, I have made use of
the works marked thus*. Though the work of M. Hoefer is too metaphysi-
cal and is not free from inadvertencies and even errors, yet I have derived
advantage from the part which concerns Pythagoras and his ideas. Hankel’s
book contains some fragments of a great work on the History of Mathematics,
which was interrupted by the death of the author. The part treating of the
mathematics of the Greeks during the first period—from Thales to the founda-
tion of the School of Alexandria—is fortunately complete. This is an excellent
work, and is in many parts distinguished by its depth and originality.

The monograph of M. Bretschneider is most valuable, and is greatly in
advance of all that preceded it on the origin of geometry amongst the Greeks.
He has collected with great care, and has set out in the original, the fragments
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further, the transition from sensual perception to reflection,
and from that to knowledge, is to be expected, Proclus goes
on to say that—

Thales, having visited Egypt, first brought this know-
ledge into Greece; that he discovered many things himself,
and communicated the beginnings of many to his suc-
cessors, some of which he attempted in a more abstract
manner (kafoAwdrepov), and some in a more intuitional or
sensible manner (aigOnrcdrepor).

After him, Ameristus [or Mamercus], brother of the
poet Stesichorus, is mentioned as celebrated for his zeal
in the study of geometry; and Hippias of Elis has recorded
that he gained some reputation for his geometry.

After them Pythagoras changed it into the form of a
liberal science, regarding its principles in a purely abstract
manner, and investigated its theorems from the immaterial
and intellectual point of view (atAwc xal voepirc); he also
discovered the theory of incommensurable quantities (rav
aAéywv wpayparefav), and the construction of the mundane
figures [the regular solids).

After him, Anaxagoras of Clazomenae contributed
much to geometry, as also did Oenopides of Chios, who
was somewhat junior to Anaxagoras; and Plato has

relating to it, which are scattered in ancient writers: I have derived much aid
from these citations.

2°. New editions of ancient Mathematical works, some of which had become
' extremely scarce, e. g.—

Theodosii, Spkaericorum libri tres, Nizze, Berolini, 1852 ; Nicomachi Geraseni,
Introductionis Arithmeticae, lib. 11., Hoche, Lipsiae, 1866 (Teubner); Boetii de
Inst. Arithm., &%., ed. G. Friedlein, Lipsiae, 1867 (Teubner); Procli Diadochi
in primum Euclidis Elementorum librum commentarii, ex recog. G. Friedlein,
Lipsiae, 1873 (Teubner); Heronis Alexandrini Geometricorum et Stereometri-
corum Reliquiae e libris manuscriptis, edidit F. Hultsch, Berolini, 1864 ; Pappi
Alexandrini Collectiones quae supersunt e libris manuscriptis Latina interpreta-
tione et commentariis instruxit F. Hultsch, vol. I., Berolini, 1876: vol. 11., .,
1877.

Occasional portions only of the Greek text of Pappus had been published at
various times (see De Morgan in Dr. W. Smith’s Dictionary of Biography). An
Oxford edition, uniform with the great editions of Euclid, Apollonius, and
Archimedes, published in the last century, has beenlong looked for.

B2




4 Greek Geometry from Thales to Euclid.

mentioned them in his “Rivals” as having won fame by
their mathematics.

After these, Hippocrates of Chios, who found the
quadrature of the lune, and Theodorus of Cyrene became
famous in geometry. Of those whose names have come
down to us, Hippocrates is the first writer of Elements.

Plato, who lived after them, contributed to the pro-
gress of geometry, and of the other mathematical sciences,
through his study of these subjects, and through the
mathematical matter introduced in his writings. Amongst
his contemporaries were Leodamas of Thasos, Archytas of
Tarentum, and Theaetetus of Athens, by all of whom
theorems were added or placed on a more scientific
basis.

To Leodamas succeeded Neocleides, and his pupil was
Leon, who added much to what had been done before.
Leon also composed Elements, which, both in regard to the
number and the value of the propositions proved, are put
together more carefully; he also invented that part of the
solution of a problem called its determination (Swpiouds)—
a test for determining when the problem is possible and
when impossible.

Eudoxus of Cnidus, a little younger than Leon and a
companion of Plato’s pupils, in the first place increased
the number of general theorems, added three proportions
to the three already existing, and also developed further
the things begun by Plato concerning the section,’ making
use, for the purpose, of the analytical method (rai¢ ava-
Aboeow). '

Amyclas of Heraclea, one of Plato’s companions, and
Menaechmus, a pupil of Eudoxus and also an associate

3 Does this mean the cutting of a straight line in extreme and mean ratio,
‘¢ sectio aurea” ? or is the reference to the invention of the conic sections ? Most
probably the former. In Euclid’s Elements, lib. x1i1., the terms analysis and
synthesis are first used and defined by him in connection with theorems relating
to the cutting of a line in extreme and mean ratio. See Bretschneider, die
Geometrie vor Euklides, p. 168,



Introduction. 5

of Plato, and his brother, Deinostratus, made the whole
of geometry more perfect. Theudius of Magnesia appears
to have been distinguished in mathematics, as well as
in other branches of philosophy, for he made an excellent
arrangement of the Elements, and generalized many parti-
cular propositions. Athenaeus of Cyzicus [or Cyzicinus of
Athens] about the same time became famous in other
mathematical studies, but especially in geometry. All
these frequented the Academy, and made their researches
in common.

Hermotimus of Colophon developed further what had
been done by Eudoxus and Theaetetus, discovered much
of the Elements, and wrote something on Loci. Philip-
pus Mendaeus [Medmaeus], a pupil of Plato, and drawn by
him to mathematical studies, made researches under Plato’s
direction, and occupied himself with whatever he thought
would advance the Platonic philosophy. Thus far those
who have written on the history of geometry bring the
development of the science.?

Proclus goes on to say, Euclid was not much younger
than these; he collected the Elements, arranged much of
what Eudoxus had discovered, and completed much that
had been commenced by Theaetetus; further, he substi-
tuted incontrovertible proofs for the lax demonstrations
of his predecessors. He lived in the times of the first
Ptolemy, by whom, it is said, he was asked whether there
was a shorter ‘'way to the knowledge of geometry than by
his Elements, to which he replied that there was no roya/
road to geometry. Euclid then was younger than the
disciples of Plato, but elder than Eratosthenes and Archi-
medes—who were contemporaries—the latter of whom
mentions him. He was of the Platonic sect, and familiar

3 From these words we infer that the History of Geometry by Eudemus is most
probably referred to, inasmuch as he lived at the time here indicated, and his
history is elsewhere mentioned by Proclus.—Proclus, ed. G. Friedlein, pp. 299,

333, 352, and 379.
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with its philosophy, whence also he proposed to himself
the construction of the so-called Platonic bodies [the
regular solids] as the final aim of his systematisation
of the Elements.*

¢ Procli Diadochi i7 primum Euclidis Elementorum librum commentarii. Ex
recognitione G. Friedlein. Lipsiae, 1873, pp. 64-68.
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CHAPTER 1.

THALES.

The founder of Greek Geometry.—Characteristic feature of his work.— Distinction
between Greek Science and the Science of the Orientals.—Notices of the
geometrical work of Thales. —Inferences from these notices as to his
geometrical knowledge.—Importance of his work.—The further progress of
Geometry was not due to his successors in the Ionic School. -

THE first name, then, which meets us in the history of
Greek mathematics is that of THALES of Miletus (640-
546 B.C.). He lived at the time when his native city, and
Ionia in general, were in a flourishing condition, and when
an active trade was carried-on with Egypt. Thales himself
was engaged in trade, is said to have resided in Egypt,
and, on his return to Miletus in his old age, to have brought
with him from that country the knowledge of geometry and
astronomy.

To the knowledge thus introduced he added the capital
creation of the geometry of lines, which was essentially
abstract in its character. The only geometry known to the
Egyptian priests was that of surfaces, together with a
sketch of that of solids, a geometry consisting of some
simple quadratures and elementary cubatures, which they
had obtained empirically; Thales, on the other hand, intro-
duced abstract geometry, the object of which is to establish
precise 7elations between the different parts of a figure, so
that some of them could be found by means of others in a
manner strictly rigorous. This was a phenomenon quite
new in the world, and due, in fact, to the abstract spirit of
the Greeks. In connection with the new impulse given to
geometry, there arose with Thales, moreover, scientific
astronomy, also an abstract science, and undoubtedly a
Greek creation. The astronomy of the Greeks differs from
that of the Orientals in this respect, that the astronomy of
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the latter, which is altogether concrete and empirical, con-
sisted merely in determining the duration of some periods,
or in indicating, by means of a mechanical process, the
motions of the sun and planets, whilst the astronomy of the
Greeks aimed at the discovery of the geometric laws of the
motions of the heavenly bodies.!

The following notices of the geometrical work of Thales
have been preserved :—

(a). “ He is reported to have first demonstrated that the
circle was bisected by its diameter”’;?

(6). He is said first to have stated the theorem that the
angles at the base of every isosceles triangle are equal, “or,
as in archaic fashion he phrased it, Jzke (duoia:r)” ;*

(¢). Eudemus attributes to him the theorem that when
two straight lines cut each other, the vertically opposite
angles are equal ;¢

(@). “ Pamphila® relates that he, having learned geo-
metry from the Egyptians, was the first person to describe
a right-angled triangle in a circle; others, however, of
whom Apollodorus, the calculator (6 Aoyisrixdg), is one, say
the same of Pythagoras”;*¢

(). *“ He never had any teacher except during the time
when he went to Egypt and associated with the priests.
Hieronymus also says that he measured the pyramids,
making an observation on our shadows when they are of

! The importance, for the present research, of bearing in mind this abstract
character of Greek science consists in this, that it furnishes a clue by means of
which we can, in many cases, recognise theorems of purely Greek growth, and
distinguish them from those of eastern extraction. The neglect of this considera-
tion has led some recent writers on the early history of geometry greatly to
exaggerate the obligations of the Greeks to the Orientals; whilst others have
attributed to the Greeks the discovery of truths which were known to the
Egyptians. See, in relation to the distinction between abstract and concrete
science, and its bearing on the history of Greek Mathematics, amongst many
passages in the works of Auguste Comte, Systéme de Politique Positive, vol. III.,
ch. iv., p. 297, s¢., and vol. 1., ch. i., pp. 424-437; and see, also, les Grands
Types de I Humanité, par P. Laffitte, vol. 11., Legon 15i2me, p. 280, sg.—Appré-
ciation de la Science Antique.
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the same length as ourselves, and applying it to the pyra-
mids.”” To the same effect Pliny—¢‘ Mensuram altitudinis
earum omnemque similem deprehendere invenit Thales
Milesius, umbram metiendo, qua.hora par esse corpori
solet ;" ®

(This is told in a different manner by Plutarch. Niloxe-
nus is introduced as conversing with Thales concerning
Amasis, King of Egypt.—‘“ Although he [Amasis] admired
you [Thales] for other things, ygt he particularly liked the
manner by which you measured the height of the pyramid
without any trouble or instrument ; for, by merely placing
a staff at the extremity of the shadow which the pyramid
casts, you formed two triangles by the contact of the sun.
beams, and showed that the height of the pyramid was to
the length of the staff in the same ratio as their respective
shadows ).

(/). Proclus tells us that Thales measured the distance
of vessels from the shore by a geometrical process, and that
Eudemus, in his history of geometry, refers the theorem
Eucl. 1. 26 to Thales, for he says that it is necessary to use
this theorem in determining the distance of ships at sea
according to the method employed by Thales in this inves-
tigation ;'

(£). Proclus, or rather Eudemus, tells us in the passage
quoted above 7% exfenso that Thales brought the know-
ledge of geometry to Greece, and added many things,

3 Proclus, ed. Friedlein, p. 157.

3 I¥dd, p. 250.

4 Ibdd, p. 299.

8§ Pamphila was a female historian who lived at the time of Nero; an Epi-
daurian according to Suidas; an Egyptian according to Photius.

¢ Diogenes Laertius, I., c. i., n. 3, ed. C. G. Cobet, p. 6.

16 8¢ ‘lepdvvpos kal ekuerpiioal Ppnow abrdv Tds wupauldas éx Tis orids
wapatnpficavta 87e fuiv icoueyédeas eigf. Diog. Laert., L., c. i., n. 6, ed. Cobet,
p. 6.

8 Plin. Nat. Hist, XXXVI., 17.

9 Plut. Sept. Sap. Conviv. 2. vol. 111., p. 174, ed. Didot.

0 Proclus, ed. Friedlein, p. 352.
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attempting some in a more abstract manner, and some
in a more intuitional or sensible manner."

Let us now examine what inferences as to the geome-
trical knowledge of Thales can be drawn from the preced-
ing notices.

First inference.—Thales must have known the theorem
that the sum of the three angles of a triangle is equal to
two right angles.

Pamphila, in (2), refers to the discovery of the property
of a circle that all triangles described on a diameter as
base, with their vertices on the circumference, have their
vertical angles right.”* ,

Assuming, then, that this theorem was known to Thales,
he must have known that the sum of the three angles of
any right-angled triangle is equal to two right angles; for,
if the vertex of any of these right-angled triangles be con-
nected with the centre of the circle, the right-angled tri-
angle will be resolved into two isosceles triangles; and
since the angles at the base of an isosceles triangle are
equal—a theorem attributed to Thales (§)—it follows that
the sum of the angles at the base of the right-angled tri-
angle is equal to the vertical angle, and that therefore the

11 Proclus, ed. Friedlein, p. 65.

12 This is unquestionably the discovery referred to. The manner in which it has
been stated by Diogenes Laertius shows that he did not distinguish between a
problem and a theorem ; and further that he was ignorant of geometry. To this
effect Proclus :—‘ When, therefore, anyone proposes to inscribe an equilateral
triangle in a circle he proposes a problem; for it is possible to inscribe one that
is not equilateral. But when anyone asserts that the angles at the base of an
isosceles triangle are equal, he must affirm that he proposes a theorem; for it is
not possible that the angles at the base of an isosceles triangle should be unequal
to each other, On which account if anyone, stating it as a problem, should say
that he wishes to inscribe a right angle in a semicircle, he must be considered as
ignorant of geometry, since every angle in a semicircle is necessarily a right
one.””—Taylor’s Proclus, vol. 1., p. 110. Procl. ed. Friedlein, pp. 79, 80.

Sir G. C. Lewis has subjected himself to the same criticism when he says—
¢¢ According to Pamphila, he first solved the problem of inscribing a right-angled
triangle in a circle.”—G. Cornewall Lewis, Historical Survey of the Astronomy
of the Ancients, p. 83. ’
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sum of the three angles of the right-angled triangle is equal
to two right angles. Further, since any triangle can be
resolved into two right-angled triangles, it follows imme-
diately that the sum of the three angles of any triangle is
equal to two right angles. If, then, we accept the evidence
of Pamphila as satisfactory, we are forced to the conclusion
that Thales must have known this theorem. No doubt the
knowledge of this theorem (Euclid I., 32) is required in the
proof given in the Elements of Euclid of the property of the
circle (IIL, 31), the discovery of which is attributed to
Thales by Pamphila, and some writers have inferred hence

that Thales must have known the theorem (I., 32).”* Al-
though I agree with this conclusion, for the reasons given
above, yet I consider the inference founded on the demon-
stration given by Euclid to be inadmissible, for we are in-
formed by Proclus, on the authority of Eudemus, that the
theorem (Euclid I., 32) was first proved in a general way by
the Pythagoreans, and their proof, which does not differ
substantially from that given by Euclid, has been preserved
by Proclus.** Further, Geminus states that the ancient
geometers observed the equality to two right angles in
each species of triangle separately, first in equilateral, then
in isosceles, and lastly in scalene triangles,’ and it is plain

13 See P. Laffitte, op. cit., vol. 11., p. 291. Cf. F. A. Finger, de Primordiis
Geometriae apud Graecos, p. 20, Heidelbergae, 1831.

Y Proclus, ed. Friedlein, p. 379.
18 Apollonii Conica, ed. Halleius, p. 9, Oxon. 1710.
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that the geometers older than the Pythagoreans can be no
other than Thales and his successors in the Ionic school.
If I may be permitted to offer a conjecture, in confor-
mity with the notice of Geminus, as to the manner in which
the theorem was arrived at in the different species of tri-
angles, I would suggest that Thales had been led by the
concrete geometry of the Egyptians to contemplate floors
covered with tiles in the form of equilateral triangles or
regular hexagons,'* and had observed that six equilateral
triangles could be placed round a common vertex; from
which he saw that six such angles made up four right
angles, and that consequently the sum of the three angles
of an equilateral triangle is equal to two right angles (c).
The observation of a floor covered with square tiles
would lead to a similiar conclusion with respect to the
isosceles right-angled triangle.”” Further, if a perpen-
dicular be drawn from a vertex of an equilateral triangle
on the opposite side,® the triangle is divided into two
right-angled triangles, which are in every respect equal
to each other, hence the sum of the three angles of each of
these right-angled triangles is easily seen to be two right
angles. Ifnow we suppose that Thales was led to examine
whether the property, which he had observed in two dis-
tinct kinds of right-angled triangles, held generally for
all right-angled triangles, it seems to me that, by com-

16 Floors or walls covered with tiles of various colours were common in Egypt.
See Wilkinson's Ancient Egyptians, vol. 11., pp. 287 and 292.

17 Athough the theorem that ‘‘only three kinds of regular polygons—the
equilateral triangle, the square, and the hexagon—can be placed about a point so
as to fill a space,”’ is attributed by Proclus to Pythagoras or his school (éari 7
Oedpnua Totro Mubaydpeov: Proclus, ed. Friedlein, p. 305), yet it is difficult to
conceive that the Egyptians—who erected the pyramids—had not a practical
knowledge of the fact that tiles of the forms above mentioned could be placed so
as to form a continuous plane surface.

18 Though we are informed by Proclus (ed. Friedlein, p. 283), that Oenopides
of Chios first investigated (é(frnoev) this problem, yet Thales, and indeed the
Egyptians, who were furnished with the square, could not be ignorant of its
mechanical solution. Observe that we are expressly told by Proclus that Thales
attempted some things in an intuitional or sensible manner,
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pleting the rectangle and drawing the second diagonal, he
could easily see that the diagonals are equal, that they
bisect each other, and that the vertical angle of the right-
angled triangle is equal to the sum of the base angles.
Further, if he constructed several right-angled triangles
on the same hypotenuse he could see that their vertices
are all equally distant from the middle point of their com-
mon hypotenuse, and therefore lie on the circumference
of a circle described on that line as diameter, which is the
theorem in question. It may be noticed that this remark-
able property of the circle, with which, in fact, abstract
geometry was inaugurated, struck the imagination of
Dante :—

¢ O se del mezzo cerchio far si puote
Triangol si, ch’un retto non avesse.”
Par. c. xiii. 101.

Second inference.—The conception of geometrical loci
is due to Thales.

We are informed by Eudemus (/) that Thales knew
that a triangle is determined if its base and base angles
are given; further, we have seen that Thales knew that,
if the base is given, and the base angles not given sepa-
rately, but their sum known to be a right angle, then there
could be described an unlimited number of triangles
satisfying the conditions of the question, and that their
vertices all lie on the circumference of a circle described
on the base as diameter. Hence it is manifest that the
important conception of geometrical loct, which is attributed
by Montucla, and after him by Chasles and other writers
on the History of Mathematics, to the school of Plato,"
had been formed by Thales.

¥ Montucla, Histoire des Mathématiques, Tome 1., p. 183, Paris, 1758.
Chasles, Apergu historique des Méthodes en Géoméirie, p. 5, Bruxelles, 1837.
Chasles in the history of geometry before Euclid copies Montucla, and we have a
remarkable instance of this here, for Chasles, after Montucla, calls Plato *¢ ce chef
du Lycée.”’
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Third inference.—Thales discovered the theorem that
the sides of equiangular triangles are proportional.

The knowledge of this theorem is distinctly attributed
to Thales by Plutarch in a passage quoted above(¢). On
‘the other hand, Hieronymus of Rhodes, a pupil of Aris-
totle, according to the testimony of Diogenes Laertius,*
says that Thales measured the height of the pyramids by
watching when bodies cast shadows of their own length,
and to the same effect Pliny in the passage quoted above (¢).
Bretschneider thinks that Plutarch has spun out the story
told by Hieronymus, attributing to Thales the knowledge
of his own times; denies to Thales the knowledge of the
theorem in question, and says that there is no trace of any
theorems concerning similarity before Pythagoras.®® He
says, further, that the Egyptians were altogether ignorant
of the doctrine of the similarity of figures, that we do not
find amongst them any trace of the doctrine of proportion,
and that Greek writers say that this part of their mathe-
matical knowledge was derived from the Babylonians or
Chaldaeans.” Bretschneider also endeavours to show that
Thales could have obtained the solution of the second
practical problem—the determination of the distance of a
ship from the shore—by geometrical construction, a method
long before known to the Egyptians.®®* Now, as Bretsch-
neider denies to the Egyptians and to Thales any knowledge
of the doctrine of proportion, it was plainly necessary, on
this supposition, that Thales should find a sufficient extent
of free and level ground on which to construct a triangle
of the same dimensions as that he wished to measure; and
even if he could have found such ground, the great length
of the sides would have rendered the operations very diffi-

20 But we have seen that the account given by, Diogenes Laertius of the
discovery of Thales mentioned by Pamphila is unintelligible, and evinces ignorance
of geometry on his part.

31 Bretsch. die Geometrie und Geometer vor Euklides, pp. 45, 46.
2 [pid, p. 18.

B 1bid, pp. 43, 44.
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cult.* It is much simpler to accept the testimony of
Plutarch, and suppose that the method of superseding such
operations by using similar triangles is due to Thales.

If Thales had employed a right-angled triangle,” he
could have solved this problem by the same principle which,
we are told by Plutarch, he used in measuring the height
of the pyramid, the only difference being that the right-
angled triangle is in one case in a vertical, and in the
other in a horizontal plane. '

From what has been said, it is plain that there is a
natural connection between the several theorems attributed
to Thales, and that the two practical applications which
he made of his geometrical knowledge are also connected
with each other.

Let us now proceed to consider the importance of the
work of Thales :—

I. In a scientific point of view :—

(a). We see, in the first place, that by h1s two theorems
he founded the geometry of lines, which has ever since
remained the principal part of geometry.*

Vainly do some recent writers refer these geometrical
discoveries of Thales to the Egyptians; in doing so they
ignore the distinction between the geometry of lines, which

24 In reference to this I may quote the following passage from Clairaut, Elbmens
de Géométrie, pp. 34-35. Paris, 1741.

¢La méthode qu’on vient de donner pour mesurer les terrains, dans lesquels
on ne sgauroit tirer de lignes, fait souvent naitre de grandes difficultés dans la
pratique. On trouve rarement un espace uni.et libre, assez grand pour faire des
triangles égaux 2 ceux du terrain dont on cherche la mesure. Et méme quand on
en trouveroit, la grande longueur des c5tés des triangles pourroit rendre les opéra-
tions tras-difficiles : abaisser une perpendiculaire sur une ligne du point qui en est
éloigné seulement de 500 toises, ce seroit un ouvrage extrémement pénible, et
peut-étre impracticable. Il importe donc d’avoir un moyen qui supplée & ces
grandes opérations. Ce moyen s'offre comme de lui-méme. Il vient,” &c.

5 Observe that the inventions of the square and level are attributed by Pliny
(Nat. Hist., vi1., 57) to Theodorus of Samos, who was a contemporary of Thales.
They were, however, known long before this period to the Egyptians; so that to
Theodorus is due at most the honour of having introduced them into Greece.

36 Auguste Comte, Systéme de Politique Positive, vol. 1I1., p. 297.
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we owe to the genius of the Greeks, and that of areas and
volumes—the only geometry known, and that empirically,
to the ancient priesthoods. This view is confirmed by an
ancient papyrus, that of Rhind,” which is now in the
British Museum. It contains a complete applied mathe-
matics, in which the measurement of figures and solids
plays the principal part; there are no theorems properly so
called ; everything is stated in the form of problems, not
in general terms but in distinct numbers, e. g.—to measure
a rectangle the sides of which contain two and ten units of
length ; to find the surface of a circular area whose diame-
ter is six units; to mark out in a field a right-angled triangle
whose sides measure ten and four units; to describe a
trapezium whose parallel sides are six and four units, and
each of the other sides twenty units. We find also in it
indications for the measurement of solids, particularly of
pyramids, whole and truncated.

It appears from the above that the Egyptians had
made great progress in practical geometry. Of their pro-
ficiency and skill in geometrical constructions we have
also the direct testimony of the ancients; for example,
Democritus says: ‘“No one has ever excelled me in the
construction of lines according to certain indications—not
even the so-called Egyptian Harpedonaptae.”

(6). Thales may, in the second place, be fairly con-
sidered to have laid the foundation of Algebra, for his first
theorem establishes an equation in the true sense of the
word, while the second institutes a proportion.*

¥ Birch, in Lepsius’ Zeitschrift fiir Aegyptische Sprache und Alterthums-
kunde (1868, p. 108). Bretschneider, Geometrie vor Euklides, p. 16. F. Hoefer,
Histoire des Mathématiques, p. 69. Since this Paper was sent to the press, Dr.
August Eisenlohr, of Heidelberg, has published this papyrus with a transla-
tion and commentary under the title ¢ ein mathematisches Handbuch der alten
ZLgypter, Leipzig, 1877.”

28 Mullach, Fragmenta Philosophorum Graecorum, p. 371, Democritus ap.
Clem. Alex. Strom, 1., p. 357, ed. Potter.

39 Auguste Comte, Systéme de Politique Positive, vol. 111., p. 300.
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II. In a philosophic point of view :—

‘We see that in these two theorems of Thales the first
type of a matural law—i.e. the expression of a fixed de-
pendence between different quantities, or, in another form,
the disentanglement of constancy in the midst of variety—
has decisively arisen.*

II1. Lastly, in a practical point of view :—

Thales furnished the first example of an application of
theoretical geometry to practice,” and laid the foundation
of an important branch of the same—the measurement of
heights and distances.

I have now pointed out the importance of the geome-
trical discoveries of Thales, and attempted to appreciate
his work. His successors of the Ionic School followed
him in other lines of thought, and were, for the most part,
occupied with physical theories on the nature of the
universe—speculations which have their representatives at
the present time—and added little or nothing to the de-
velopment of science, except in astronomy. The further
progress of geometry was certainly not due to them.

Without doubt Anaxagoras of Clazomenae, one of the
latest representatives of this School, is said to have been
occupied during his exile with the problem of the qua-
drature of the circle; but this was in his old age, and after
the works of another School—to which the early progress
of geometry was really due—had become the common
property of the Hellenic race. I refer to the immortal
School of Pythagoras.

30 P, Laffitte, les Grands Types de I Humanité, vol. 11., p. 292.
3 id., p. 294.



18 Greek Geometry from Thales to Euclid.

CHAPTER II.

PYTHAGORAS AND HIS SCHOOL.

State of Hellas about the middle of the sixth century, B.c.—Pythagoras, probable
date of his birth and death.—Difficulties in treating of Pythagoras and the
early Pythagoreans.—Pythagoras first raised mathematics to the rank of a
science, and added two new branches, Arithmetic and Music.—Notices of
the geometrical work of this School.—It is much concerned with the Geo-
metry of Areas, and is Egyptian in its character.—Generation of Squares,
Gnomon, Gnomonic Numbers.—Pythagorean Triangles.—The Theorem of
the Three Squares.—Construction of Regular Polygons and of the Regular
Solids.—Discovery of Incommensurable Quantities.—The Application of
Areas.—The Doctrine of Proportion and of the Similarity of Figures.—
Theorems erroneously attributed to Pythagoras and his School.—Conclu-
sions from the foregoing examination.—Estimate of the state of Geometry
cire. 480 B.C.—The Theory of Proportion.—The Ancients regarded Propor-
tion not merely as a branch of Arithmetic but as the bond of Mathematics.—
Estimate of the services of Pythagoras.

ABOUT the middle of the sixth century before the Chris-
tian era a great change had taken place: Ionia, no longer
free and prosperous, had fallen under the yoke, first of Lydia,
then of Persia, and the very name Ionian—the name by
which the Greeks were known in the whole East—had
become a reproach, and was shunned by their kinsmen on
the other side of the Aegean.! On the other hand, Athens
and Sparta had not become pre-eminent; the days of Ma-
rathon and Salamis were yet to come. Meanwhile the
glory of the Hellenic name was maintained chiefly by the
Italic Greeks, who were then in the height of their pros-
perity, and had recently obtained for their territory the
well-earned appellation of # ueydAn ‘EAAdc.? It should be
noted, too, that at this period there was great commercial
intercourse between the Hellenic cities of Italy and Asia ;
and further, that some of them, as Sybaris and Miletus on

1 Herodotus, I., 143. 3 Polybius, 1I., 39.
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the one hand, and Tarentum and Cnidus on the other, were
bound by ties of the most intimate character.? It is not
surprising, then, that after the Persian conquest of Ionia,
Pythagoras, Xenophanes, and others, left their native
country, and, following the current of civilisation, removed
to Magna Graecia.

As the introduction of geometry into Greece is by com-
mon consent attributed to Thales, so all* are agreed that
to PYTHAGORAS of Samos, the second of the great philoso-
phers of Greece, and founder of the Italic School, is due
the honour of having raised mathematics to the rank of a
science.

The statements of ancient writers concerning this great
man are most conflicting, and all that relates to him per-
sonally is involved in obscurity: for example, the dates
given for his birth vary within the limits of eighty-four

‘years—43rd to 64th Olympiad.® It seems desirable, how-
ever, if for no other reason than to fix our ideas, that we
should adopt some definite date for the birth of Pythagoras;
and there is an additional reason for doing so, inasmuch as
some writers, by neglecting this, have become confused,
and fallen into inconsistencies in the notices which they
have given of his life. Of the various dates which have
been assigned for the birth of Pythagoras, the one which
seems to me to harmonise best with the records of the most
trustworthy writers is that given by Ritter, and adopted by
Grote, Brandis, Ueberweg, and Hankel, namely, about
580 B. C. (49th Olymp.) This date would accord with the
following statements :—

That Pythagoras had personal relations with Thales,
then old, of whom he was regarded by all antiquity as the

3 Herod., v1., 21, and I111., 138.
4 Aristotle, Diogenes Laertius, Proclus, amongst others.
¢ See G. H. Lewes, Biographical History of Philosophy, Book 11., c. ii., where
the various dates given by scholars are cited.
C2
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successor, and by whom he was incited to visit Egypt,*—
mother of all the civilisation of the West;

That he left his country being still a young man, and,
on this supposition as to the date of his birth, in the early
years of the reign of Croesus (560-546 B.C.), when Ionia
was still free; :

That he resided in Egypt many years, so that he learned
the Egyptian language, and became imbued with the philo-
sophy of the priests of the country ;’

That he probably visited Crete and Tyre, and may have
even extended his journeys to Babylon, at that time Chal-
daean and free;

That on his return to Samos, finding his country under
the tyranny of Polycrates,® and Ionia under the dominion
of the Persians, he migrated to Italy in the early years of
Tarquinius Superbus;*

And that he founded his Brotherhood at Crotona, where
for the space of twenty years or more he lived and taught,
being held in the highest estimation, and even looked on
almost as divine by the population—native as well as Hel-
lenic; and then, soon after the destruction of Sybaris
(s1o B. C.), being banished by a democratic party under
Cylon, he removed to Metapontum, where he died soon
afterwards.

All who have treated of Pythagoras and the Pythago-
reans have experienced great difficulties. These difficulties
are due partly to the circumstance that the reports of the
earlier and most reliable authorities have for the most part
been lost, while those which have come down to us are not
always consistent with each other. On the other hand, we
have pretty full accounts from later writers, especially those
of the Neo-Pythagorean School; but these notices, which

¢ Tamblichus, Vit. Pyth., c. ii., 12.

7 Isocrates is the oldest authority for this, Busires, c. ii.

8 Diog. Laert., VIIL, c. i., 3 ; Aristoxenus, ap. Porphyr., Vit. Pytk., 9.
¢ Cicero, de Rep. 11., 15; Tusc. Disp., 1., xvi., 38.
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are mixed up with fables, were written with a particular
object in view, and are in general highly coloured; they
are particularly to be suspected, as Zeller has remarked,
because the notices are fuller and more circumstantial the
greater the interval from Pythagoras. Some recent authors,
therefore, even go to the length of omitting from their ac-
count of the Pythagoreans everything which depends solely
on the evidence of the Neo-Pythagoreans. In doing so,
these authors no doubt effect a simplification, but it seems
to me that they are not justified in this proceeding, as the
Neo-Pythagoreans had access to ancient and reliable au-
thorities which have unfortunately been lost since.*

Though the difficulties to which I refer have been felt
chiefly by those who have treated of the Pythagorean pk:-
losophy, yet we cannot, in the present inquiry, altogether
escape from them; for, in the first place, there was, in the
whole period of which we treat, an intimate connection
between the growth of philosophy and that of science, each
re-acting on the other; and, further, this was particularly
the case in the School of Pythagoras, owing to the fact,
that whilst on the one hand he united the study of geo-
metry with that of arithmetic, on the other he made num-
bers the base of his philosophical system, as well physical
as metaphysical.

It is to be observed, too, that the early Pythagoreans
published nothing, and that, moreover, with a noble self-
denial, they referred back to their master all their dis-
coveries. Hence, it is not possible to separate what was
done by him from what was done by his early disciples,
and we are under the necessity, therefore, of treating the
work of the early Pythagorean School as a whole."

10 For example, the History of Geometry, by Eudemus of Rhodes, one of the
principal pupils of Aristotle, is quoted by Theon of Smyrna, Proclus, Simplicius,
and Eutocius, the last two of whom lived in the reign of Justinian. Eudemus
also wrote a History of Astronomy. Theophrastus, too, Aristotle’s successor,
wrote Histories of Arithmetic, Geometry, and Astr 2.

11 «¢ Pythagoras and his earliest successors do not appear to have committed any
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All agree, as was stated above, that Pythagoras first
raised mathematics to the rank of a science, and that we
owe to him two new branches—arithmetic and music.

‘We have the following statements on the subject :—

(1) “In the age of these Philosophers [the Eleats and
Atomists], and even before them, lived those called Pytha-
goreans, who first applied themselves to mathematics, a
science they improved: and, penetrated with it, they fancied
that the principles of mathematics were the principles of all
things” ;"

(2) Eudemus informs us, in the passage quoted above 77
extenso, that “ Pythagoras changed geometry into the form
of a liberal science, regarding its principles in a purely
abstract manner, and investigated his theorems from the
immaterial and intellectual point of view’’; and that ‘“he
also discovered the theory of irrational quantities, and
the construction of the mundane figures [the five regular
solids]”;®

(3) “It was Pythagoras, also, who carried geometry to
perfection, after Moeris* had first found out the principles
of the elements of that science, as Anticleides tells us in
the second book of his History of Alexander ; and the part
of the science to which Pythagoras applied himself above
all others was arithmetic”’ ;'

(4) Pythagoras seems to have esteemed arithmetic above

of their doctrines to writing. According to Porphyrius (73, Pyth. p. 40) Lysis
and Archippus collected in a written form some of the principal Pythagorean
doctrines, which were handed down as heir-looms in their families, under strict
injunctions that they should not be made public. But amid the different and
inconsistent accounts of the matter, the first publication of the Pythagorean
doctrines is pretty uniformly attributed to Philolaus.”’—Smith’s Dictionary, in
v. Philolaus. Philolaus was born at Crotona, or at Tarentum, and was a con-
temporary of Socrates and Democritus, See Diog. Laert., Vit. Pyth., VIII.,
c. i, 15; Vit. Empedoclis, vi11., c. ii., 2; and V3¢, Democriti, 1X., c. vil., 6. See
also Iamblichus, Vit Pyth., c. xviii., 88.

12 Aristot. Met., 1., v., 985P, 23, ed. Bekker.

13 Proclus, ed. Friedlein, p. 65.

14 An ancient king of Egypt, who lived goo years before Herodotus.

15 Diog. Laert., vIIr., c. i., 11, ed. Cobet, p. 207.
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everything, and to have advanced it by diverting it
from the service of commerce, and likening all things
to numbers;*

(5) He was the first person who introduced measures
and weights among the Greeks, as Aristoxenus the musi-
cian informs us ; ¥

(6) He discovered the numerical relations of the musical
scale ;'

(7) The word mathematics originated with the Pytha-
goreans;'®

(8) The Pythagoreans made a four-fold division of
mathematical science, attributing one of its parts to the
how many, r6 wdoov, and the other to the how much, 7
mnAikov ; and they assigned to each of these parts a two-
fold division. For they said that discrete quantity, or
the %ow many, either subsists by itself, or must be con-
sidered with relation to some other; but that continued
quantity, or the kow much, is either stable or in motion.
Hence they affirmed that arithmetic contemplates that
discrete quantity which subsists by itself, but music that
which is related to another; and that geometry considers
continued quantity so far as it is immovable; but astro-
nomy (rijv opatpwnv) contemplates continued quantity so
far as it is of a self-motive nature;*

(9) Favorinus says that he employed definitions on
account of [z e. arising out of ] the mathematical subjects
to which he applied himself (8poic xp#oaslar a riic pabnua-
Tikiic VAng).

18 Aristoxenus, Fragm. ap. Stob. Eclog. Phys., 1., ii., 6; ed. Heeren, vol. 1.,
p- 17.

17 Diog. Laert., VIIL., c. i., 13, ed. Cobet, p. 208.

18 7éy 7€ ravdva TdV & uds xopdiis edpev. Diog. Laert., v, c. i., I1, ed.
Cobet, p. 207. .

19 Proclus, ed. Friedlein, p. 45.

20 [bid., p. 35. As to the distinction between 1d wnAlxoy, continuous, and 7d
wéoov, discrete, quantity, see Iambl., in Nicomachi Geraseni Arithmeticam intro-
ductionem, ed. Tennulius, p. 148.

21 Diog. Laert., VIIL., c. i., 25, ed. Cobet, p. 215.



24 Greek Geometry from Thales to Euclid.

As to the particular work done by this school in geo-
metry, the following statements have been handed down
to us:—

(a) The Pythagoreans define a point as “unity having
position (uovada wposAafBovoav Géorv)’ ;**

(6) They considered a point as analogous to the monad,
a line to the duad, a superficies to the triad, and a body to
the tetrad ;»

{¢) The plane around a point is completely filled by six
equilateral triangles, four squares, or three regular hexa-
gons: this is a Pythagorean theorem ;*

(@) The Peripatetic Eudemus ascribes to the Pythago-
reans the discovery of the theorem that the interior angles
of a triangle are equal to two right angles (Eucl. I. 32),and
states their method of proving it, which was substantially
the same as that of Euclid ;*

(¢) Proclus informs us in his commentary on Euclid
I., 44, that Eudemus says that the problems concerning the
application of areas—in which the term ¢ application” is
not to be taken in its restricted sense (wapaf3oA#), in which
it is used in this proposition, but also in its wider significa-
tion, embracing vmwep3oAn and EAAenfic, in which it is used in
the 28th and 29th propositions of the Sixth Book—are old,
and inventions of the Pythagoreans ;

(/) This is to some extent confirmed by Plutarch, who

22 Proclus, ed. Friedlein, p. 95.

3 Ibid., p. 97.

2 [bid., p. 305.

25 Ibdd., p. 379.

26 [bid., p. 419. The words of Proclus are interesting :—

¢¢ According to Eudemus, the inventions respecting the application, excess,
and defect of areas are ancient (&pxaia), and are due to the Pythagoreans.
Moderns borrowing these names transferred them to the so-called conic lines—
the parabola, the hyperbola, the ellipse ; as the older school in their nomenclature
concerning the description of areas iz plano on a finite right line regarded the
terms thus :—

‘¢ An area is said to be applied (wapaBdArew) to a given right line when an area
equal in content to some given one is described thereon; but when the base of the
area is greater than the given line, then the area is said to be in excess (SwepBdArew);
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says that Pythagoras sacrificed an ox on account of the
geometrical diagram, as Apollodotus [-rus] says :—

wvixa Mvfaydpns 70 mepixheds edpero ypdppa,
kel &P’ S1 Aapmpyy fyero Bovbvoiyy,

either the one relating to the hypotenuse—namely, that the
square on it is equal to the sum of the squares on the
sides—or that relating to the problem concerning the ap-
plication of areas (eire wpd3Anua wepl rov xwplov riic wapa-
BoAiic) ;'

(&) “One of the most essentially geometrical (yewuerpt-
xwrdrorg) theorems, or rather problems, is to construct a
figure equal to one and similiar to another given figure, for
the solution of which also they say that Pythagoras offered
a sacrifice: and indeed it is finer and more elegant than
the theorem which shows that the square on the hypotenuse
is equal to the sum of the squares on the sides ” ;*

(A) Eudemus, in the passage already quoted from Pro-
clus, says: Pythagoras discovered the construction of the
regular solids ;*

(z) “But particularly as to Hippasus, who was a Pytha-
gorean, they say that he perished in the sea on account of
his impiety, inasmuch as he boasted that he first divulged
the knowledge of the sphere with the twelve pentagons

but when the base is less, so that some part of the given line lies without the
described area, then the area is said to be in defect (éArefrery). Euclid uses in
this way, in his Sixth Book, the terms excess and defect. . . . The term applica-
tion (xapaBdArew), which we owe to the Pythagoreans, has this signification.”

27 Plutarch, non posse suaviter vivi sec. Epicurum. c. xi. ; Plut., Opera, ed.
Didot, vol. 1v., p. 1338. Some authors, rendering wepl Toi xwplov Tiis xapaBoAis
‘¢ concerning the area of the parabola,’”” have ascribed to Pythagoras the quadra-
ture of the parabola—which was in fact one of the great discoveries of
Archimedes; and this, though Archimedes himself tells us that no one before
him had considered the question; and though further he gives in his letter to
Dositheus the history of his discovery, which, as is well known, was first obtained
from mechanical considerations, and then by geometrical reasonings. )

28 Plutarch, Symp., VIIL., Quaestio 2, c. iv. Plut. Opera, ed. Didot, vol. 1v., p.
877.

2 Proclus, ed. Friedlein, p. 65. r
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[the ordinate dodecahedron inscribed in the sphere]:
Hippasus assumed the glory of the discovery to himself,
whereas everything belonged to Him—for thus they
designate Pythagoras, and do not call him by name ” ;%
(/) The triple interwoven triangle or Pentagram —star-
shaped regular pentagon—was used as a symbol or sign of

v

A

¢ q

recognition by the Pythagoreans, and was called by them
Health (t'rytefa) 33

(#) The discovery of the law of the three squares (Eucl.
I., 47), commonly called the Zkeorem of Pythagoras, is
attributed to him by—amongst others—Vitruvius,” Dio-
genes Laertius,®® Proclus,* and Plutarch (f). Plutarch,
however, attributes to the Egyptians the knowledge of this
theorem in the particular case where the sides are 3, 4,
and 5;% '

(/) One of the methods of finding right-angled tri-

3 Tambl., Vit. Pyth., c. xviii., 88.

31 Scholiast on Aristophanes, Nub. 609; also Lucian, pro Lapsu in Salut.,
s. 5, vol. I., pp. 447, 8; ed. C. Jacobitz. That the Pythagoreans used such symbols
we learn from Iamblichus (732, Pytk., c. xxxiii.,, 237 and 238). This figure is
referred to Pythagoras himself, and in the middle ages was called Pythagorae
figura. It is said to have obtained its special name from his having written the
letters v, 9, 1, 0 (=€), a, at its prominent vertices. We learn from Kepler (Opera
Omnia, ed. Frisch, vol. v., p. 122) that even so late as Paracelsus it was re-
garded by him as the symbol of health. See Chasles, Histoire de Géométrie,
PP- 477, 9.

3 De Arch., 1X., cap. ii.

33 Where the same couplet from Apollodorus as that in (f) is found, except
that kAewhy #yaye occurs in place of Aaumphy fiyero. Diog. Laert., vIIL, c. i,
11, p. 207, ed. Cobet.

3 Proclus, p. 426, ed. Friedlein.

3 dg Is. et Osir., c. §6. Plut. 0p., vol. 1L, p. 457, Didot.
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angles whose sides can be expressed in numbers—that
setting out from the odd numbers—is attributed to Pytha-
goras;*

(m) The discovery of irrational quantities is ascribed
to Pythagoras by Eudemus in the passage quoted above
from Proclus ;¥

() The three proportions—arithmetical, geometrical,
and harmonical—were known to Pythagoras ;*

(0) “Formerly, in the time of Pythagoras and the mathe-
maticians under him, there were three means only—the
arithmetical, the geometrical, and the third in order which
was known by the name dwevavria, but which Archytas and
Hippasus designated the harmonical, since it appeared
to include the ratios concerning harmony and melody
(ueraxAnOeica 8ri rode kara 0 apuooubvov xal iuuedic ipafvero
Adyovc wepiéyovoa)” ;¥

(#) With reference to the means corresponding to these
proportions, Iamblichus says :“—¢“ We must now speak of
the most perfect proportion, consisting of four terms, and
properly called the musical, for it clearly contains the
musical ratios of harmonical symphonies. It is said to
be an invention of the Babylonians, and to have been first
brought into Greece by Pythagoras” ;¢

3 Proclus, ed. Friedlein, p. 428; Heronis Alex., Geom. et Ster. Rel., ed. F.
Hultsch, pp. 56, 146. )

3 Proclus, ed. Friedlein, p. 65.

38 Nicom, G. Introd. 4., c. xxii., ed. R. Hoche, p. 122.

3 Tamblichus, i Nicom. Arithm., ed. Ten., p. 141.

40 [bid., p. 167.

41 As an example of this proportion, Nicomachus gives the numbers 6, 8, 9, 12,
the harmonical and arithmetical means between two numbers forming a geo-
metrical proportion with the numbers themselves. (Nicom. fnstit. Arithm., ed.
Ast., p. 153, and Animad., p. 329: see also Iambl., in Nicom. Arithm., ed.
Ten., p. 172, sq.)

Hankel, commenting on this passage of Iamblichus, says: “ What we are to
do with the report, that this proportion was known to the Babylonians, and only
brought into Greece by Pythagoras, must be left to the judgment of the reader.”’—
Geschichte der Mathematik, p. 105. In another part of his book, however, after
referring to two authentic documents of the Babylonians which have come down
to us, he says: ‘“We cannot, therefore, doubt that the Babylonians occupied
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(9) The doctrine of arithmetical progressions is attri-
buted to [the School of ] Pythagoras ;¢

() It would appear that he had considered the special
case of riangular numbers. Thus Lucian :—I1Y0. Eir’ imi
rovreviow aplfuterv. AT, Ol8a kal vov aplfuciv. I1YO. Nac
aplfuéac; AL "Ev, dbo, tpla, térrapa. TIIYO. ‘Opac; @ oV
doxéeig rérrapa, ravra déka iarl kal Tplywvov dvreAic kal nuérepov
Soxion.® '

(s) Another of his doctrines was, that of all solid figures
the sphere was the most beautiful ; and of all plane figures,
the circle.*

(¢) “AlsoIamblichus, in his commentary on the Catego-
ries of Aristotle, says that Aristotle may perhaps not have
squared the circle; but that the Pythagoreans had done so,
as is evident, he adds, from the demonstrations of the
Pythagorean Sextus, who had got by tradition the manner
of proof.” 4

On examining the purely geometrical work of Pytha-
goras and his early disciples, we observe that it is much
concerned with the geometry of areas, and we are indeed
struck with its Egyptian character. This appears in the
theorem (¢) concerning the filling up a plane by regular
polygons, as already noted; in the construction of the
regular solids (%), for some of them are found in the Egyp-
tian architecture; in the problems concerning the appli-
cation of areas (¢); and, lastly, in the law of the three

themselves with such progressions [arithmetrical and geometrical]; and a Greek
notice that they knew proportions, nay, even invented the so-called perfect or
musical proportion, gains thereby in value.” —7%:d., p. 67.

42 Theologumena Arithmetica, p. 61, ed. F. Ast, Lipsiae, 1817.

4 PyTH. Then I will teach you to count. BUYER. I know how to count
already. PvTH. How do you count? BUYER. One, two, three, four. PvyTH.
Do you see ? What you take to be four, that is ten and a perfect triangle and our
oath. Lucian, Blwy wpaots, 4, vol. I, p. 317, ed. Jacobitz.

4 Kal 7@y oxnudtwy 7O kdAAioToy odaipay elvar Tdv orTepedv, Tav ¥ émiwéSwy
ktxAov, Diog. Laert., Vit. Pyth., ViIL., c. i., 19, ed. Cobet, p. 212.

45 Simplicius, Comment., &c., ap. Bretsch., Geom. vor Eukl., p. 108. [Simplicii,
in: Aristotelis Physicorum libros quattuor priores Commentaria, p. 60, ed. Her-
mannus Diels, Berolini, 1882.]



Pythagoras and his School. 29

squares (£), coupled with the rule given by Pythagoras
for the construction of right-angled triangles in num-
bers (/).

According to Plutarch, the Egyptians knew that a tri-
angle whose sides consist of 3, 4, and 5 parts, must be
right-angled. “The Egyptians may perhaps have ima-
gined the nature of the universe like the most beautiful
triangle, as also Plato appears to have made use of it in
his work on the State, where he sketches the picture of
matrimony. That triangle contains one of the perpendicu-
lars of 3, the base of 4, and the hypotenuse of 5 parts, the
square of which is equal to those of the containing sides.
The perpendicular may be regarded as the male, the base
as the female, the hypotenuse as the offspring of both, and
thus Osiris as the originating principle (apyxn), Isis as the
receptive principle (Ywodoyx#), and Horus as the product

(amoréAeaua).” 4

This passage is remarkable, and seems to indicate the
way in which the knowledge of the useful geometrical
fact enunciated in it may have been arrived at by the
Egyptians. The contemplation of a draught-board, or of
a floor covered with square tiles, or of a wall ruled with
squares,*” would at once show that the square constructed

46 Plutarch, de Zs. et Osir., c. §6, vol. IIL., p. 457, ed. Didot.

47 It was the custom of the Egyptians, where a subject was to be drawn, to rule
the walls of the building accurately with squares before the figures were intro.
duced. See Wilkinson’s Ancient Egyptians, vol. IL., pp. 265, 267.
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on the diagonal of a square is equal to the sum of the
squares constructed on the sides—each containing four of
the right-angled isosceles triangles into which one of the
squares is divided by its diagonal.

Although this observation would not serve them for
practical uses, on account of the impossibility of presenting
it arithmetically, yet it must have shown the possibility of
constructing a square which would be the sum of two
squares, and encouraged them to attempt the solution of
the problem numerically. Now, the Egyptians, with whom
speculations concerning generation were in vogue, could
scarcely fail to have perceived, from the observation of a

chequered board, that the element in the successive for-
mation of squares is the gnomon (yvduwv)*, or common

48 M'vduwy means that by which anything is known, or criterion; its oldest
concrete signification seems to be the carpenter’s square (nzorma), by which a
right angle is known. Hence, it came to denote a perpendicular, of which,
indeed, it was the archaic name, as we learn from Proclus on Euclid, I., 12 :—
Toiro 70 ®pdBAnpa wpértov Oilvoxidys e(htnoev xphayoy adrd xpds &orporoylay
olbuevos: dvoudfer 8¢ Thy Kkdetov dpxaixds kard yvduova, 316t xal & Yvduwy
wpds opbds éort 7§ dpffoyri (Proclus, ed. Friedlein, p. 283). Gnomon is also
an instrument for measuring altitudes, by means of which the meridian can be
found ; it denotes, further, the index or style of a sundial, the shadow of which
points out the hours.

In geometry it means the square or rectangle about the diagonal of a square
or rectangle, together with the two complements, on account of the resemblance
of the figure to a carpenter’s square; and then, more generally, the similar figure
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carpenter’s square, which was known to them.*® It re-
mained for them only to examine whether some particular
gnomon might not be metamorphosed into a square, and,
therefore, vice versé. The solutiof would then be easy,
being furnished at once from the contemplation of a floor
or board composed of squares.

Each gnomon consists of an odd number of squares,
and the successive gnomons correspond to the successive
odd numbers,” and include, therefore, all odd squares.
Suppose, now, two squares are given, one consisting of 16
and the other of g unit squares, and that it is proposed to
form another square out of them. It is plain that the square

with regard to any parallelogram, as defined by Euclid, IL., Def. 2. Again, ina
still more general signification, it means the figure which, being added to any
figure, preserves the original form. See Hero, Definitiones (59).

‘When gnomons are added successively in this manner to a square monad, the
first gnomon may be regarded as that consisting of three square monads, and is
indeed the constituent of a simple Greek fret; the second, of five square monads,
&c. ; hence we have the gnomonic numbers, which were also looked on as male,
or generating.

4 Wilkinson’s Ancient Egyptians, vol. 1L., p. 111,

60 It may be observed here that we first count with counters, as is indicated by
the Greek yn¢i{eww and the Latin calcwlare. The counters might be equal
squares, as well as any other like objects. There is an indication that the odd
numbers were first regarded in this manner in the name gwomonic numbers

-
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consisting of ¢ unit squares can take the form of the fourth
gnomon, which, being placed round the former square, will
generate a new square containing 25 unit squares. Simi-
larly, it may have beénh observed that the r2th gnomon,
consisting of 25 unit squares, could be transformed into a
square, each of whose sides contains 5 units, and thus it
may have been seen conversely that the latter square, by
taking the gnomonic, or generating, form with respect to
the square on 12 units as base, would produce the square of
13 units, and so on.

This, then, is my attempt to interpret what Plutarch
has told us concerning Isis, Osiris, and Horus, bearing in
mind that the odd, or gnomonic, numbers were regarded
by Pythagoras as male, or generating. ®
which the Pythagoreans applied to them, and that term was used in the same
signification by Aristotle, and by subsequent writers, even up to Kepler. See
Arist., Phys., lib. 111., ed. Bekker, vol.I., p. 203 ; Stob., Eclog., ab Heeren, vol.
I., p. 24, and note; Kepleri, Opera Omnia, ed. Ch. Frisch, vol. vii1., Mathe-
matica, pp. 164, sq.

81 This seems to me to throw light on some of the oppositions which are found
in the table of principles attributed by Aristotle to certain Pythagoreans (Metaph.,
1., V., 986+, ed. Bekker).

The odd—or grnomonic—numbers are finite ; the even, infinite. Odd numbers
were regarded also as male, or generating. Further, by the addition of successive
gnonoms—consisting, as we have seen, each of an odd number of units—to the
original unit square or monad, the square form is preserved. On the other hand,

if we start from the simplest oblong (érepdunkes), consisting of two unit squares,
or monads, in juxtaposition, and place about it, after the manner of a2 gnomon—

and gnomon, as we have seen, was used in this more extended sense also at a
later period—4 unit squares, and then in succession in like manner 6,8, . . .
unit squares, the oblong form érepdunkes will be preserved. The elements, then,
which generate a square are odd, while those of which the oblong is made up are
even. The limited, the odd, the male, and the square, occur on one side of the
table : while the unlimited, the even, the female, and the oblong, are met with on
the other side. .

The correctness of this view is confirmed by the following passage preserved
by Stobaeus :—'E7: 8¢ 7i povdd: 7@y ¢pefiis wepioa@y yyvwubvay wepitifenévwr, &
ywluevos kel Terpdywvds éori. Tdy 8¢ &priwy polws wepiTiBéueva, Erepoutines xal
&vigos wdvres &roBalvovaw: Yoo 3¢ lodris obdels.
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It is another matter to see that the triangle formed by
3, 4, and 5 units is right-angled, and this I think the
Egyptians may have first arrived at by an induction
founded on direct measurement, the opportunity for which
was furnished to them by their pavements, or chequered
plane surfaces.

The method given above for the formation of the
square constructed on 5 units as the sum of those con-
structed on 4 units and on 3 units, and of that constructed
on 13 units, as the sum of those constructed on 12 units
and 5 units, required only to be generalized in order to

‘“Explicanda haec sunt ex antiqua Pythagoricorum terminologia. I'vduoves
nempe de quibus hic loquitur auctor, vocabantur apud eos omnes numeri impares,
So. Prilop. ad Aristot. Phys., 1. iii., p. 131: Kal of &piunricol 5% yvduovas
karobo: wdvras Tods wepirtods &pilbuovs. Causam adjicit Simplicius ad eundem
locum, Tvduovas 8¢ éxdAovw Tods wepirTods of Mubaydpetor dibTi wpooTiBéuevor Tols
TeTpaydvois, T adbrd oxijua puAdrrovst, Bowep kal of &v yewperplg yvduoves.
Quae nostro loco leguntur jam satis clara erunt. Vult nempe auctor, monade
addita ad primum gnomonem, ad sequentes autem summam, quam proxime ante-
cedentes numeri efficiunt, semper prodire numeros quadratos, . ¢. positis gnomo-
nibus 3, 5, 7, 9, primum I + 3=2% tuncporro I + 3 (f. e. 4) + §=3%, 9+ 7=4?,
16 + 9 = 52, et sic porro, cf. Ziedem. Geist der Speculat. Philos., pp. 107, 108,
Reliqua expedita sunt.”” Stob. Eclog. ab. Heeren, lib. 1., p. 24, and note.

The passage of Aristotle referred to is—oqueior & elvar Tobrov 75 cuuBaivor
énl TGy dpibudv. wepiTiBenévwy ydp TV yvwudbvwy wepl Td & kal xwpls St udv
&AAo &el ylyveaOar Td eldos é1¢ 8¢ &. Phys., 1IL., iv., p. 2034, 12.

Compare &X' Yot Twvd abfavéueva & ok &AAowobras, olov Td TeTpdywvoy
yvéuovos wepiTedévtos nttnTar uév, &Arobrepoy 8¢ odddv yeyéryrar. Cat., XIV.,
158, 30, Arist., ed. Bekker.

Hankel gives a different explanation of the opposition between the square and
oblong :—

¢¢When the Pythagoreans discovered the theory of the Irrational, and recog-
nised its importance, it must, as will be at once admitted, appear most striking
that the oppositions, which present themselves so naturally, of Rational and Irra-
tional have no place in their table. Should they not be contained under the image
of square and rectangle, which, in the extraction of the square root, have led pre-
cisely to those ideas?”’ Geschichte der Mathematik, p. 110, note. =~

Hankel also says—*‘‘ Upon what the comparison of the odd with the limited
may have been based, and whether upon the theory of the gnomons, can scarcely
be made out now.”  Zéid. p. 109, note.

May not the gnomon be looked on as framing, as it were, or limiting the
squares ?

D
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enable Pythagoras to arrive at his rule for finding right-
angled triangles, which we are told sets out from the
odd numbers.

The two rules of Pythagoras and of Plato are given by
Proclus :—* But there are delivered certain methods of
finding triangles of this kind [sc. right-angled triangles
whose sides can be expressed by numbers], one of which
they refer to Plato, but the other to Pythagoras, as origi-
nating from odd numbers. For Pythagoras places a given
odd number as the lesser of the sides about the right angle,
and when he has taken the square constructed on it, and
diminished it by unity, he places half the remainder as
the greater of the sides about the right angle; and when
he has added unity to this, he gets the hypotenuse. Thus,
for example, when he has taken 3, and has formed from it
a square number, and from this number g has taken unity,
he takes the half of 8, that is 4, and to this again he adds
unity, and makes 5; and thus obtains a right-angled tri-
angle, having one of its sides of 3, the other of 4, and the
hypotenuse of 5 units. But the Platonic method originates
from even numbers. For when he has taken a given even
number, he places it as one of the sides about the right
angle, and when he has divided this into half, and squared
the half, by adding unity to this square he gets the hypo-
tenuse, but by subtracting unity from the square he forms
the remaining side about the right angle. Thus, for ex-
ample, taking 4, and squaring its half, 2, and thus getting
4, then subtracting 1, he gets 3, and by adding 1 he gets
5; and he obtains the same triangle as by the former
method.” ** It should be observed, however, that this is not
necessarily the case; for example, we may obtain by the
method of Plato a triangle whose sides are 8, 15, and 17.
units, which cannot be got by the Pythagorean method.

The 7™ square together with the #** gnomon is the

$ Proclus, ed. Friedlein, p. 428. Hero, Geom. et ster. rel., ed. Hultsch,
PP- 56, 57
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(7 + 1)** square; if the " gnomon contains m® unit squares,
m being an odd number, we have

md -1
m+1=mt . n= P ;

hence the rule of Pythagoras. Similarly the sum of two
successive gnomons contains an even number of unit
squares and may therefore consist of #* unit squares,
where m is an ever number ; we have then

(2n=1)+ (22 + 1) =m?, orn=(%l)z:

hence the rule ascribed to Plato by Proclus.®®* This
passage of Proclus, which is correctly interpreted by
Hoefer,* was understood by Kepler,* who, indeed, was
familiar with this work of Proclus, and often quotes it
in his Harmonia Munds.

Let us now examine how Pythagoras proved the the-
orem of the three squares. Though he could have disco-
vered it as a consequence of the theorem concerning the
proportionality of the sides of equiangular triangles, attri-
buted above to Thales, yet there is no indication whatever of
his having arrived at it in that deductive manner. On the
other hand, the proof given in the Elements of Euclid clearly
points to such an origin, for it depends on the theorem that
the square on a side of a right-angled triangle is equal to
the rectangle under the hypotenuse and its adjacent seg-
ment made by the perpendicular on it from the right angle
—a theorem which follows at once from the similarity

3 This rule is ascribed to Architas [no doubt, Archytas of Tarentum] by
Boetius, Geom., ed. Friedlein, p. 408.

8¢ Hoefer, Histoire des Math., p. 112.

3 Kepleri, Opera Omnia, ed. Frisch, vol. VIII., p. 163 et seq. It may be
observed that this method is capable of further extension, ¢.g. : the sum of g (an
odd square number) successive gnomons may contain an odd number (say 49 x 9)
of square units; hence we obtain a right-angled triangle in numbers, whose
hypotenuse exceeds one side by 9 units—the three sides being 20, 21, and 29.
Plato’s method may be extended in like manner.

D2



36 Greek Geometry from Thales to Euclid.

of each of the partial triangles into which the original
right-angled triangle is brc.)ken up by the perpendicular,
with the whole. That the proof in the Elements is not the
way in which the theorem was discovered is indeed stated
directly by Proclus, who says:— )

“If we attend to those who wish to investigate antiquity,
we shall find them referring the present theorem to Pytha-
goras, . . . For my own part, I admire those who first
investigated the truth of this theorem: but I admire still
more the author of the Elements, because he has not only
secured it by evident demonstration, but because he re-
duced it into a more general theorem in his sixth book by
strict reasoning [Euclid, VI, 31].” %

The simplest and most natural way of arriving at
the theorem is the following, as suggested by Bret-
schneider ¥ :—

A square can be dissected into the sum of two squares
and two equal rectangles, as in Euclid, II., 4; these two rect-
angles can, by drawing their diagonals, be decomposed
into four equal right-angled triangles, the sum of the sides

of each being the side of the square: again, these four
right-angled triangles can be placed so that a vertex of
each shall be in one of the corners of the square in such a
way that a greater and less side are in continuation. The
original square is thus dissected into the four triangles as

66 Proclus, ed. Friedlein, p. 426.
87 Bretsch., Geom. vor Eukl., p. 82. This proof is old : see Camerer, Euclidis
Element., vol. 1., p. 444, and references given there,
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before and the figure within, which is the square on the hy-
potenuse. This square then must be equal to the sum of the
squares on the sides of the right-angled triangle.

Hankel, in quoting this proof from Bretschneider, says
that it Mfay be objected that it bears by no means a speci-
fically Greek colouring, but reminds us of the Indian
method. This hypothesis as to the oriental origin of the
theorem seems to me to be well founded. I would, how-
ever, attribute the discovery to the Egyptians, inasmuch
as the theorem concerns the geometry of areas, and as the
method used is that of the dissection of figures, for which
the Egyptians were famous, as we have already seen.
Moreover, the theorem concerning the areas connected
with two lines and their sum (Euclid, II., 4), which admits
also of arithmetical interpretation, was certainly within
their reach. The gnomon by which any square exceeds
another breaks up naturally into a square and two equal
rectangles. I think also that the Egyptians knew that the
difference between the squares on two lines is equal to the
rectangle under their sum and difference—though they
would not have stated it in that abstract manner, The
two squares may be placed with a common vertex and
adjacent sides coinciding in direction, so that their diffe-
rence is a gnomon. This gnomon can, on account of the
equality of the two complements,® be transformed into a
rectangle which.can be constructed by producing the side
of the greater square so that it shall be equal to itself, and
then we have the figure of Euclid, IL, 5, or to the side of
the lesser square, in which case we have the figure of
Euclid, IL., 6. Indeed I have little hesitation in attributing
to the Egyptians the contents of the first ten propositions
of the second book of Euclid. In the demonstrations of

%8 This theorem (Euclid, I., 43) Bretschneider says was called the ¢ theorem of
the gnomon.” I do not know of any authority for this statement. If the theorem
were so called, the word gnomon was not used in it either as defined by Euclid
(II. Def. 2), or in the more general signification in Hero (Def. 58).
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propositions 5, 6, 7, and 8, use is made of the gnomon, and
propositions g and 10 also can be proved similarly without
the aid of Euclid, I., 47.

It is well known that the Pythagoreans were much oc-
cupied with the construction of regular polygons and solids,
which in their cosmology played an essential part as the
fundamental forms of the elements of the universe.®

‘We can trace the origin of these mathematical specula-
tions in the theorem (c) that “the plane around a point
is completely filled by six equilateral triangles or four
squares, or three regular hexagons,” a theorem attributed
to the Pythagoreans, but which must have been known as
a fact to the Egyptians. Plato also makes the Pythago-
rean Timaeus explain—* Each straight-lined figure consists
of triangles, but all triangles can be dissected into rectan-
gular ones, which are either isosceles or scalene. Among
the latter the most beautiful is that out of the doubling of
which an equilateral arises, or in which the square of the
greater perpendicular is three times that of the smaller, or
in which the smaller perpendicular is half the hypotenuse.

But two or four right-angled isosceles triangles, properly
put together, form the square; two or six of the most
beautiful scalene right-angled triangles form the equilateral
triangle ; and out of these two figures arise the solids which
correspond with the four elements of the real world, the
tetrahedron, octahedron, icosahedron, and the cube.” ®

59- Hankel says it cannot be ascertained with precision how far the Pythagoreans
had penetrated into this theory, namely, whether the construction of the regular
pentagon and ordinate dodecahedron was known to them. Hankel, Gesckichte
der Mathematik, p. 95, note.

¢ Plato, Z¥m., c. xx., 53, D., 5¢., vol. VII., ed. Stallbaum, p. 224, ‘@
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This dissection of figures into right-angled triangles
may be fairly referred to Pythagoras, and indeed may have
been derived by him from the Egyptians.

The construction of the regular solids is distinctly
ascribed 'to Pythagoras himself by Eudemus, in the passage
in which he briefly states the principal services of Pytha-
goras to geometry. Of the five regular solids, three—the
tetrahedron, the cube, and the octahedron—were certainly
- known to the Egyptians, and are to be found in their archi-
tecture. There remain, then, the icosahedron and the
dodecahedron. Let us now examine what is required for
the construction of these two solids.

A @

In the formation of the tetrahedron, three, and in that
of the octahedron, four, equal equilateral triangles had
been placed with a common vertex and adjacent sides co-
incident, and it was known, too, that if six such triangles
were placed round a common vertex with their adjacent
sides coincident, they would lie in a plane, and that, there-
fore, no solid could be formed in that manner from them.
It remained, then, to try whether five such equilateral tri-
angles could be placed at a common vertex in like man-
ner: on trial it would be found that they could be so
placed, and that their bases would form a regular penta-
gon. Tile existence of a regular pentagon would thus be



40 Greek Geometry from Thales to Euclid.

known. It was also known from the formation of the cube
that three squares could be placed in a similar way with a
common vertex; and that, further, if three equal and regu-
lar hexagons were placed round a point as common vertex
with adjacent sides coincident, they would form a plane.
It remained, then, only to try whether three equal regular
pentagons could be placed with a common vertex, and in
a similar way; this on trial would be found possible, and
would lead to the construction of the regular dodecahedron,
which was the regular solid last arrived at.*

We see, then, that the construction of the regular penta-
gon is required for the formation of each of these two
regular solids, and that therefore it must have been a dis-
covery of Pythagoras. We have now to examine what
knowledge of geometry was required for the solution of
this problem.

If any vertex of a regular pentagon be connected with
the two remote ones, an isosceles triangle will be formed
having each’ of the base angles double the vertical angle.
- The construction of the regular pentagon depends, there-
fore, on the description of such a triangle (Euclid, IV., 10).
Now, if either base angle of such a triangle be bisected,
the isosceles triangle will be decomposed into two trian-
gles, which are evidently also both isosceles. It is also
evident that the one of which the base of the proposed is a
side is equiangular with it. From a comparison of the
sides of these two triangles it will appear at once by the
second theorem, attributed above to Thales, that the prob-
lem is reduced to cutting a straight line so that one seg-
ment shall be a mean proportional between the whole line
and the other segment (Euclid, VI., 30), or so that the rect-
angle under the whole line and one part shall be equal to
the square on the other part (Euclid, II., 11). To effect this,
let us suppose the square on the greater segment to be

61 The four elements had been represented by the four other regular solids ; the
dodecahedron was then taken symbolically for the universe.
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constructed on one side of the line, and the rectangle under
the whole line and the lesser segment on the other side.
It is evident that by adding to both the rectangle under
the whole line and the greater segment, the problem is
reduced to the following:—To produce a given straight
line so that the rectangle under the whole line thus pro-
duced and the part produced shall be equal to the square
on the given line, or, in the language of the ancients, to
apply to a given straight line a rectangle which shall be
equal to a given area—in this case the square on the given
line—and which shall be excessive by a square. Now it is
to be observed that the problem is solved in this manner
by Euclid (VI., 30, 1st method), and that we learn from
Eudemus that the problems concerning the applzcation of
areas and their excess and defect are old, and inventions of
the Pythagoreans (¢).*

62 It may be objected that this reasoning presupposes a knowledge, on the part
of Pythagoras, of the method of geometrical analysis, which was invented by Plato
more than a century later.

‘While admitting that it contains the germ of that method, I reply, in the first
place, that this manner of reasoning was not only natural and spontaneous, but
that in fact in the solution of problems there was no other way of proceeding.
And, to anticipate a little, we shall see, secondly, that the oldest fragment of
Greek geometry extant—that namely by Hippocrates of Chios—contains traces
of an analytical method, and that, moreover, Proclus ascribes to Hippocrates,
who, it will appear, was taught by the Pythagoreans, the method of reduction
(&waywyh), a systematisation, as it seems to me, of the manner of reasoning that
was spontaneous with Pythagoras. Proclus defines &waywyf to be ‘‘a transi-
tion from one problem or theorem to another, which being known or determined,
the thing proposed is also plain. For example: when the duplication of the cube
is investigated, geometers reduce the question to another to which this is
consequent, ¢.e. the finding of two mean proportionals, and afterwards they inquire
how between two given straight lines two mean proportionals may be found.
But Hippocrates of Chios is reported to have been the first inventor of geome-
trical reduction (dwxaywyf): who also squared the lune, and made many other
discoveries in geometry, and who was excelled by no geometer in his powers of
construction.”—Proclus, ed. Friedlein, p. 212, sg. Lastly, we shall find that the
passages in Diogenes Laertius and Proclus, which are relied on in support of the
statement that Plato invented this method, prove nothing more than that Plato
communicated it to Leodamas of Thasos. For my part, I am convinced that the
gradual elaboration of this famous method—by which mathematics rose above the
Elements—is due to the Pythagorean philosophers from the founder to Theodorus
of Cyrene apd Archytas of Tarentum, who were Plato’s masters in mathematics.
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The statements, then, of Iamblichus concerning Hip-
pasus (#)—that he divulged the sphere with the twelve
pentagons ; and of Lucian and the scholiast on Aristo-
phanes (7)—that the pentagram was used as a symbol of
recognition amongst the Pythagoreans, become of greater
importance. We learn, too, from Iamblichus that the Py-
thagoreans made use of signs for that purpose.®

Further, the discovery of irrational magnitudes is
ascribed to Pythagoras in the same passage of Eude-
mus (m), and this discovery has been ever regarded as one
of the greatest of antiquity. It is commonly assumed that
Pythagoras was led to this theory from the consideration
of the isosceles right-angled triangle. It seems to me,
however, more probable that the discovery of incommen-
surable magnitudes was rather owing to the problem—To
cut a line in extreme and mean ratio. From the solution
of this problem it follows at once that, if on the greater
segment of a line, so cut, a part be taken equal to the less,
.the greater segment, regarded as a new line, will be cut in
a similar manner; and this process can be continued with-
out end. On the other hand, if a similar method be adopted
in the case of any two lines which are capable of numerical
representation, the process would end. Hence would arise
the distinction between commensurable and incommensu-
rable quantities.

A reference to Euclid, X., 2, will show that the above
method is the one used to prove that two magnitudes are
incommensurable. And in Euclid, X,, 3, it will be seen that
the greatest common measure of two commensurable mag-
nitudes is found by this process of continued subtraction.

It seems probable that Pythagoras, to whom is attri-
buted one of the rules for representing the sides of right-
angled triangles in numbers, tried to find the sides of an
isosceles right-angled triangle numerically, and that, fail-

63 Iambl., Vit. Pyth., c. cxxxiii., p. 77, ed. Didot.
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ing in the attempt, he suspected that the hypotenuse and a
side had no common measure. He may have demonstrated
the incommensurability of the side of a square and its dia-
gonal. The nature of the old proof—which consisted of a
reductio ad absurdum, showing that if the diagonal be com-
mensurable with the side, it would follow that the same
number would be odd and even*—makes it more probable,
however, that this was accomplished by his successors.
The existence of the irrational, as well as that of the
regular dodecahedron, appears to have been regarded also
by the school as one of their chief discoveries, and to have
been preserved as a secret. It is remarkable, too, that a
story similar to that told by Iamblichus of Hippasus is
narrated of the person who first published the idea of the
irrational, namely, that he suffered shipwreck, &c.*

Eudemus ascribes the problems concerning the appli-
_ cation of figures to the Pythagoreans. The simplest cases
of the problems (Euclid, VI., 28, 29)—those, namely, in
which the given parallelogram is a square—correspond to
the problem: To cut a straight line internally or externally
so that the rectangle under the segments shall be equal to
a given rectilineal figure. On examination it will be found
that the solution of these problems depends on the problem
Euclid, II., 14, and the theorems Euclid, II., 5 and 6, which
we have seen were probably known to the Egyptians, to-
gether with the law of the three squares (Euclid, I., 47).
The finding of a mean proportional between two given
lines, or the construction of a square which shall be equal

84 Aristoteles, Analyt. Prior., 1., c. xxiii., 41%, 26, and c. xliv., 508, 37, ed.
Bekker,

Euclid has preserved this proof, X., 117. Hankel thinks he did so probably
for its historical interest only, since the irrationality follows self-evidently from
X., 9; and X., 117, is merely an appendix.—Hankel, Gesck. der Math., p. 102,
note.

85 Untersuchungen iiber die neu aufgefundenen Scholien des Proklus Diadockus
zu Euclid’s Elementen, von Dr. Joachim Heinrich Knoche, Herford, 1865, pp.
20 and 23.
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to a given rectangle, must be referred, I have no doubt, to
Pythagoras. The rectangle can be easily thrown into the
form of a gnomon, and then exhibited as the difference
between two squares, and therefore as a square by means
of the law of the three squares.

Lastly, the solution of the problem to construct a
rectilineal figure which shall be equal to one and similar
to another given rectilineal figure is attributed by Plutarch
to Pythagoras. The solution of this problem depends on
the application of areas, and requires a knowledge of the
theorems :—that similar rectilineal figures are to each other
as the squares on their homologous sides; that if three
lines be in geometrical proportion, the first is to the third
as the square on the first is to the square on the second ;
and also on the solution of the problem, to find a mean
proportional between two given straight lines. Now, we
shall see later that Hippocrates of Chios—who was in-
structed in geometry by the Pythagoreans—must have
known these theorems and the solution of this problem.
We are justified, therefore, in ascribing this theorem also,
if not (with Plutarch) to Pythagoras, at least to his early
successors. .

The theorem that similar polygons are to each other in
the duplicate ratio of their homologous sides involves a
first sketch, at least, of the doctrine of proportion.

That we owe the foundation and development of the
doctrine of proportion to Pythagoras and his disciples is
confirmed by the testimony of Nicomachus (z) and Iambli-
chus (o) and (p).

From these passages it appears that the early Pythago-
reans were acquainted not only with the arithmetical and
geometrical means between two magnitudes, but also with
their harmonical mean, which was then called Vrevavria.

‘When two quantities are compared, it may be con-
sidered Aow muck the one is greater than the other, what is
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their difference ; or it may be considered kow many fimes
the one is contained in the other, what is their guofsent.
The former relation of the two quantities is called their
arsthmetical ratio ; the latter their geometrical ratso.

Let now three magnitudes, lines or numbers, a, 4, ¢, be
taken. Ifa- =24 -, the three magnitudes are in arithmeti-
cal proportion; butifa:4::4:¢, they are in geometrical
proportion.*® In the latter case, it follows at once, from the
second theorem of Thales (Euclid, VI,, 4), that

a-b:b~c::a:b;
whereas in the former case we have plainly
a-b:b-c::a:a.

This might have suggested the consideration of three
magnitudes, so taken that

a-b:b-c::a:¢:

three such magnitudes are in harmonical proportion.
The probability of the correctness of this view is indi-
cated by the consideration of the three later proportions—

a:c::b-c:a-5 ... the contrary of the harmonical;

bic::b-c:a-b

Gibiibocia—bf " the contrary of the geometrical.

The discovery of these proportions is attributed to Hip-
pasus, Archytas, and Eudoxus.”

6 In Jines we mayhave c=a—b, ora:b:a-5. This particular case, in which
the geometrical and arithmetical ratios both occur in the same proportion, is
worth noticing. The line @ is then the sum of the other two lines, and is said to
be cut in extreme and mean ratio. This section, as we have seen, has arisen out
of the construction of the regular pentagon, and we learn from Kepler that it was
called by the moderns, on account of its many wondertul properties, sectio divina,
et proportio divina. He sees in it a fine image of generation, since the addition to
the line of its greater part produces a new line cut similarly, and so on. See
Kepleri, Opera Omnia, ed. Frisch, vol. v., pp. 9o and 187 (Harmonia Mundy);
also vol. L., p. 377 (Literae de Rebus Astrologicis). The pentagram might be
taken as the image of all this, as each of its sides and part of a side are cut in this
divine proportion.

7 Jambl. in Nic, Arith., pp. 142, 159, 163. See above, p. 4.
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We have seen also () that a knowledge of the so-called
most perfect or musical proportion, which comprehends in
it all the former ratios, is attributed by Iamblichus to Py-
thagoras—

.a+b  2ab P

2 Ta+bd

We have also seen (¢) that a knowledge of the doctrine
of arithmetical progressions is attributed to Pythagoras.
This much at least seems certain, that he was acquainted
with the summation of the natural numbers, the odd num-
bers, and the even numbers, all of which are capable of
geometrical representation. '

.

Montucla says that Pythagoras laid the foundation of
the doctrine of Isoperimetry by proving that of all figures
having the same perimeter the circle is the greatest, and
that of all solids having the same surface the sphere is the
greatest.®

There is no evidence to support this assertion, though it
is repeated by Chasles, Arneth, and others; it rests merely
on an erroneous interpretation of the passage (s) in Dioge-
nes Laertius, which says only that ¢ of all solid figures the
sphere is the most beautiful; and of all plane figures, the
circle.”” Pythagoras attributes perfection and beauty to
the sphere and circle on account of their regularity and
uniformity. That this is the true signification of the pas-
sage is confirmed by Plato in the Timaeus,” when speaking
of the Pythagorean cosmogony.™.

We must also deny to Pythagoras and his school a
knowledge of the conic sections, and, in particular, of the
quadrature of the parabola, attributed to him by some

68 ¢« Suivant Diogene, dont le texte est ici fort corrumpu, et probablement trans-
posé, il ébaucha aussi la doctrine des Isopérimetres, en démontrant que de toutes
les figures de méme contour, parmi les figures planes, c’est le cercle qui est la plus
grande, et parmi les solides, 1a sphére.” —Montucla, Histoire des Mathématigues,
tom. I., p. 113. :

69 Timaeus, 33, B., vol. ViI., ed. Stallbaum, p. 129.
70 See Bretschneider, Geom. vor Eukl., pp. 89, 90.
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authors, and we have already noticed the misconception
which gave rise to this erroneous conclusion.”

Let us now see what conclusions can be drawn from the
foregoing examination of the mathematical work of Pytha-
goras and his school, and thus form an estimate of the state
of geometry about 480 B.C.

First, then, as to matler : —

It forms the bulk of the first two books of Euclid, and
includes, further, a sketch of the doctrine of proportion—
which was probably limited to commensurable magni-
tudes—together with some of the contents of the sixth
book. It contains, too, the discovery of the irrational
(&Aoyov), and the construction of the regular solids; the
latter requiring the description of certain regular polygons
—the foundation, in fact, of the fourth book of Euclid.

The properties of the circle were not much known at
this period, as may be inferred from the fact that not one
remarkable theorem on this subject is mentioned ; and we
shall see later that Hippocrates of Chios did not know
the theorem—that the angles in the same segment of a
circle are-equal to each other. Though this be so, there is,
as we have seen, a tradition (#) that the problem of the
quadrature of the circle also engaged the attention of the
Pythagorean school—a problem which they probably de-
rived from the Egyptians.”

Secondly, as to_form :—

The Pythagoreans first severed geometry from the needs
of practical life, and treated it as a liberal science, giving

71 See above, p. 25, note 27.

7 This problem is considered in the Papyrus Rhind, pp, 97, 98, 117. The
point of view from which it was regarded by the Egyptians was different from
that of Archimedes. 'Whilst he made it to depend on the determination of the
ratio of the circumference to the diameter, they sought to find from the diameter
the side of a square whose area should be equal to that of the circle. Their
approximation was as follows :—The diameter being divided into nine equal parts,

the side of the equivalent square was taken by them to consist of eight of those
parts.
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definitions, and introducing the manner of proof which
has ever since been in use. Further, they distinguished
between discrefe and confinuous quantities, and regarded
geometry as a branch of mathematics, of which they made
the fourfold division that lasted to the Middle Ages—the
quadrivium (fourfold way to knowledge) of Boetius and the
scholastic philosophy. And it may be observed, too, that
the name of mathematics, as well as that of philosophy, is
ascribed to them.
Thirdly, as to method : —

- One chief characteristic of the mathematical work of
Pythagoras was the combination of arithmetic with geo-
metry. The notions of an equation and a proportion—which
are common to both, and contain the first germ of algebra
—were, as we have seen, introduced amongst the Greeks
by Thales. These notions, especially the latter, were ela-
borated by Pythagoras and his school, so that they reached
the rank of a true scientific method in their Theory of Pro-
portion. To Pythagoras, then, is due the honour of having
supplied a method which is common to all branches of
mathematics, and in this respect he is fully comparable to
Descartes, to whom we owe the decisive combination of
algebra with geometry.

It is necessary to dwell on this at some length, as
modern writers are in the habit of looking on proportion
as a branch of arithmetic™—no doubt on account of the
arithmetical point of view having finally prevailed in it—
whereas for a long period it bore much more the marks of
its geometrical origin.™

That proportion was not thus regarded by the ancients,
merely as a branch of arithmetic, is perfectly plain. We

13 Bretschneider (Geom. vor Eukl., p. 74) and Hankel (Gesck. der Matk., p. 104)
do so, although they are treating of the history of Greek geometry, which is
clearly a mistake.

74 On this see A. Comte, Politiqgue Positive, vol. 111., ch. iv., p. 300.
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learn from Proclus that “ Eratosthenes looked on propor-
tion as the bond (o6vdeouov) of mathematics.””*

We are told, too, in an anonymous scholium on the
Elements of Euclid, which Knoche attributes to Proclus,
that the fifth book, which treats of proportion, is common
to geometry, arithmetic, music, and, in a word, to all
mathematical science.™

And Kepler, who lived near enough to the ancients to
reflect the spirit of their methods, says that one part of
geometry is concerned with the comparison of figures
and quantities, whence proportion arises (‘“‘unde proportio
existit”). He also adds that arithmetic and geometry
afford mutual aid to each other, and that they cannot be
separated.”

And since Pythagoras they have never been separated.
On the contrary, the union between them, and indeed, be-
tween the various branches of mathematics, first instituted
by Pythagoras and his school, has ever since become more
intimate and profound. We are plainly in presence of not
merely a great mathematician, but of a great philosopher.
It has been ever so—the greatest steps in the development
of mathematics have been made by philosophers.

Modern writers are surprised that Thales, and indeed
all the principal Greek philosophers prior to Pythagoras,
are named as his masters. They are suprised, too, at the
extent of the travels attributed to him. Yet there is no

5 Proclus, ed. Friedlein, p. 43.

76 Euclidis £lem. Graece ed. ab E. F. August, pars ii., p. 328, Berolini, 1829.
Dr. J. H. Knoche, 0p. cit., p. 10.

71 ¢¢ Et quidem geometriae theoreticae initio hujus tractatus duas fecimus partes,
unam de magnitudinibus, quatenus fiunt figurae, alteram de comparatione figura-
rum et quantitatum, unde proportio existit.

‘“Hae duae scientiae, arithmetica et geometria speculativa, mutuas tradunt
operas nec ab invicem separari possunt, quamvis et arithmetica sit principium
cognitionis.”—Kepleri Opera Omnia, ed. Dr. h. Frisch, vol. viIL., p. 160,
Francofurti, 1870.

E
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cause to wonder that he was believed by the ancients to
have had these philosophers as his teachers, and to have
extended his travels so widely in Greece, Egypt, and the
East, in search of knowledge, for—like the geometrical
figures on whose properties he loved to meditate—his
philosophy was many-sided, and had points of contact
with all these :—

He introduced the knowledge of arithmetic from the
Phoenicians, and the doctrine of proportion from the
Babylonians,

Like Moses, he was learned in all the wisdom of the
Egyptians, and carried their geometry and philosophy
into Greece. -

He continued the work commenced by Thales in ab-
stract science, and invested geometry with the form which
it has preserved to the present day.

In establishing the existence of the regular solids he
showed his deductive power; in investigating the elemen-
tary laws of sound he proved his capacity for induction;
and in combining arithmetic with geometry, and thereby
instituting the theory of proportion, he gave an instance of
his philosophic power.

These services, though great, do not form, however, the
chief title of this Sage to the gratitude of mankind. He
resolved that the knowledge which he had acquired with
so great labour, and the doctrine which he had taken such
pains to elaborate, should not be lost; and, as a husband-
man selects good ground, and is careful to prepare it for
the reception of the seed, which he trusts will produce fruit
in due season, so Pythagoras devoted himself to the forma-
tion of a society d’é/zfe, which would be fit for the reception
and transmission of his science and philosophy; and thus
became one of the chief benefactors of humanity, and
earned the gratitude of countless generations.

His disciples proved themselves worthy of their high
mission. We have had already occasion to notice their
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noble self-renunciation, which they inherited from their
master.

The moral dignity of these men is further shown by
their admirable maxim—a maxim conceived in the spirit
of true social philosophers—a figure and a step; but not a
Sigure and three oboli (oxapa xal Baua, aAX’ o¥ oxaua xai Tpid-
BoAov).™

Such, then, were the men by whom the first steps in
mathematics—the first steps ever the most difficult—were
made.

In the next chapter we shall notice the events which
led to the publication, through Hellas, of the results
arrived at by this immortal School.

78 Proclus, ed. Friedlein, p. 84. Taylor's Commentaries of Proclus, vol. 1.,
p.- 113. Taylor, in a note on this passage, says:—‘I do not find this aenigma
among the Pythagoric symbols which are extant, so that it is probably nowhere
mentioned but in the present work.”

Taylor is not correct in this statement. This symbol occurs in Iamblichus.
See Iambl., Adkortatio ad Philosophiam, ed. Kiessling, Symb. XXXVI., cap. xxi.,
p- 317; also Expl. p. 374: wporiua 15 oxfiua xal Biua 7ot oxiua xal Tpid-
BoAoy.
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CHAPTER IIL*

THE GEOMETERS OF THE FIFTH CENTURY B.C.—
HIPPOCRATES OF CHIOS: DEMOCRITUS.

State of Hellas during the Persian Wars.— Pre-eminence of Athens.—The Eleatic
School and the Atomic Philosophy. —Hippocrates of Chios.—Notices of him
and of his work.—Was the first writer of the ¢ Elements,” and first squared
the Lune.— His probable date. —The Quadrature of the Circle and of
the Lune.—Extract from the Commentary of Simplicius on the Physics of
Aristotle; derived by him partly from Alexander of Aphrodisias and partly
from the History of Geometry of Eudemus.—Notices of the work done by
other Geometers of this period."—Democritus.—His mathematical writings.—
Problem of the Duplication of the Cube.—Reduced by Hippocrates to:
the finding of two Mean Proportionals between two Given Straight Lines.—
Probable relation of this problem to the Pythagorean Cosmology.—Its
influence on the development of Geometry.—The Trisection of an Angle.—
The Quadratrix. — Hippias of Elis.-- Method of Exhaustions erroneously
attributed to Hippocrates.—Probable origin of his discovery concerning the
Quadrature of the Lune.—Though the principal Geometer of this period,
the judgment of the ancients on him was not altogether favourable.—
Suggested explanation of this.

THE first twenty years of the fifth century before the
Christian era was a period of deep gloom and despondency
throughout the Hellenic world. The Ionians had revolted,
and were conquered for the third time; this time, how-

¢ In the Introduction, note 1, I acknowledged my obligations to the works
of Bretschneider and Hankel : I have again made use of them in the preparation
of this chapter. Since it was written, I have received from Dr. Moritz Cantor,
of Heidelberg, the portion of his History of Mathematics which treats of the
Greeks (Voriesungen iiber Geschichte der Mathematik, von Moritz Cantor, Erster
Band. Von den dltesten Zeiten bis zum Jahre 1200 n. Chr. Leipzig, 1880
(Teubner)). To the list of new editions of ancient mathematical works given
in the note referred to above, I have to add: Theonis Smyraei Expositio rerum
Mathematicarum ad legendum Platonem utilium. Recensuit Eduardus Hiller,
Lipsiae, 1878 (Teubner); Pappi Alexandrini Collectionis quae supersunt, &c.,
instruxit F. Hultsch, vol. 111., Berolini, 1878 (to the latter the editor has appen-
ded an /ndex (Graecitatis, a valuable addition ; for, as he remarks, ¢ Mathematicam
Graecorum dictionem nemo adhuc in lexici formam redegit.”” Praef., vol. 1r.,
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ever, the conquest was complete and final: they were
overcome by sea as well as by land. Miletus, till then
the chief city of Hellas, and rival of Tyre and Carthage,
was taken and destroyed; the Phceenician fleet ruled the
sea, and the islands of the Zgean became subject to
Persia. The fall of Ionia, and the maritime supremacy of
the Pheenicians, involving the interruption of Greek com-
merce, must have exercised a disastrous influence on the
cities of Magna Graecia.'! The events which occurred
there after the destruction of Sybaris are involved in great
obscurity. We are told that some years after this event
there was an uprising of the democracy—which had been
repressed under the influence of the Pythagoreans—not
only in Crotona, but also in the other cities of Magna
Graecia. The Pythagoreans were attacked, and their
Senate-houses (ovvédpia) were burned; the whole country
was thrown into a state of confusion and anarchy; the
Pythagorean Brotherhood was suppressed, and the chief
men in each city perished.

The Italic Greeks, as well as the Ionians, ceased to
prosper.

Towards the end of this period Athens was in the
hands of the Persians, and Sicily was threatened by the
Carthaginians. Then followed the glorious struggle; the
gloom was dispelled, the war which had been at first

tom. 11.) ; Archimedis Opera a cum tariis Eutocii. E codice Floren-
tino recensuit, Latine vertit notisque illustravit J. L. Heiberg, Dr. Phil. Vol. 1.,
Lipsiae, 1880 (Teubner). Since the above was in type, the following work has
been published : A7 Introduction to the Ancient and Modern Geometry of Conics :
being a Geometrical Treatise on the Conic Sections, with a collection of Problems
and Historical Notes and Prolegomena. By Charles Taylor, M.A., Fellow of St.
John’s College, Cambridge. Cambridge, 1881. The matter of the Prolegomena,
pp. xvii-lxxxviii, is historical.

1 The names Jonian Sea, and Jonian Isles still bear testimony to the inter-
course between these cities and Ionia. The writer of the article in Smith’s
Dictionary of Geography thinks that the name Ionian Sea was derived from
Ionians residing, in very early times, on the west coast of the Peloponnesus, Is
it not more probable that it was so called from being the highway of the Ionian
ships, just as, now-a-days, in a provincial town we have the Londor road ?
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defensive became offensive, and the Agean sea was
cleared of Pheenicians and pirates. A solid basis was thus
laid for the development of Greek commerce and for the
interchange of Greek thought, and a brilliant period
followed—one of the most memorable in the history of
the world.

Athens now exercised a powerful attraction on all that
was eminent in Hellas, and became the centre of the
intellectual movement. Anaxagoras settled there, and
brought with him the Ionic philosophy, numbering Pericles
and Euripides amongst his pupils. Many of the dispersed
Pythagoreans no doubt found a refuge in that city, always
hospitable to strangers: subsequently the Eleatic philoso-
phy was taught there by Parmenides and Zeno. Eminent
teachers flocked from all parts of Hellas to the Athens of
Pericles. All were welcome; but the spirit of Athenian
life required that there should be no secrets, whether
confined to priestly families’ or to philosophic sects :
everything should be made public.

In this city, then, geometry was first published; and
with that publication, as we have seen, the name of Hip-
pocrates of Chios is connected.

Before proceeding, however, to give an account of the
work of Hippocrates of Chios, and the geometers of the
fifth century before the Christian era, we must take a
cursory glance at the contemporaneous philosophical
movement. Proclus makes no mention of any of the
philosophers of the Eleatic School in the summary of the
history of geometry which he has handed down—they
seem, indeed, not to have made any addition to geometry
or astronomy, but rather to have affected a contempt for
both these sciences—and most writers® on the history of

2 E.g. the Asclepiadae. See Curtius, History of Greece, Engl. transl., vol. 11.
p. 510. .
3 Not so Hankel, whose views as to the influence of the Eleatic philosophy
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mathematics either take no notice whatever of that School,
or merely refer to it as outside their province. Yet the
visit of Parmenides and Zeno to Athens (circ. 450 B.C.),
the invention of dialectics by Zeno, and his famous polemic
against multiplicity and motion, not only exercised an
important influence on the development of geometry at
that time, but, further, had a lasting effect on its sub-
sequent progress in respect of method.

Zeno argued that neither multiplicity nor motion is
possible, because these notions lead to contradictory con-
sequences. In orderto prove a contradiction in the idea of
motion, Zeno argues: ‘ Before a moving body can arrive at
its destination it must have arrived at the middle of its
path; before getting there it must have accomplished the
half of that distance, and so on ad nfinitum: in short,
every body, in order to move from one place to another,
must pass through an infinite number of spaces, which is
impossible.” Similarly he argued that ¢ Achilles cannot
overtake the tortoise, if the latter has got any start,
because in order to overtake it he would be obliged first
to reach every one of the infinitely many places which the
tortoise had previously occupied.” In like manner, ¢ The
flying arrow is always at rest; for it is at each moment
only in one place.”

Zeno applied a similar argument to show that the
notion of multiplicity involves a contradiction. ¢If the
manifold exists, it must be at the same time infinitely
small and infinitely great—the former, because its last

I have adopted. See a fine chapter of his Gesck. der Math., pp. 115 sq.,
from which much of what follows is taken.

¢ This influence is noticed by Clairaut, Elémens de Géométrie, Pref. p. x,
Paris, 1741: “Qu’ Euclide se donne la peine de démontrer, que deux cercles
qui se coupent n’ont pas le méme centre, qu’un triangle renfermé dans un autre
a la somme de ses cdtés plus petite que celle des cdtés du triangle dans lequel il
est renfermé; on n’en sera pas surpris. Ce Géométre avoit 3 convaincre des
Sophistes obstinés, qui se faisoient gloire de se refuser aux vérités les plus éviden-
tes: il falloit donc qu'alors la Géométrie eft, comme la Logique, le secours des
raisonnemens en forme, pour fermer la bouche 2 la chicanne.”
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divisions are without magnitude ; the latter, on account of
the infinite number of these divisions.’” Zeno seems to
have been unable to see that if xy=a4, x and y may both
vary, and that the number of parts taken may make up for
their minuteness.

Subsequently the Atomists endeavoured to reconcile
the notions of unity and multiplicity; stability and mo-
tion ; permanence and change; being and becoming—in
short, the Eleatic and Ionic philosophy. The atomic
philosophy was founded by Leucippus and Democritus;
and we are told by Diogenes Laertius that Leucippus was
a pupil of Zeno: the filiation of this philosophy to the
Eleatic can, however, be seen independently of this state-
ment. In accordance with the atomic philosophy mag-
nitudes were considered to be composed of indivisible
elements (arduod) in finite numbers ; and indeed Aristotle—
who, a century later, wrote a treatise on [ndivisible Lines
(wept arduwv ypauudv), in order to show their mathematical
and logical impossibility—tell us that Zeno’s disputation
was taken as compelling such a view.* We shall see, too,
that, in Antiphon’s attempt to square the circle, it is
assumed that straight and curved lines are ultimately
reducible to the same indivisible elements.®

Insuperable difficulties were found, however, in this
conception ; for no matter how far we proceed with the
division, the distinction between the straight and curved
still exists. A like difficulty had been already met .with
in the case of straight lines themselves, for the incommen-
surability of certain lines had been established by the
Pythagoreans. The diagonal of a square, for example,
cannot be made up of submultiples of the side, no matter
how minute these submultiples may be. It is possible
that Democritus may have attempted to get over this diffi-

8 Arist., De insecab. lineis, p. 968+, ed. Bekker.
8 Vid. Bretsch., Geom. vor Eukl., p. 101, et infra, p. 66.
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culty, and reconcile incommensurability with his atomic
theory; for we are told by Diogenes Laertius that he
wrote on incommensurable lines and solids (wepl aAéywv
yeauuwv xal vasrav).’

The early Greek mathematicians, troubled no doubt by
these paradoxes of Zeno, and finding the progress of
mathematics impeded by their being made a subject of
dialectics, seem to have avoided all these difficulties by
banishing from their science the idea of the Infinite—the
infinitely small as well as the infinitely great (v:d. Euclid,
Book V., Def. 4). They laid down as axioms that any
quantity may be divided ad /zb:Zum ; and that, if two spaces
are unequal, it is possible to add their difference to itself so
often that every finite space can be surpassed.® Accord-
ing to this view, there can be no infinitely small difference
which being multiplied would never exceed a finite space.

HipPOCRATES of Chios, who must be distinguished from
his contemporary and namesake, the great physician of
Cos, was originally a merchant. All that we know of him
is contained in the following brief notices :—

(@). Plutarch tell us that Thales, and Hippocrates the
mathematician, are said to have applied themselves to
commerce.® '

(8). Aristotle reports of him: “It is well known that
persons, stupid in one respect, are by no means so in
others (there is nothing strange in this: so Hippocrates,
though skilled in geometry, appears to have been in other
respects weak and stupid; and he lost, as they say,
through his simplicity, a large sum of money by the fraud
of the collectors of customs at Byzantium (dmd rov év Bvgav-
iy wevrnrosToAdywy)).”’ 1°

7 Diog. Laert., IX. vii., 47, ed. Cobet, p. 239.

8 Archim., de quadyr. parab., p. 18, ed. Torelli.

9 Vit, Solonis, 11.

10 Arist., Eth. ad Eud., VI1., c. xiv., p. 12474, 15, ed. Bekker.
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(¢). Johannes Philoponus, on the other hand, relates that
Hippocrates of Chios, a merchant, having fallen in with a
pirate vessel, and having lost everything, went to Athens
to prosecute the pirates, and staying there a long time on
account of the prosecution, frequented the schools of the
philosophers, and arrived at such a degree of skill in
geometry, that he endeavoured to find the quadrature of
the circle."

(@). We learn from Eudemus that (Enopides of Chios
- was somewhat junior to Anaxagoras, and that after these
Hippocrates of Chios, who first found the quadrature of the
lune, and Theodorus of Cyrene, became famous in geometry ;
and that Hippocrates was the first writer of Elements.!

(¢). He also taught, for Aristotle says that his pupils,
and those of his disciple Aschylus, expressed them-
selves concerning comets in a similar way to the Pytha-
goreans.™

(f). He is also mentioned by Iamblichus, along with
Theodorus of Cyrene, as having divulged the geometrical
arcana of the Pythagoreans, and thereby having caused
mathematics to advance (érédwke 8¢ ra padipara, irel evnvé-
xOnoav doool wpoaydvre, paAiora Oeédwpdc e 6 Kupnvaiog, ai
‘Immokpdrne 6 Xiog)."

(£). Iamblichus goes on to say that the Pythagoreans
allege that geometry was made public thus: one of the
Pythagoreans lost his property; and he was, on account
of his misfortune, allowed to make money by teaching
geometry.!®

(%). Proclus, in a passage quoted supra (p. 41, note
62), ascribes to Hippocrates the method of reduction
(awaywyn). Proclus defines awaywyn to be “a transi-

11 Philoponus, Comm. in Arist. phys. ausc., f. 13. Brand., Schol. in Arist.,
P- 327 44.

12 Proclus, ed. Friedlein, p. 66.

13 Arist., Meteor., 1., vi., p. 342, 35, ed. Bekker.

W Tambl. de philos. Pythag. lib. 111. ; Villoison, Anecdota Graeca, 11., p. 216.

18 Ibid. ; also Iambl., Vit. Pyth., Cap. XVIIL., 89.
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tion from one problem or theorem to another, which
being known or determined, the thing proposed is also
plain. For example: when the duplication of the cube
is investigated, geometers reduce the question to another
to which this is consequent, z.e., the finding of two
mean proportionals, and afterwards they inquire how
between two given straight lines two mean proportionals
may be found. But Hippocrates of Chios is reported to
have been the first inventor of geometrical reduction
(awraywyn); who also squared the lune, and made many
other discoveries in geometry, and who was excelled by
no other geometer in his powers of construction,” '

(£). Eratosthenes, too, in his letter to King Ptolemy III.,
Euergetes, which has been handed down to us by Eutocius,
after relating the legendary origin of the celebrated problem
of the duplication of the cube, tells us that after geometers
had for a long time been quite at a loss how to solve the
question, it first occurred to Hippocrates of Chios that
if between two given lines, of which the greater is twice
the less, he could find two mean proportionals, then the
problem of the duplication of the cube would be solved.
But thus, Eratosthenes adds, the problem is reduced to
another which is no less difficult.”

(#). Eutocius, in his commentary on Archimedes (Ci7ec.
Dimens. Prop. 1), tells us that Archimedes “ wished to show
that a circle is equal to a certain rectilineal area, a thing
which had been of old investigated by illustrious philo-
sophers.” For it is evident that this is the problem con-.
cerning which Hippocrates of Chios and Antiphon, who
carefully searched after it, invented the false reasonings
which, I think, are well known to those who have looked
into the History of Geometry of Eudemus and the Kerua
(Knptwy) of Aristotle.” ®®

16 Proclus, ed. Friedlein, pp. 212, 213.

17 Archim., ex recens. Torelli, p. 144: Oxon. 1792,
18 Anaxagoras, for example.

19 Archim., ex recens. Torelli, p. 204.
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On the passage (/) quoted above, from Iamblichus, is
based the statement of Montucla, which has been repeated
since by recent writers on the history of mathematics,”
that Hippocrates was expelled from a school of Pytha-
goreans for having taught geometry for money.*

There is no evidence whatever for this statement, which
is, indeed, inconsistent with the passage (g) of Iamblichus
which follows. Further, itis even possible that the person
alluded to in (¢) as having been allowed to make money
by teaching geometry may have been Hippocrates him-
self; for—

1. He learned from the Pythagoreans;
2. He lost his property through misfortune ;

3. He made geometry public, not only by teaching,
but also by being the first writer of the Elements.

This misapprehension originated, I think, with Fabri-
cius, who says: “ De Hippaso Metapontino adscribam adhuc
locum Iamblichi & libro tertio de Philosophia Pythagorica
Graece necdum edito, p. 64, ex versione Nic. Scutellii : Azp-
pasus (videtur legendum Hipparchus) ejzcitur ¢ Pythagorae
schola eo, quod primus sphaeram duodecim angulorum (Dode-
caedron) edidisset (adeoque arcanum hoc evulgasset), 7%eo-
dorus etiam Cyrenaeus et Hippocrates Chius Geometra ejiciun-
tur qui ex geometria quaestum factitabant. Confer Vit. Pyth.,
cap. 34 & 35.”"

In this passage Fabricius, who, however, had access to

20 Bretsch., Geom. vor Eukl., p. 93 ; Hoefer, Histoire des Math., p. 135.
Since the above was written, this statement has been reiterated by Cantor, Gesck.
der Math., p. 172 ; and by C. Taylor, Geometry of Conics, Prolegomena, p. xxviii.

2 Montucla, Histoire des Matk., tom. I., p. 144, I'* ed. 1758 ; tom. I, p.
152, nouv. ed. an vii. ; the statement is repeated in p. 155 of this edition, and
Simplicius is given as the authority for it. Iamblichus is, however, referred to
by later writers as the authority for it.

2 Jo. Alberti Fabricii Bibliotheca Graeca, ed, Harles, 1. p. 848, Hamburgi,
1790.
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a manuscript only, falls into several mistakes, as will be
seen by comparing it with the original, which I give
here :—

Hepi & Trmdoov Aéyovow, ds v pev tdv Hvbayopelwy, Sia 8¢ 7o
éleveyxeiy, kal ypdyacbas mparos opaipay, Ty éx Tdv dddexa éfaydvwy
[wevraydvov], dwéhoiro xara @dharray, ds doeBioas, 8dfav 8¢ Adfot,
ds elvar 8¢ wdvra éxelvov Tod dvdpds' mpooayopelovar yip ovrw TOV
Ivfaydpav, kai ob xalolaw dvépari. émédwxe 8¢ Ta pabijpara, érel
éamvéxbnoav Sioaol mpoaydvre, pdliora Peddwpds Te 6 Kupyvaios, xai
‘Irwoxpdrys 6 Xios. Aéyovo 8¢ of Mvbaydpeior éevnvéxfar yewperplay
obrws' dmofalelv Twa v obolav Tdv IMvfayopelwy: bs 8¢ Tobr Hri-
xnoe, dobijvar atrd xpnparicacbar dwd yewperpias: éxaleiro 8¢ %

yewperpia wpos Mvfaydpov ioropia.?

Observe that Fabricius, mistaking the sense, says that
Hippasus, too, was expelled. Hippocrates may have been
expelled by a School of Pythagoreans with whom he had
been associated; but, if so, it was not for teaching geo-
metry for money, but for taking to himself the credit of
Pythagorean discoveries—a thing of which we have seen
the Pythagoreans were most jealous, and which they even
looked on as impious (age3oac).*

As Anaxagoras was born 499 B.C., and as Plato, after
the death of Socrates 399 B.C., went to Cyrene to hear
Theodorus (2), the lifetime of Hippocrates falls within the
fifth century before Christ. As, moreover, there could not
have been much commerce in the Zgean during the first
quarter of the fifth century, and, further, as the statements
of Aristotle and Philoponus [(4) and (¢)] fall in better with
the state of affairs during the Athenian supremacy—even
though we do not accept the suggestion of Bretschneider,

28 Tambl., de philos. Pyth., lib. 111.; Villoison, Anecdota Graeca, 11., p. 216.
With the exception of the sentence concerning Hippocrates, the passage, with
some modifications, occurs also in Iambl., ¥iz. Pyth., Cap. XVIIL., 88, 89.

2 See p. 43. .
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made with the view of reconciling these inconsistent
statements, that the ship of Hippocrates was taken by
Athenian pirates® during the Samian war (440 B.C.), in
which Byzantium took part—we may conclude with cer-
tainty that Hippocrates did not take up geometry until
after 450 B.C. We have good reason to believe that at
that time there were Pythagoreans settled at Athens.
Hippocrates, then, was probably somewhat senior to
Socrates, who was a contemporary of Philolaus and De-
mocritus.

The paralogisms of Hippocrates, Antiphon, and Bryson,
in their attempts to square the circle, are referred to and
contrasted with one another in several passages of Aris-
totle® and of his commentators—Themistius,” Jo. Phi-
loponus,*® and Simplicius. Simplicius has preserved in
his Commentary on the Physics of Aristotle a pretty full and
partly literal extract from the History of Geometry of
Eudemus, which contains an account of the work of Hip-
pocrates and others in relation to this problem. The
greater part of this extract had been almost entirely over-
looked by writers on the history of Mathematics, until
Bretschneider® republished the Greek text, having care-
fully revised and emended it. He also supplied the neces-
sary diagrams, some of which were wanting, and added
explanatory and critical notes. This extract is interesting
and important, and Bretschneider is entitled to much
credit for the pains he has taken to make it intelligible
and better known.

2 Bretsch., Geom. vor Eukl., p. 98.

26 De Sophist. Elench., 11, pp. 171Y, and 172, ed. Bekker ; Phys. Ausc., 1., ii.,
p. 185, 14, ed. Bekker.

21 Themist., f. 16, Schol. in Arist., Brand., p. 327%, 33. Joid.,f. 5, Schol.,
p. 211%, 19. .

28 Jo. Philop. f. 25b, Sckol., Brand. p. 211b 30. Jbid., f. 118, Schol.,
P. 211% 41, ZJbdd.,f. 26b, Schol., p. 2123 16,

29 Bretsch., Geom. vor Eukl., pp. 100-121. [Simplicii in Aristotelis Physico-
rum libros quattuor prioves Commentaria, ed. Hermannus Diels, pp. 54-69.]
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It is much to be regretted, however, that Simplicius
did not merely transmit verdaferm what Eudemus related,
and thus faithfully preserve this oldest fragment of Greek
geometry, but added demonstrations of his own, giving
references to the Elements of Euclid, who lived a century
and a-half later than Hippocrates. Simplicius says: “I
shall now put down literally what Eudemus relates, adding
only a short explanation by referring to Euclid’s Elements,
on account of the summary manner of Eudemus, who,
according to archaic custom, gives only concise proofs.” *
And in another place he tells us that Eudemus passed over
the squaring of a certain lune as evident—indeed, Eudemus
was right in doing so—and supplies a lengthy demonstra-
tion himself.

Bretschneider and Hankel, overlooking these passages,
and disregarding the frequent references to the Elements
of Euclid which occur in this extract, have drawn con-
clusions as to the state of geometry at the time of Hip-
pocrates which, in my judgment, cannot be sustained.
Bretschneider notices the great circumstantiality of the
construction, and the long-windedness and the over-ela-
boration of the proofs.* Hankel expresses surprise at the
fact that this oldest fragment of Greek geometry—iso
years older than Euclid’s Elements—already bears that
character, typically fixed by the latter, which is so peculiar
to the geometry of the Greeks.*

Fancy a naturalist finding a fragment of the skeleton
of some animal which had become extinct, but of which
there were living representatives in a higher state of
development; and fancy him improving the portion of
the skeleton in his hands by making additions to it, so

30 Bretsch., Geom. vor Eukl., p. 109.
31 [bid., p. 113.

33 Ibid., pp. 130, 131.

33 Hankel, Gesch. der Math., p. 112.
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that it might be more like the skeleton of the living
animal; then fancy other naturalists examining the im-
proved fragment with so little attention as to exclaim:
“Dear me! how strange it is that the two should be so
perfectly alike! "’

There is, moreover, much clumsiness, and a want of
perspicuity, in the arrangement of the demonstrations—
the construction not being clearly stated, but being mixed
up with the proof: the proofs, too, which in several
instances are plainly supplied by Simplicius—inasmuch
as propositions of Euclid’s Elements are quoted—are
unskilful and wearisome on account of the laboured de-
monstrations of evident theorems, which are repeated
several times under different forms: while, on the other
hand, some statements and constructions which stand
more in need of explanation are passed over without
remark. The conclusion is thus forced on us that Simpli-
cius was but a poor geometer; and we have greater reason,
therefore, to regret that he was not content with transmit-
ting the work of Eudemus unaltered.

I shall attempt now to restore this fragment by remov-
ing from it everything that seems to me not to be the work
of Eudemus, and all reference to Euclid’s Elements; and
by stating briefly, but at the same time clearly and in
order, the several steps of each demonstration. I shall
also notice the theorems which are made use of, and the
problems whose solution is assumed in it :—

“The difference between false conclusions that can be
proved to be suck, and others which cannot, he [Aristotle]
shows by some false reasonings in geometry.* Amongst
the many persons who have sought the squaring of the
circle (that is, to find a square which shall be equal to a
circle), both Antiphon and Hippocrates believed that they

3 Yevdoypddnua, literally a misdelineation, a false reasoning founded on a
faulty diagram. ' )
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had found it, and were equally mistaken. Antiphon’s
mistake, on account of his not having started from geo-
metrical principles, as we shall see, cannot be disproved
geometrically. That of Hippocrates, on the other hand,
since he was deceived although he clung to geometrical
principles, can be disproved geometrically. For we must
analyse and examine those reasonings only which, pre-
serving the acknowledged principles of the science, lead
thus to further conclusions; but there is no use in
examining those in which these principles are set aside.’

¢ Antiphon, having drawn a circle, inscribed in it one
of those polygons*® that can be inscribed: let it be a
square. Then he bisected each side of this square, and

i ?\wupai’v-ro;
Vevdoypopypa

through the points of section drew straight lines at right
angles to them, producing them to meet the circumference;
these lines evidently bisect the corresponding segments of
thecircle. He then joined the new points of section to the
ends of the sides of the square, so that four triangles were
formed, and the whole inscribed figure became an octagon.
And again, in the same way, he bisected each of the sides
of the octagon, and drew from the points of bisection

35 In Greek mathematical writers, rerpdywrov, as far as I know, always means
a square. In this oldest geometrical writing, édywrov, dxrdywroy, and wordyw-
voy denote regular hexagon, octagon, and polygon. This is not the case in the
Elements of Euclid, who writes, ¢. g., mevrdywroy iocéxrevpdy Te kal icoydvioy, &c.
In Pappus, however, these words, though sometimes used generally, for the
most part denote regular figures. The Greeks could do this, for they had the

words rerpdwAevpoy, xevrdrAevpoy, &c., for quadrilateral, pentagon, &c.
F
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perpendiculars; he then joined the points where these
perpendiculars met the circumference with the extremities
of the octagon, and thus formed an inscribed figure of
sixteen sides. Again, in the same manner, bisecting the
sides of the inscribed polygon of sixteen "sides, and
drawing straight lines, he formed a polygon of twice as
many sides; and doing the same again and again, until
he had exhausted the surface, he concluded that in this
manner a polygon would be inscribed in the circle, the
sides of which, on account of their minuteness, would
coincide with the circumference of the circle. But we'can
substitute for each polygon a square of equal surface;
therefore we can, since the surface coincides with the
circle, construct a square equal to a circle.’

On this Simplicius observes: ¢the conclusion here is
manifestly contrary to geometrical principles, not, as
Alexander maintains, because the geometer supposes as a
principle that a circle can touch a straight line in one
point only, and Antiphon sets this aside; for the geometer
does not suppose this, but proves it. It would be better to
say that it is a principle that a straight line cannot coin-
cide with a circumference, for one without meets the circle
in one point only, one within in two points, and not more,
and the meeting takes place in single points. Yet, by
continually bisecting the space between the chord and the
arc, it will never be exhausted, nor shall we ever reach the
circumference of the circle, even though the cutting should
be continued ad infinitum : if we did, a geometrical prin-
ciple would be set aside, which lays down that magnitudes
are divisible ad infinstum. And Eudemus, too, says that
this principle has been set aside by Antiphon.*

¢ But the squaring of the circle by means of segments,
he [Aristotle’’] says, may be disproved geometrically; he

3 But Eudemus was a pupil of Aristotle, and Antiphon was a contemporary
of Democritus.
M Phys. Ausc. 1., ii., p. 185%, 16, ed. Bekker.
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would rather call the squaring by means of lunes, which
Hippocrates found out, one by segments, inasmuch as the
lune is a segment of the circle. The demonstration is as
follows :—

¢ Let a semicircle a3y be described on the straight line
af3; bisect aB in §; from the point 8 draw a perpendicular
3y to af3, and join ay; this will be the side of the square
inscribed in the circle of which afy is the semicircle. On
ay describe the semicircle aey. Now since the square on
af3 is equal to double the square on ay (and since the squares
on the diameters are to each other as the respective circles

u

o 5 g

or semicircles), the semicircle ayf3 is double the semicircle
aey. The quadrant ayd is, therefore, equal to the semicircle
aecy. Take away the common segment lying between the
circumference ay and the side of the square; then the
remaining lune aey will be equal to the triangle ayd; but
this triangle is equal to a square. Having thus shown
that the lune can be squared, Hippocrates next tries, by
means of the preceding demonstration, to square the circle
thus :—

¢Let there be a straight line a3, and let a semicircle be
described on it; take y8 double of a3, and on it also
describe a semicircle; and let the sides of a hexagon, ye,
¢Z, and Z& be inscribed in it. On these sides describe the
semicircles yne, 0%, {kd. Then each of these semicircles
described on the sides of the hexagon is equal to the semi-
circle on af3, for af3 is equal to each side of the hexagon. The
four semicircles are equal to each other, and together are
then four times the semicircle on af3. But the semicircle

on y?d is also four times that bn a3. The semicircle on y3
F2
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is, therefore, equal to the four semicircles—that on af3,
together with the three semicircles on the sides of the
hexagon., Take away from the semicircles on the sides of
the hexagon, and from that on y5, the common segments
contained by the sides of the hexagon and the periphery of
the semicircle yd; the remaining lunes yne, €04, and g9,
together with the semicircle on af3, will be equal to the
trapezium e, ¢, £3. If we now take away from the
trapezium the excess, that is a surface equal to the lunes

(for it has been shown that there exists a rectilineal figure
[

equal to a lune), we shall obtain a remainder equal to
the semicircle a3 ; we double this rectilineal figure which
remains, and construct a square equal to it. That square
will be equal to the circle of which af is the diameter, and
thus the circle has been squared.

¢ The treatment of the problem is indeed ingenious ; but
the wrong conclusion arises from assuming that as demon-
strated generally which is not so; for not every lune has
been shown to be squared, but only that which stands over
the side of the square inscribed in the circle; but the lunes
in question stand over the sides of the inscribed hexagon.
The above proof, therefore, which pretends to have squared
the circle by means of lunes, is defective, and not conclu-
sive, on account of the false-drawn figure (Y:vdoypagnua)
which occurs in it.*

38 T attribute the above observation on the proof to Eudemus. " What follows
in Simplicius seems to me not to be his. I have, therefore, omitted the re-
mainder of § 83, and §§ 84, 85, pp. 105-109, Bretsch., Geom. vor Eukl,
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¢ Eudemus,® however, tells us in his Hzstory of Geomelry,
that Hippocrates demonstrated the quadrature of the lune,
not merely the lune on the side of the square, but gene-
rally, if one might say so: if, namely, the exterior arc of
the lune be equal to a semicircle, or greater or less than it.
I shall now put down literally (xara AéEw)* what Eudemus
relates, adding only a short explanation by referring to
Euclid’s Elements, on account of the summary manner of
Eudemus, who, according to archaic custqm, gives concise
proofs.

‘In the second book of his History of Geometry,
Eudemus says :—

¢« The squaring of lunes seeming to relate to an uncom-
mon class of figures was, on account of their relation
to the circle, first treated of by Hippocrates, and was
rightly viewed in that connection. We may, therefore,
more fully touch upon and discuss them. He started
with and laid down as the first thing useful for them, that
similar segments of circles have the same ratio as the
squares on their bases. This he proved by showing that
circles have the same ratio as the squares on their dia-
meters. Now, as circles are to each other, so are also
similar segments; but similar segments are those which
contain the same part of their respective circles, as a semi-
circle to a semicircle, the third part of a circle to the third
part of another circle.* For which reason, also, similar
segments contain equal angles. The latter are in all semi-
circles right, in larger segments less than right angles,
and so much lgss as the segments are larger than semi-
circles; and in smaller segments they are larger than

30 Bretsch., Geom. vor. Eukl., p. 109.

40 Simplicius did not adhere to his intention, or else some transcriber has
added to the text.

4. Here ruijua seems to be used for sector : indeed, we have seen above that
alune was also called rufiua. The word roueis, sector, may have been of later

origin. The poverty of the Greek language in respect of geometrical terms has
been frequently noticed. For example, they had no word for radius, and instead
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right angles, and so much larger as the segments are
smaller than semicircles. Having first shown this, he
described a lune which had a semicircle for boundary,.
by circumscribing a semicircle about a right-angled isos-
celes triangle, and describing on the hypotenuse a seg-
ment of a circle similar to those cut off by the sides. The
segment over the hypotenuse then being equal to the sum
of those on the two other sides, if the common part of the
triangle which ligs over the segment on the base be added

to both, the lune will be equal to the triangle. Since the
lune, then, has been shown to be equal to a triangle, it can
be squared. Thus, then, Hippocrates, by taking for the
exterior arc of the lune that of a semicircle, readily squares
the hune.

" “Hippocrates next proceeds to square a lune whose
exterior arc is greater than a semicircle. In order to do
so, he constructs a trapezium* having three sides equal to
each other, and the fourth—the greater of ‘the two parallel
sides—such that the square on it is equal to three times

used the periphrasis 4 éx Tob xévrpov. Again, Archimedes nowhere uses the
word parabola; and as to the imperfect terminology of the geometers of this
period, we have the direct statement of Aristotle, who says 3 xal 75 &vdAoyor 87¢
évaArdy, §i GpiBuol xal § ypaupal kal § oreped xal §i xpdvoi, Gowep Selkvuré wote
xwpls, évdexbuevdy ye xard wdvrov wig dwodelter SesxOivair &GAAG Bid T ud elvau
bvopacpuévoy Ti wdvra Tavta &, &piuol ufikn xpévos oreped, xal ¥des Siapéperr
&AAAAwY, xwpls éAauBdvero. viv B¢ xaléhov Selxvvrar ob ydp § ypapual A §
dpifuol Imiipxer, &AM’ §§ Todl, d xalbérov dworlbevrar Iwdpxew.—Aristot., Anal.,
post., 1., V., p. 74% 17, ed. Bekker. This passage is interesting in another respect
also, as it contains the germ of Algebra.

42 Trapezia, like this, cut off from an isosceles triangle by a line parallel to
the base, occur in the Papyrus Rhind.
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that on any other side; he circumscribes a circle about the
trapezium, and on its greatest side describes a segment of
a circle similar to those cut off from the circle by the three
equal sides.® By drawing a diagonal of the trapezium, it
will be manifest that the section in question is greater
than a semicircle, for the square on this straight line sub-
tending two equal sides of the trapezium must be greater

PN

than twice the square on either of them, or than double
the square on the third equal side: the square on the
greatest side of the trapezium, which is equal to three
times the square on any one of the other sides, is therefore
less than the square on the diagonal and the square on the
third equal side. Consequently, the angle subtended by
. the greatest side of the trapezium is acute, and the seg-
ment which contains it is, therefore, greater than a semi-
circle: but this is the exterior boundary of the lune.
Simplicius tells us that Eudemus passed over the squaring

43 Then follows a proof, which I have omitted, that the circle can be circum-
scribed about the trapezium. This proof is obviously supplied by Simplicius, as
is indicated by the change of person from wor{fera: to defes, as well as by the
reference to Euclid, 1. 9. A few lines lower there is a gap in the text, as
Bretschneider has observed; but the gap occurs in the work of Simplicius, and
not of Eudemus as Bretschneider has erroneously supposed.-—Geom. vor Eukl.,
p- 111, and note.
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of this lune, he supposes, because it was evident, and he
supplies it himself.*

“Further, Hippocrates shows that a lune with an ex-
terior arc less than a semicircle can be squared, and gives
the following construction for the description of such a
lune: ¢—

¢ Let af3 be the diameter of a circle whose centre is «; let
v8 cut Bk in the point of bisection v, and at right angles;
through (3 draw the straight line 3¢, so that the part of it,
e, intercepted between the line 48 and the circle shall be
such that two squares on it shall be equal to three squares
on the radius (3«;* join «, and produce it to meet the
straight line drawn through ¢ parallel to Bx, and let them
meet at n; join ke, 3y (these lines will be equal); describe
then a circle round the trapezium fken; also, circumscribe
a circle about the triangle eJy. Let the centres of these
circles be A and u respectively.

“ Now, the segments of the latter circle on ¢ and &y are
similar to each other, and to each of the segments of the

4 Bretsch., Geom. vor Eukl., p. 113, § 88. I have omitted it, as not being
the work of Eudemus.

45 The whole construction, as Bretschneider has remarked, is quite obscure
and defective. The main point on which the construction turns is the determina-
tion of the straight line B{e, and this is nowhere given in the text. The determi-
nation of this line, however, can be inferred from the statement in p. 114, Geom.
vor Eukl., that ‘it is assumed that the line ¢ inclines towards 8’; and the
further statement, in p. 117, that ¢it is assumed that the square on e('is once and
a-half the square on the radius.” In order to make the investigation intelligible,
T have commenced by stating how this line (e is to be drawn. I have, as usual,
omitted the proofs of Simplicius.

Bretschneider, p. 114, notices the archaic manner in which lines and points
are denoted in this investigation—1 [ed9¢ia] ¢’ § AB, 75 [onueior] &9’ o K—and
infers from it that Eudemus is quoting the very words of Hippocrates. I have
found this observation useful in aiding me to separate the additions of Simplicius
from the work of Eudemus. The inference of Bretschneider, however, cannot I
think be sustained, for the same manner of expression is to be found in Aristotle.

46 The length of the line ¢{ can be determined by means of the theorem of
Pythagoras (Euclid, 1. 47), coupled with the theorem of Thales (Euclid, 1r.,
31). Then, produce the line ¢ thus determined so that the rectangle under the
whole line thus produced and the part produced shall be equal to the square on
the radius; or, in archaic language, apply to the line ¢( a rectangle which shall be
equal to the square on the radius, and which shall be excessive by a square—a
Pythagorean problem, as Eudemus tells us. (See pp. 24, 41). If the calculation
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former circle on the equal straight lines e, 3, 3%;* and,
since twice the square on ¢ is equal to three times the
square on «f3, the sum of the two segments on e, and {» is
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equal to the sum of the three segments on e, x3, Bn; to
each of these equals add the figure bounded by the
straight lines e, x3, Bn, and the arc yfe¢, and we shall
have the lune whose exterior arc is ef3n equal to the

be made by this method, or by the solution of a quadratic equation, we find

' _Bx 5 [T
Be="s (J; *J?)-
Bretschneider makes some slip, and gives

B =ﬂ?x( 131— !) .
Geom. vor Eukl., p. 115, note.

41 Draw lines from the points ¢, x, 8, and 5 to A, the centre of the circle
described about the trapezium; and from e and 5 to u, the centre of the circle
circumscribed about the triangle e(y; it will be easy to see, then, that the angles
subtended by ek, k8, n8 at A are equal to each other, and to each of the angles
subtended by e{ and {5 at u. The similarity of the segments is then inferred ;
but observe, that in order to bring this under the definition of similar segments
given above, the word segment must be used in a large signification; and that
further, it requires rather the converse of the definition, and thus raises the
difficulty of incommensurability.

The similarity of the segments might also be inferred from the equality of the
alternate angles (en{ and 7xB, for example). In p. 47, I stated, following
Bretschneider and Hankel, that Hippocrates of Chios did not know the theorem
that the angles in the same segment of a circle are equal. But if the latter
method of proving the similarity of the segments in the construction to which the
present note refers was that used by Hippocrates, the statement in question
would have to be retracted.



74 Greek Geometry from Thales to Euclid.

rectilineal figure composed of the three triangles Z@3n,
B, e ) .

“ That the exterior arc of this lune is smaller than a
semicircle, Hippocrates proves, by showing that the angle
ey lying within the exterior arc of the segment is obtuse,
which he does thus: Since the square on & is once and
a-half the square on the radius @« or «, and since, on
account of the similarity of the triangles 3xe and (3%x, the
square on «¢ is greater than twice the square on «g,* it
follows that the square on ¢ is greater than the squares on
ex and «{ together. The angle ey is therefore obtuse, and
consequently the segment in which it lies is less than a
semicircle.

¢ Lastly, Hippocrates squared a lune and a circle to-
gether, thus : Let two circles be described about the centre
«, and let the square on the diameter of the exterior be six
times that of the interior. Inscribe a hexagon af8y8: in
the inner circle, and draw the radii «a, x3, xy, and produce
them to the periphery of the exterior circle; let them meet
it at the points », 0, , respectively, and join 50, 0y n. It
is evident that »0, 6. are sides of the hexagon inscribed
in the larger circle. Now, on n let there be described a
segment similar to that cut off by »6. Since, then, the
square on n is necessarily three times greater than that on
70, the side of the hexagon,” and the square on 50 six
times that on a3, it is evident that the segment described
over it must be equal to the sum of the segments of the
outer circle over 0 and 6, together with those cut off in
the inner circle by all the sides of the hexagon. If we now
add, on both sides, the part of the triangle 50: lying over

48 A pentagon with a re-entrant angle is considered here : but observe—I1°,
that it is not called a pentagon, that term being then restricted to the regular
pentagon ; and, 2°, that it is described as a rectilineal figure composed of three
triangles.

49 1t is assumed here that the angle Bxe is obtuse, which it evidently is.

Bretschneider points out that in this paragraph the Greek text in the Aldine
is corrupt, and consequently obscure : he corrects it by means of some transposi-
tions and a few trifling additions. (See Geom. vor Eukl., p. 118, note 2.)

5 Then follows the proof of this statement, which I have omitted, as I think
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the segment ni, we arrive at the result that the triangle n0:
is equal to the lune 50, together with the segments of the
inner circle cut off by the sides of the hexagon; and if we
add on both sides the hexagon itself, we have the triangle,

0/—\c

together with the hexagon, equal to the said lune together
with the interior circle. Since, then, these rectilineal
figures can be squared, the circle, together with the lune,
can also be squared.” ‘

¢ Simplicius adds, in conclusion, that it must be admitted
that Eudemus knows better all about Hippocrates of Chios,
being nearer to him in point of time, and being also a
pupil of Aristotle.’

If we examine this oldest fragment of Greek geometry,
we see, in the first place, that there is in it a defini-
tion of similar segments of circles; they are defined to be
those which contain the same quotum of their respective
circles, as for instance, a semicircle is similar to a semi-
it was added by Simplicius: the word # Sworefvovoa could scarcely have been used
by Eudemus in the sense of sub-tense, as it is in this passage. Plato (Timaeus,
54, D, ed. Stallbaum, vol. viI., p. 228) and Aristotle use it, as we do, for the hy-

potenuse. It was sometimes used by later writers, Pappus for example, more
generally, as it is here.
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circle, the third part of one circle is similar to the third part
of another circle.

Next we find the following theorems:—

(a). Similar segments contain equal angles;

(8). These in all semicircles are right; segments which
are larger or smaller than semicircles contain, respectively,
acute or obtuse angles;

(¢). The side of a hexagon inscribed in a circle is equal
to the radius ;

(@). In any triangle the square on a side opposite to an
acute angle is less than the sum of the squares on the sides
which contain the acute angle ;

(¢). In an obtuse-angled triangle the square on the side
subtending the obtuse angle is greater than the sum of the
squares on the sides containing it;

(f)- In an isosceles triangle whose vertical angle is
double the angle of an equilateral triangle, the square on
the base is equal to three times the square on one of the
equal sides; ‘

(£). In equiangular triangles the sides about the equal
angles are proportional ;

(4). Circles are to each other as the squares on their
diameters ; :

(£). Similar segments of circles are to each other as the
squares on their bases.

Lastly, we observe that the solution of the following
problems is required :—
(@). Construct a square which shall be equal to a given
rectilineal figure;
(). Find a line the square on which shall be equal to
three times the square on a given line;*
(¢). Find a line such that twice the square on it shall be
equal to three times the square on a given line;
51 For this, or rather its converse, is assumed in the demonstration, p. 73.
Also, see p. 69.
5¢ See theorem ( f), supra.
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(d). Being given two straight lines, construct a tra-
pezium such that one of the parallel sides shall be equal
to the greater of the two given lines, and each of the three
remaining sides equal to the less;

(¢). About the trapezium so constructed describe a
circle;

(f). Describe a circle about a given triangle;

(£). From the extremity of the diameter of a semicircle
draw a chord such that the part of it intercepted between
the circle and a straight line drawn at right angles to the
diameter at the distance of one half the radius shall be
equal to a given straight line;

(%£). Describe on a given straight line a segment of a
circle which shall be similar to a given one,

There remain to us but few more notices of the work
done by the geometers of this period :—

Antiphon, whose attempt to square the circle is given by
Simplicius in the above extract, and who is also mentioned
by Aristotle and some of his other commentators, is most
probably the Sophist of that name who, we are told, often
disputed with Socrates.®® It appears from a notice of
Themistius, that Antiphon started not only from the
square, but also from the equilateral triangle, inscribed
in a circle, and pursued the method and train of reasoning
above described.* -

Aristotle and his commentators mention another So-
phist who attempted to square the circle—Bryson, of
whom we have no certain knowledge, but who was pro-
bably a Pythagorean, and may have been the Bryson who
is mentioned by Iamblichus amongst the disciples of Py-
thagoras.®® Bryson inscribed a square,* or more generally

83 Xenophon, Memorab. 1., vi., § 1; Diog. Laert. I1., 46, ed. Cobet, p. 44.
54 Themist., f. 16 ; Brandis, Sckol. in Arist., p. 327, 33.

88 Jambl., Vit. Pyth., Cap. XXIII., 104.

6 Alex. Aphrod., f. 30; Brandis, Sckol., p. 306%.
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any polygon,* in a circle, and circumscribed another of the
same number of sides about the circle; he then argued
that the circle is larger than the inscribed and less than
the circumscribed polygon, and erroneously assumed that
the excess in one case is equal to the defect in the other;
he concluded thence that the circle is the mean between
the two.

It seems, too, that some persons who had no know-
ledge of geometry took up the question, and fancied, as
Alexander Aphrodisius tells us, that they should find the
square of the circle in surface measure if they could find
a square number which is also a cyclical number*—
numbers as 5 or 6, whose square ends with the same
number, are called by arithmeticians cyclical numbers.®
On this Hankel observes that ‘unfortunately we cannot
assume that this solution of the squaring of the circle was
only a joke’; and he adds, in a note, that ¢ perhaps it was
of later origin, although it strongly reminds us of the
Sophists who proved also that Homer’s poetry was a
geometrical figure because it is a circle of myths.’®

That the problem was one of public interest at that
time, and that, further, owing to the false solutions of
pretended geometers, an element of ridicule had become
attached to it, is plain from the reference which Aristo-
‘phanes makes to it in one of his comedies.®

In the last chapter, p. 28 (£), we saw that there
was a tradition that the problem of the quadrature of
the circle engaged the attention of the Pythagoreans.
We saw, too (p. 47), that they probably derived the
problem from the Egyptians, who sought to find from the,
diameter the side of a square whose area should be equal

57 Themist., f. 5; Brandis, Sckol., p. 211 ; Johan. Philop, f. 18; _Brandis,
Sckol., pp. 211, 212,

s8 Simplicius, in Bretsch., Geom. vor Eukl., p. 106.

5 Ibid.

¢ Hankel, Geschich. der Math., p. 116, and note.
¢! Birds, 1005.
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to that of the circle. From their approximate solution, it
follows that the Egyptians must have assumed as evident
that the area of a circle is proportional to the square on
its diameter, though they would not have expressed them-
selves in this abstract manner. Anaxagoras (499-428 B.C.)
is recorded to have investigated this problem during his
imprisonment.*

Vitruvius tells us that Agatharchus invented scene-
painting, and that he painted a scene for a tragedy which
Aschylus brought out at Athens, and that he left notes
on the subject. Vitruvius goes on to say that Democritus
and Anaxagoras, profiting by these instructions, wrote on
perspective.®

‘We have named DEMOCRITUS more than once: it is
remarkable that the name of this great philosopher, who
was no less eminent as a mathematician,* and whose
fame stood so high in antiquity, does not occur in the
summary of the history of geometry preserved by Proclus.
In connection with this, we should note that Aristoxenus,
in his Historic Commentaries, says that Plato wished to
burn all the writings of Democritus that he was able to
collect; but that the Pythagoreans, Amyclas and Cleinias,
prevented him, as they said it would do no good, inasmuch
as copies of his books were already in many hands.
Diogenes Laertius goes on to say that it is plain that this
was the case; for Plato, who mentions nearly all the
ancient philosophers, nowhere speaks of Democritus.®

‘We are also told by Diogenes Laertius that Democritus
was a pupil of Leucippus and of Anaxagoras, who was
forty years his senior;® and further, that he went to

62 "AAN’ ’Avalaydpas ptv &v 7@ Becpwrnple TOv Tob KikAov TeTpaywvioudy
#ypape. —Plut., de Exil., c. XVIL,.vol. IIL, p. 734, ed. Didot.

83 De Arch., Vil., Praef.

o4 Cicero, de finibus bonorum et malorum, 1., c. vi.; Diog. Laert., IX., vii.,
ed. Cobet, p. 236.

65 Diog. Laert., ibid., ed. Cobet, p. 237.
68 Jbid., p. 235.
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Egypt to see the priests there, and to learn geometry from
them.*

This report is confirmed by what Democritus himself
tells us: ‘I have wandered over a larger portion of the
earth than any man of my time, inquiring about things
most remote; I have observed very many climates and
lands, and have listened to very many learned men; but
no one has ever yet surpassed me in the construction of
lines with demonstration; no, not even the Egyptian
Harpedonaptae, as they are called (kal ypauuéwv ovvbisiog
pera amodéEioe obdele ko pe mwaphHAake, 008’ ol Alyvwriwv
xaleduevor ‘Apwedovéwrar), with whom I lived five years in
all, in a foreign land.’ *

‘We learn further, from Diogenes Laertius, that Demo-
critus was an admirer of the Pythagoreans; that he seems
to have derived all his doctrines from Pythagoras, to such
a degree, that one would have thought that he had been
his pupil, if the difference of time did not prevent it ; that
at all events he was a pupil of some of the Pythagorean
schools, and that he was intimate with (ovyyeyovévar)
Philolaus.®

Diogenes Laertius gives a list of his writings: amongst
those on mathematics we observe the following :—

Mepl Siagopiic yvduovog 7 wepl Panaiog kbxAov kal apaipne
(lit.,, On the difference of the gnomon, or on the contact of
the circle and the sphere. Can what he has in view be
the following idea: that, the gnomon, or carpenter’s
rule, being placed with its vertex on the circumference of
a circle, in the limiting position, when one leg passes
through the centre, the other will determine the tangent ?);
one on geometry; one on numbers; one on incommen-

¢7 Diog. Laert., IX., vii,, ed. Cobet, p. 236.

¢ Democrit., ap. Clem. Alex., Strom., 1., p. 304, ed. Sylburg: Mullach,
Fragm. Phil. Graec., p. 370.

6 Diog. Laert., 1X., vii., ed. Cobet, p. 236.
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surable lines and solids, in two books; ’A«riwoypagin (a
description of rays, probably perspective).”

‘We also learn, from a notice of Plutarch, that Demo-
critus raised the following question: ‘If a cone were cut
by a plane parallel to its base [obviously meaning, what
we should now call one infinitely near to that plane], what
must we think of the surfaces of the sections, that they are
equal or unequal? For if they are unequal, they will show
the cone to be irregular, as having many indentations
like steps, and unevennesses; and if they are equal, the
sections will be equal, and the cone will appear to have
the property of a cylinder, viz., to be composed of equal,
and not unequal, circles, which is very absurd.””

If we examine the contents of the foregoing extracts,
and compare the state of geometry as presented to us in
them with its condition about half a century earlier, we
observe that the chief progress made in the interval
concerns the circle. The early Pythagoreans seem not to
have given much consideration to the properties of the
circle; but the attention of the geometers of this period
was naturally directed to them in connection with the
problem of its quadrature.

We have already set down, serzafim, the theorems and
problems relating to the circle which are contained in the
extract from Eudemus.

Although the attempts of Antiphon and Bryson to
square the circle did not meet with much favour from the
ancient geometers, and were condemned on account of the
paralogisms in them, yet their conceptions contain the
first germ of the infinitesimal method: to Antiphon is due
the merit of having first got into the right track by intro-
ducing for the solution of this problem—in accordance
with the atomic theory then nascent—the fundamental

0 Diog. Laert., IX., vii., ed. Cobet, pp. 238, 239.
1 Plut., de Comm. Not., vol. 1v., p. 1321, ed. Didot.
G
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idea of infinitesimals, and by trying to exhaust the circle
by means of inscribed polygons of continually increasing
number of sides; Bryson is entitled to praise for having
seen the necessity of taking into consideration the circum-
scribed as well as the inscribed polygon, and thereby
obtaining a superior as well as an inferior limit to the
area of the circle. Bryson’s idea is just, and should be
regarded as complementary to the idea of Antiphon, which
it limits and renders precise. Later, after the method of
exhaustions had been invented, in order to supply demon-
strations which were perfectly rigorous, the two limits,
inferior and superior, were always considered together,
as we see in Euclid and Archimedes.

‘We see, too, that the question which Plutarch tells us
that Democritus himself raised involves the idea of infini-
tesimals; and it is evident that this question, taken in
connection with the axiom in p. 57, must have presented
real difficulties to the ancient geometers. The general
question which underlies it was, as is well known, con-
sidered and answered by Leibnitz: ¢ Caeterim aequalia
esse puto, non tantim quorum differentia est omnino
nulla, sed et quorum differentia est incomparabiliter
parva; et licét ea Nihil omnino dici non debeat, non
tamen est quantitas comparabilis cum ipsis, quorum est
differentia. Quemadmodum si lineae punctum alterius
lineae addas, vel superficiei lineam, quantitatem non
auges. Idem est, si lineam quidem lineae addas, sed
incomparabiliter minorem. Nec ulla constructione tale
augmentum exhiberi potest. Scilicet eas tantim homo-
geneas quantitates comparabiles esse, cum FEuwuclide, /1b.
V., defin. 5, censeo, quarum una numero, sed finito, multi-
plicata, alteram superare potest. Et quae tali quantitate
non differunt, aequalia esse statuo, quod etiam Archimedes
sumsit, aliique post ipsum omnes. Et hoc ipsum est,
quod dicitur differentiam esse data quavis minorem. Et
Archimedeo quidem processu res semper deductione ad
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absurdum confirmari potest.’” Further, we have seen that
Democritus wrote on the contact of the circle and of the
sphere. The employment of the gnomon for the solution
of this problem seems to show that Democritus, in its
treatment, made use of the infinitesimal method ; he might
have employed the gnomon either in the manner indicated
above, or, by making one leg of ‘the gnomon pass through
the centre of the circle, and moving the other parallel to
itself, he could have found the middle points of a system of
parallel chords, and thus ultimately the tangents parallel
to them. At any rate this problem was a natural subject of
inquiry for the chief founder of the atomic theory, just as
Leibnitz—the author of the doctrine of monads and the
founder of the infinitesimal calculus—was occupied with
this same subject of tangency.

We observe, further, that the conception of the irra-
tional (@Aeyov), which had been a secret of the Pythagorean
school, became generally known, and that Democritus
wrote a treatise on the subject.

‘We have seen that Anaxagoras and Democritus wrote
on perspective, and that this is not the only instance in
which the consideration of problems in geometry of three
dimensions occupied the attention of Democritus.

On the whole, then, we find that considerable progress
had been made in elementary geometry; and indeed the
appearance of a treatise on the elements is in itself an
indication of the same thing. We have further evidence
of this, too, in the endeavours of the geometers of this
period to extend to the circle and to volumes the results
which had been arrived at concerning rectilineal figures
and their comparison with each other. The Pythagoreans,
as we have seen, had shown how to determine a square
whose area was any multiple of a given square. The
question now was to extend this to the cube, and, in

“ Leibnitii, Opera Omnia, ed. L. Dutens, tom. III., p. 328.
G 2
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particular, to solve the problem of the duplication of the
cube.

Proclus (after Eudemus) and Eratosthenes tell us (2and
7, p. 59) that Hippocrates reduced this question to one of
plane geometry, namely, the finding of two mean propor-
tionals between two given straight lines, the greater of
which is double the less. Hippocrates, therefore, must
have known that if four straight lines are in continued
proportion, the first has the same ratio to the fourth that
the cube described on the first, as side, has to the cube
described in like manner on the second. He must then
have pursued the following train of reasoning :—Suppose
the problem solved, and that a cube is found which is
double the given cube; find a third proportional to the
sides of the two cubes, and then find a fourth proportional
to these three lines ; the fourth proportional must be double
the side of the given cube; if, then, two mean propor-
tionals can be found between the side of the given cube
and a line whose length is double of that side, the problem
will be solved. As the Pythagoreans had already solved
the problem of finding a mean proportional between two
given lines—or, which comes to the same, to construct a
square which shall be equal to a given rectangle—it was
not unreasonable for Hippocrates to suppose that he had
put the problem of the duplication of the cube in a fair
way of solution. Thus arose the famous problem of finding
two mean proportionalsbetween two given lines—a problem
which occupied the attention of geometers for many cen-
turies. Although, as Eratosthenes observed, the difficulty
is not in this way got over; and although the new
problem cannot be solved by means of the straight line
and circle, or, in the language of the ancients, cannot
be referred to plane problems, yet Hippocrates is entitled
to much credit for this reduction of a problem in stereo-
metry to one in plane geometry. The tragedy to which
Eratosthenes refers in this account of the legendary origin
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of the problem is, according to Valckenaer, a lost play of
Euripides, named IToAdedoc : ™ if this be so, it follows that
this problem of the duplication of the cube, as well as that
of the quadrature of the circle, was famous at Athens at
this period.

Eratosthenes, in his letter to Ptolemy III., relates that
one of the old tragic poets introduced Minos on the stage
erecting a tomb for his son Glaucus; and then, deeming
the structure too mean for a royal tomb, he said ¢double
it, but preserve the cubical form ’: uwpdv y’ é\e€ac Baoihewob
ankdv tdgov, durddoioc Eotw. Tob 8 Tov kvBov un opalelc.’
Eratosthenes then relates the part taken by Hippocrates
of Chios towards the solution of this problem as given
above (p. 59), and continues: ¢ Later [in the time of Plato],
so the story goes, the Delians, who were suffering from a
pestilence, being ordered by the oracle to double one of
their altars, were thus placed in the same difficulty. They
sent therefore to the geometers of the Academy, entreating
them to solve the question.” This problem of the duplica-
tion of the cube—henceforth known as the Delian Problem—
may have been originally suggested by the practical needs
of architecture, as indicated in the legend, and have arisen
in Theocratic times; it may subsequently have engaged
the attention of the Pythagoreans as an object of theoretic
interest and scientific inquiry, as suggested above.

These two ways of looking at the question seem suited
for presenting it to the public on the one hand and to
mathematical pupils on the other. From the consideration
of a passage in Plutarch,” however, I am led to believe
that the new problem—to find two mean proportionals

“ See Reimer, Historia problematis de tubi duplicatione, p. 20, Gottingae,
1798; and Biering, Historia problematis cubi duplicandi, p. 6, Hauniae, 1844.

" Archim., ed. Torelli, p. 144. Valckenaer shows that these words of
Eratosthenes contain two verses, which he thus restores :—
pirpdy 7’ Enekas Baoikikod andy Tdpov*

SimAdoios &oTw, Tob KbBov B¢ uY odariis.
See Reimer, /. c.

1 Symp., VIIL, Quaestio 2, c. iv. ; Plut. Opera, ¢d. Didot, vol. 1v., p. 277,
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between two given lines—which arose out of it, had a
deeper significance, and that it must have been regarded
by the Pythagorean philosophers of this time as one of
great importance, on account of its relation to their
cosmology.

In the last chapter (p. 38) we saw that the Pytha-
goreans believed that the tetrahedron, octahedron, ico-
sahedron, and cube corresponded to the four elements of
the real world. This doctrine is ascribed by Plutarch to
Pythagoras himself:” Philolaus, who lived at this time,
also held that the elementary nature of bodies depended
on their form. The tetrahedron was assigned to fire, the
octahedron to air, the icosahedron to water, and the cube
to earth; that is to say, it was held that the smallest
constituent parts of these substances had each the form
assigned to it.”” This being so, what took place, accord-
ing to this theory, when, under the action of heat, snow
and ice melted, or water became vapour? In the former
case, the elements which'had been cubical took the icosa-
hedral form, and in the latter the icosahedral elements
became octahedral. Hence would naturally arise the
following geometrical problems :—

Construct an icosahedron which shall be equal to a
given cube;

Construct an octahedron which shall be equal to a
given icosahedron. ,

Now Plutarch, in his Symp., VIIL., Quaestio ii.— ¢ MAarwv
tiAeye Tov 0oy acl yiwperpetv, 3 & 4°—accepts this theory of

- 18 Mvlaydpas, wévre axnudrwy vrwy grepedv, &wep xakeitar xal pabdnuaricd,
ék utv Tob KVBov Pnol yeyovévar Thy iy, ék 5t Tijs wupauldos 7O wip, éx 3¢ Tob
oxTaédpov TO¥ &épa, éx 3¢ Tob eivooaédpov TO Fdwp, ¢k O¢ Toi Swdexaédpov THY Tob
wqy7ds apaipav.

TIAdTwy 8¢ kal v Tobtois wvdayopifer. Plut., Plac., 11., vi., § & 6; Opera, ed.
Didot, vol. 1v., p. 1081.

7 Stob. Eclog. ab Heeren, lib. 1., p. 10. See also Zeller, die Philos. der
Griechen, Erster Theil, p. 376, Leipzig, 1876, History of Greek Philosophy, vol.
1., p. 437, E.T.

8 Plut. Opera, ed. Didot, vol. 1v., pp. 876, ;.



The Geometers of the Fifth Century B.C. 87

Pythagoras and Philolaus, and in connection with it points
out the importance of the problem : ¢ Given two figures, to
construct a third which shall be equal to one of the two
and similar to the other’ —which he characterises as
essentially geometrical, and attributes to Pythagoras (see
Chapter II., p. 25). It is evident that Plutarch had in view
solid and not plane figures; for, having previously referred
to the forms of the constituent elements of bodies, viz. air,
earth, fire, and water, as being those of the regular solids,
omitting the dodecahedron, he goes on as follows: ‘What,’
said Diogenianus, ‘has this [the problem —given two
figures, to describe a third equal to one and similar to
the other] to do with the subject * “You will easily know,’
I said, ¢if you call to mind the division in the Timaeus,
which divided into three the things first existing, from
which the Universe had its birth; the first of which three
we call God [Bedg, the arranger], a name most justly
deserved ; the second we call malfer, and the third zdeal
Jorm. . . . God was minded, then, to leave nothing, so far
as it could be accomplished, undefined by limits, if it was
capable of being defined by limits; but [rather] to adorn
nature with proportion, measurement, and number: making
some one thing [that is, the universe] out of the material
taken all together ; something that would be like the zdeal
Jorm, and as big as the matfer. So having given himself
this problem, when the fwo were there, he made, and makes,
and for ever maintains, a #ks7d, viz. the universe, which
is equal to the matler and like the model.’

Let us now consider one of these problems—the
former—and, applying to it the method of reduction, see
what is required for its solution. Suppose the problem
solved, and that an icosahedron has been constructed
which shall be equal to a given cube. Take now another"
icosahedron, whose edge and volume are supposed to be
known, and, pursuing the same method which was followed
above in p. 84, we shall find that, in order to solve the’
problem, it would be necessary— '
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1. To find the volume of a polyhedron;

" 2. To find a line which shall have the same ratio to a
given line that the volumes of two given polyhedra have
to each other;

3. To find two mean proportionals between two given
lines; and

4. To construct on a given line as edge a polyhedron
which shall be similar to a given one.

Now we shall see that the problem of finding two mean
proportionals between two given lines was first solved by
Archytas of Tarentum—ultsmus Pythagoreorum—then by
his pupil Eudoxus of Cnidus, and thirdly by Menaechmus,
who was a pupil of Eudoxus, and who used for its solution
the conic sections which he had discovered : we shall see
further that Eudoxus founded stereometry by showing
that a triangular pyramid is one-third of a prism on the
same base and between the same parallel planes; lastly,
we shall find that these great discoveries were made with
the aid of the method of geometrical analysis which either
had meanwhile grown out of the method of reduction or
was invented by Archytas.

It is probable that a third celebrated problem—the
trisection of an angle—also occupied the attention of the
geometers of this period. No doubt the Egyptians knew
how to divide an angle, or an arc of a circle, into two
equal parts; they may therefore have also known how to
divide a right angle into three equal parts. We have seen,
moreover, that the construction of the regular pentagon
was known to Pythagoras, and we infer that he could have
divided a right angle into five equal parts. In this way,
then, the problem of the trisection of any angle—or the
more general one of dividing an angle into any number
of equal parts—would naturally arise. Further, if we
examine the two reductions of the problem of the tri-
section of an angle which have been handed down to
us from ancient times, we shall see that they are such
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as might naturally occur to the early geometers, and that
they were quite within the reach of a Pythagorean—one
who had worthily gone through his noviciate of at least
two years of mathematical study and silent meditation.
For this reason, and hecause, moreover, they furnish good
examples of the method called amaywy#, I give them here.

Let us examine what is required for the trisection of
an angle according to the method handed down to us by
Pappus.™

Since we can trisect a right angle, it follows that the
trisection of any angle can be effected if we can trisect an
acute angle.

Let now a3y be the given acute angle which it is

required to trisect.

From any point a on the line a8, which forms one leg
of the given angle, let fall a perpendicular ay on the other

5 o, €
9
g 97

Ieg, and complete the rectangle ay(38. Suppose now that
the problem is solved, and that a line is drawn making
with (y an angle which is the third part of the given
angle afy; let this line cut ay in g, and be produced until
it meet da produced at the point ¢. Let now the straight
line Ze be bisected in n, and an be joined ; then the lines
&n, ne, an, and Ba are all evidently equal to each other,
and, therefore, the line ge is double of the line af3, which is
known.

The problem of the trisection of an angle is thus re-
duced to another :—

9 Pappi Alex., Collect., ed. Hultsch, vol. I., p. 274.
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From any vertex (3 of a rectangle (3day draw a line
3%, so that the part Ze of it intercepted between the two
opposite sides, one of which is produced, shall be equal to
a given line.

This reduction of the problem must, I think, be referred
to an early period : for Pappus® tells us that when the
ancient geometers wished to cut a given rectilineal angle
into three equal parts they were at a loss, inasmuch as
the problem which they endeavoured to solve as a plane
problem could not be solved thus, but belonged to the
class called solid;* and, as they were not yet acquainted
with the conic sections, they could not see their way:
but, later, they trisected an angle by means of the conic
sections. He then states the problem concerning a
rectangle, to which the trisection of an angle has
been just now reduced, and solves it by means of a
hyperbola.

The conic sections, we know, were discovered by
Menaechmus, a pupil of Eudoxus (409-356 B.C.), and the
discovery may, therefore, be referred to the middle of the
fourth century.

Another method of trisecting an angle is preserved
in the works of Archimedes, being indicated in Prop. 8
of the Lemmata®—a book which is a translation into
Latin from the Arabic. The Lemmata are referred to
Archimedes by some writers, but they certainly could not
have come from him in their present form, as his name

8 Pappi Alex., Collect., ed. Hultsch, vol. 1., p, 270 et seq.

81 The ancients distinguished three kinds of problems—plane, solid, and
linear. Those which could be solved by means of straight lines and circles
were called plane; and were justly so called, as the lines by which the problems
of this kind could be solved have their origin in plano. Those problems whose
solution is obtained by means of one or more conic sections were called solid,
inasmuch as for their construction we must use the superficies of solid figures—
to wit, the sections of a cone. A third kind, called linear, remains, which
required for their solution curves of a higher order, such as spirals, quadratrices,
conchoids, and cissoids. See Pappi, Collect., ed. Hultsch, vol. 1., pp. 54 and
270.

& Archim. ex recens. Torelli, p. 358.
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is quoted in two of the Propositions. They may have been
contained in a note-book compiled from various sources by
some later Greek mathematician,”® and this Proposition
may have been handed down from ancient times.’

Prop. 8 of the Lemmata is: ‘If a chord AB of a
circle be produced until the part produced, BC, is equal
to the radius; if then the point C be joined to the centre
of the circle, which is the point D, and if CD, which cuts
the circle in F, be produced until it cut it again in E, the
arc AE will be three times the arc BF.’ Thls theorem
suggests the following reduction of the problem —

‘With the vertex A of the given angle BAC as centre,
and any lines AC or AB as radius, let a circle be de-
scribed. Suppose now that the problem is solved, and

8 See Archim. ed. Torelli, Praefatio, pp. xviii and xix. See also Hgiberg,
Quaesti Archimedeae, p. 24, who says: ‘Itaque puto haec lemniwtd e
plurium mathematicorum operibus esse excerpta, neque definiri jam potest,
quantum ex iis Archimedi tribuendum sit.’
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that the angle EAC is the third part of the angle BAC;
through B let a straight line be drawn parallel to AE, and
let it cut the circle again in G and the radius CA produced
in F. Then, on account of the parallel lines AE and FGB,
the angle ABG or the angle BGA, which is equal to it,
will be double of the angle GFA ; but the angle BGA
is equal to the sum of the angles GFA and GAF; the
angles GFA and GAF are, therefore, equal to each other,
and consequently thelines GF and GA are also equal. The
problem is, therefore, reduced to the following: From B
draw the straight line BGF, so that the part of it, GF,
intercepted between the circle and the diameter CAD
produced shall be equal to the radius.®

For the reasons stated above, then, I think that the
problem of the trisection of an angle was one of those
which occupied the attention of the geometers of this
period. Montucla, however, and after him many writers
on the history of mathematics, attribute to Hippias of
Elis, a contemporary of Socrates, the invention of a
transcendental curve, known later as the Quadratrix of
Deinostratus, by means of which an angle may be divided
into any number of equal parts. This statement is made
on the authority of the two following passages of
Proclus :—

¢ Nicomedes trisected every rectilineal angle by means
of the conchoidal lines, the inventor of whose particular
nature he is, and the origin, construction, and properties
of which he has explained. Others have solved the same
problem by means of the quadratrices of Hippias and
Nicomedes, making use of the mixed lines which are
called quadratrices; others, again, starting from the spirals

8¢ See F. Vietae, Opera Mathematica, studio ‘F. 4 Schooten, p. 245, Lugd.
Bat. 1646. These two reductions of the trisection of an angle were given by

Montucla, but he did not give any references. See Hist. des Matk., tom. I.,
P- 194, Tiere ed.
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of Archimedes, divided a rectilineal angle in a given
ratio.®,

¢In the same manner other mathematicians are accus-
tomed to treat of curved lines, explaining the properties
of each form. Thus, Apollonius shows the properties of
each of the conic sections; Nicomedes those of the con-
choids; Hippias those of the quadratrix, and Perseus
those of the spirics’ (awepican).*

Now the question arises whether the Hippias referred
to in these two passages is Hippias of Elis. Montucla
believes that there is some ground for this statement, for
he says: ¢ Je ne crois pas que l’antiquité nous fournisse
aucun autre géométre de ce nom, que celui dont je parle.’®
Chasles, too, gives only a qualified assent to the statement.
Arneth, Bretschneider, and Suter, however, attribute the
invention of the quadratrix to Hippias of Elis without any
qualification.®®* Hankel on the other hand, says that surely
the Sophist Hippias of Elis cannot be the one referred to,
but does not give any reason for his dissent.* I agree
with Hankel for the following reasons :—

1. Hippias of Elis is not one of those to whom the
progress of geometry is attributed in the summary of the
history of geometry preserved by Proclus, although he is
mentioned in it as an authority for the statement con-
cerning Ameristus [or Mamercus].*® The omission of his
name would be strange if he were the inventor of the qua-
dratrix.

8 Proclus, ed. Friedlein, p. 272.

88 Jbid., p. 356.

87 Montucla, Hist. des Math., tom. 1., p. 181, nouvle. ed.

8 Chasles, Hist. de la Géom., p. 8; Awneth, Gesch. der Math., p. 95;
Bretsch., Geom. vor Eukl., p. 94; Suter, Gesch. der Math. Wissenschaft., p. 3.

8 Hankel, Gesch. der Matk., p. 151, note. Hankel, also, in a review of -
Suter, Geschichte der Mathematischen Wissenschaften, published in the
Bullettino di Bibliografia ¢ di Storia delle Scienze Matematiche e Fisiche, says :
¢ A pag. 31 (lin. 3-6), Hippias, I'inventore della quadratrice, & identificato col
Sofista ‘Hippias, il che veramente avea gid fatto il Bretschneider (pag. 94, lin.
39-42), ma senza darne la minima prova.’ Bullet., &c., tom. V., p. 297.

% Proclus, ed. Friedlein, p. 65.
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2. Diogenes Laertius tells us that Archytas was the
first to apply an organic motion to a geometrical dia-
gram;” and the descnptlon of the quadratrix requires such
a motion.

3. Pappus tells us that: ¢ For the quadrature of a circle
a certain line was assumed by Deinostratus, Nicomedes,
and some other more recent geometers, which received its
name from this property; it is called by them the qua-
dratrix.’

4. With respect to the observation of Montucla, I may
mention that there was a skilful mechanician and geometer
named Hippias contemporary with Luc1an, who describes
a bath constructed by him,*

I agree, then, with Hankel, that the invention of the
quadratrix is erroneously attributed to Hippias of Elis.
But Hankel himself, on the other hand, is guilty of a still

9! Diog. Laert., VIII., c. iv., ed. Cobet, p. 224.

9 Pappi, Collect., ed. Hultsch, vol. 1., pp. 250 and 252.

9 Hippias, seu Balneum. Since the above was written I find that Cantor,
Vorles. tiber Gesch. der Math., p. 165, sg., agrees with Montucla in this.
He says: ‘It has indeed been sometimes doubted whether the Hippias referred
to by Proclus is really Hippias of Elis, but certainly without good grounds.’
In support of his view Cantor advances the following reasons :—

- 1. Proclus in his commentary follows a custom from which he never deviates—
he introduces an author whom he quotes with distinct names and surnames,
but afterwards omits the latter when it can be donme without an injury to
distinctness. Cantor gives instances of this practice, and adds: ¢If, then,
Proclus mentions a Hippias, it must be Hippias of Elis, who had been already
once distinctly so named in his Commentary.’

2. Waiving, however, this custom of Proclus, it is plain that with any author,
especially with one who had devoted such earnest study to the works of Plato,
Hippias without any further name could be only Hippias of Elis.

3. Cantor, having quoted passages from the dialogues of Plato, says: ¢ We
think we may assume that Hippias of Elis must have enjoyed reputation as a
teacher of mathematics at least equal to that which he had as a Sophist proper,
and that he possessed all the knowledge of his time in natural sciences, astronomy,
and mathematics.’

4. Lastly, Cantor tries to reconcile the passage quoted from Pappus with
the two passages from Proclus: ¢Hippias of Elis discovered about 420 B.C.
a curve which could serve a double purpose—trisecting an angle and squaring
the circle. From the latter application it got its name, Quadratrix (the Latin
translation), but this name does not seem to reach further back than Deinostratus.’
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greater anachronism in referring back the Method of Ex-
haustions to Hippocrates of Chios. He does so on grounds
‘which in my judgment are quite insufficient. Hankel,
-after quoting from Archimedes the axiom—*If two spaces
are unequal, it is possible to add their difference to itself
so often that every finite space can be surpassed,’ se¢ p. 57
—quotes further : ¢ Also, former geometers have made use
of this lemma ; for the theorem that circles are in the ratio
of the squares of their diameters, &c., has been proved by
the help of it. But each of the theorems mentioned is by
no means less entitled to be accepted than those which
have been proved without the help of that lemma; and,
therefore, that which I now publish must likewise be
accepted” Hankel then reasons thus: ¢ Since, then,
Archimedes brings this lemma into such connection with
the theorem concerning the ratio of the areas of circles, and,
on the other hand, Eudemus states that this theorem had
been discovered and proved by Hippocrates, we may also
-assume that Hippocrates laid down the above axiom, which
was taken up again by Archimedes, and which, in one shape
or another, forms the basis of the Method of Exhaustions
of the Ancients, ze. of the method to exhaust, by means
of inscribed and circumscribed polygons, the surface of a
curvilinear figure. For this method necessarily requires
such a principle in order to show that the curvilinear figure
is really exhausted by these polygons.”® Eudemus, no
doubt, stated that Hippocrates showed that circles have the
same ratio as the squares on their diameters, but he does
not give any indication as to the way in which the theorem
was proved. An examination, however, of the portion of
the passage quoted from Archimedes which is omitted by
Hankel will, I think, show that there is no ground for his
assumption. '

The passage, which occurs in the letter of Archimedes
to Dositheus prefixed to his treatise on the quadrature of

9 Hankel, Gesch. der Math., pp. 121-2.
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the parabola, runs thus: ¢ Former geometers have also used
this axiom. For, by making use of it, they proved that
circles have to each other the duplicate ratio of their
diameters; and that spheres have to each other the tripli-
cate ratio of their diameters; moreover, that any pyramid
is the third part of a prism which has the same base and
the same altitude as the pyramid ; also, that any cone is the
third part of a cylinder which has the same base and the
same altitude as the cone; all these they proved by assum-
ing the axiom which has been set forth.”®*

‘We see now that Archimedes does not bring this axiom
into close connection with the theorem concerning the
ratios of the areas of circles alone, but with three other
theorems also; and we know that Archimedes, in a sub-
sequent letter to the same Dositheus, which accompanied
his treatise on the sphere and cylinder, states the two
latter theorems, and says expressly that they were dis-
covered by Eudoxus.”® We know, too, that the doctrine of
proportion, as contained in the Fifth Book of Euclid, is
attributed to Eudoxus.”” Further, we shall find that the
invention of rigorous proofs for theorems such as Euclid,
VI. 1, involves, in the case of incommensurable quantities,
the same difficulty which is met with in proving rigorously
the four theorems stated by Archimedes in connection with
this axiom; and that in fact they all required a new
method of reasoning—the Method of Exhaustions—which
must, therefore, be attributed to Eudoxus.

The discovery of Hippocrates, which forms the basis of
his investigation concerning the quadrature of the circle,
has attracted much attention, and it may be interesting to

95 Archim. ex recens, Torelli, p. 18,

% Jbid., p. 64.

97 We are told so in the anonymous scholium on the Elements of Euclid,
which Knoche attributes to Proclus: see Eucl., £lem., Graece ed. ab. August,
pars. 11, p. 329; also Untersuchungen, &c., Von Dr. J. H. Knoche, p. 10.
Cf. p. 49, and note 76, supra.
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inquire how it might probably have been arrived at. It
appears to me that it might have been suggested in the
following way :—Hippocrates might have met with the
annexed figure, excluding the dotted lines, in the arts of
decoration ; and, contemplating the figure, he might have
completed the four smaller circles and drawn their diame-
ters, thus forming a square inscribed in the larger circle,
as in the diagram. A diameter of the larger circle being
then a diagonal of the square, whose sides are the diame-
ters of the smaller circles, it follows that the larger circle is
equal to the sum of two of the smaller circles. The larger
circle is, therefore, equal to the sum of the four setiicircles
included by the dotted lines. Taking away the common
parts—sc. the four segments of the larger circle standing
on the sides of the square—we see that the square is equal
to the sum of the four lunes,

~ This observation —concerning, as it does, the geometry
of areas—might even have been made by the Egyptians,
who knew the geometrical facts on which it is founded, and
who were celebrated for their skill in geometrical construc-
tions. See Ch. IL., pp. 29, 47, note 72.

In theinvestigation of Hippocrates given above we meet
with manifest traces of an analytical method, as stated in
Ch. IL, p. 41, note 62. Indeed, Aristotle—and this is re-
markable—after having defined amaywyf, evidently refers
to a part of this investigation as an instance of it: for he

H
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says: ‘Or again [there is reduction], if the middle terms
between y and 3 are few; for thus also there is a nearer
approach to knowledge. For example, if 8 were quadra-
ture, and ¢ a rectilineal figure, and £ a circle; if there were
only one middle term between ¢ and &, viz., that a circle
with lunes is equal to a rectilineal figure, there would be
an approach to knowledge.” See pp. 67, 68, above.

In many instances I have had occasion to refer to the
method of reduction as one by which the ancient geometers
made their discoveries, but perhaps I should notice that in
general it was used along with geometrical constructions : *
the importance attached to these may be seen from the
passages quoted above from Proclus and Democritus,
PP- 59, 80; as also from the fact that the Greeks had a
special name, Yevdoypapnua, for a faulty construction.

The principal figure, then, amongst the geometers of
this period is Hippocrates of Chios, who seems to have
attracted notice as well by the strangeness of his career as
by his striking discovery of the quadrature of the lune.
Though his contributions to geometry, which have been
set forth at length above, are in many respects important,
yet the judgment pronounced on him by the ancients is
certainly, on the whole, not a favourable one—witness
the statements of Aristotle, Eudemus, Iamblichus, and
Eutocius.

How is this to be explained? The faulty reasoning
into which he is reported to have fallen in his pretended
quadrature of the circle does not by itself seem to me to
be a sufficient explanation of it: and indeed it is difficult

989 xdAw [draywyh ori] € dAlya 7d uéoa T@v BT kal ydp ofrws dyybrepoy
Tob €idévas. olov €l O A €y Terpaywyvieddai, 1d & ¢’ § E eb8lypauuov, Td 8’
&9’ § Z xixros' € Tob EZ & udvov eln uéoov, T merd unvlokwy Yoov ylvesdas
ebOvypdupy TOV KlkAov, dyyds by ey Tob eldévar. Anal. Prior. 11, xxv., p. 69,

ed. Bekker. Observe the expressions 7d & é¢’ § E edfiypaunov, &c., here, and

see p. 72, note 45.
9 Concerning the importance of geometrical constructions as a process of
deduction, see P. Laffitte, les Grands Types de !’ Humanité, vol. 11., p. 329.
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to reconcile such a gross mistake with the sagacity shown
in his other discoveries, as Montucla has remarked.'®

The account of the matter seems to me to be simply
this :—Hippocrates, after having been engaged in com-
merce, went to Athens and frequented the schools of the
philosophers—evidently Pythagorean —as related above.
Now we must bear in mind that the early Pythagoreans
did not commit any of their doctrines to writing ''—their
teaching being oral: and we must remember, further,
that their pupils (axovericof) were taught mathematics for
several years, during which time a constant and intense
application to the investigation of difficult questions was
enjoined on them, as also silence—the rule being so
stringent that they were not even permitted to ask ques-
tions concerning the difficulties which they met with:'®
and that after they had satisfied these conditions they
passed into the class of mathematicians (ua@nuaricof), being
freed from the obligation of silence; and it is probable
that they then taught in their turn.

Taking all these circumstances into consideration, we
may, I think, fairly assume that Hippocrates imperfectly
understood some of the matter to which he had listened;
and that, later, when he published what he had learned, he
did not faithfully render what had been communicated to
him.

If we adopt this view, we shall have the explanation of—

1. The intimate connection that exists between the work
of Hippocrates and that of the Pythagoreans;

2. The paralogism into which he fell in his attempt
to square the circle: for the quadrature of the lune on
the side of the inscribed square may have been exhibited
in the school, and then it may have been shown that the

100 Montucla, Histoire des reckerches sur la Quadrature du Cercle, p. 39,
nouvle. ed., Paris, 1831.
101 See Ch. 11., p. 21, note 11, and the references given there.

102 See A. Ed. Chaignet, Pythagore et la Philosophie Pythagoricienne, vol. 1.,
p. 115, Paris, 1874 see also Tambl., V7t. Pytk., Cap. XvI1., 68,

H?2
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problem of the quadrature of the circle was reducible to
that of the lune on the side of the inscribed hexagon;
and what was stated conditionally may have been taken
up by Hippocrates as unconditional ;'*

3. The further attempt which Hippocrates made to
solve the problem by squaring a lune and circle together
(see p. 74) ;

4. The obscurity and deficiency in the construction
given in p. 72 ; and the dependence of that construction
on a problem which we know was Pythagorean (see p. 24
(€), and note 26);'

5. The passage in Iamblichus, see p. 58 (f); and, gene-
rally, the unfavourable opinion entertained by the ancients
of Hippocrates.

This conjecture gains additional strength from the fact
that the publication of the Pythagorean doctrines was first
made by Philolaus, who was a contemporary of Socrates,
and, therefore, somewhat junior to Hippocrates: Philolaus
may have thought that it was full time to make this pub-
lication, notwithstanding the Pythagorean precept to the
contrary.

The view which I have taken of the form of the

103 Tn reference to this paralogism of Hippocrates, Bretschneider (Geom. vor
Eukl., p. 122) says, ‘It is difficult to assume so gross a mistake on the part
of such a good geometer,” and he ascribes the supposed error to a complete
misunderstanding. He then gives an explanation similar to that given above,
with this difference, that he supposes Hippocrates to have stated the matter
correctly, and that Aristotle took it up erroneously: it seems to me more
probable that Hippocrates took up wrongly what he had heard at lecture than
that Aristotle did so on reading the work of Hippocrates. Further, we see
from the quotation in p. 98, from Anal. Prior., that Aristotle fully understood
the conditions of the question.

104 Referring to the application of areas, Mr. Charles Taylor, An Introduc-
tion to the Ancient and Modern Geometry of Conics, Prolegomena, p. xxv.,
says, ‘Although it has not been made out wherein consisted the importance
of the discovery in the hands of the Pythagoreans, we shall see that it played
a great part in the system of Apollonius, and that he was led to designate the
three conic sections by the Pythagorean terms Parabola, Hyperbola, Ellipse.’

I may notice that we have an instance of these problems in the construction
referred to above : for other applications of the method see Ch. Ir., pp. 41, 43.
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demonstrations in geometry at this period differs alto-
gether from that put forward by Bretschneider and
Hankel, and agrees better not only with what Simplicius
tells us ‘of the summary manner of Eudemus, who,
according to archaic custom, gives concise proofs’ (see
p. 69), but also with what we know of the origin, develop-
ment, and transmission of geometry : as to the last, what
room would there be for the silent meditation on difficult
questions which was enjoined on the pupils in the Pytha-
gorean schools, if the steps were minute, and if laboured
proofs were given of the simplest theorems ?

The need of a change in the method of proof was
brought about at this very time, and was in great mea-
sure due to the action of the Sophists, who questioned
everything.

Flaws, no doubt, were found in many demonstrations
which had hitherto passed current; new conceptions arose,
while others, which had been secret, became generally
known, and gave rise to unexpected difficulties ; new
problems, whose solution could not be effected by the old
methods, came to the front, and attracted general atten.
tion. It became necessary then on the one hand to recast
the old methods, and on the other to invent new methods,
which would enable geometers to solve the new problems.

I have already indicated the men who were equal to
this task, and I propose in the following chapters to
examine their work.
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CHAPTER IV.*

ARCHYTAS.

State of Hellas during the last generation of the fifth century B.c.—Magna
Graecia again became flourishing.—Archytas of Tarentum.—His life,
eminence as a Statesman and noble character.—Notices of his Geometrical
work.—Was there 2 Roman Agrimensor named Architas ?—The problem
‘to find two Mean Proportionals between two Given Lines’ was first solved
by Archytas.—His Solution.—Theorems which occur in it.—Inferences
from it as to Archytas’s knowledge of Geometry.—The conception of
Geometrical Loci involved in this Solution.—Different opinions as to its
importance.—Construction of Archytas’s Solution.—Was Plato the inventor
of the method of Geometrical Analysis >—Passage in the ¢Republic’ of
Plato, in which the backward state of Solid Geometry is noticed.—Yet
Archytas had, for the period, a profound knowledge of Geometry of Three
Dimensions; and Stereometry was founded in Plato’s lifetime by Eudoxus,

DURING the last thirty years of the fifth century before
the Christian era no progress was made in geometry at
Athens, owing to the Peloponnesian war, which having
broken out between the two principal States of Greece,
gradually spread to the other States, and for the space
of a generation involved almost the whole of Hellas.
Although it was at Syracuse that the issue was really
decided, yet the Hellenic cities of Italy kept aloof from
the contest,' and Magna Graecia enjoyed at this time a

* In the preparation of this and the following Chapters I have again made use
of the works of Bretschneider and Hankel, and have derived much advantage
from the great work of Cantor—Porlesungen tiber Geschichte der Mathematik.
I have also constantly used the Jndex Graecitatis appended by Hultsch to vol.
111 of his edition of Pappus; which, indeed, I have found invaluable.

1 At the time of the Athenian expedition to Sicily they were not received
into any of the Italian cities, nor were they allowed any market, but had only the
liberty of anchorage and water—and even that was denied them at Tarentum and
Locri. At Rhegium, however, though the Athenians were not received into the
city, they were allowed a market without the walls; they then made proposals to
the Rhegians, begging them, as Chalcideans, to aid the Leontines. ¢To which
was answered, that they would take part with neither, but whatever should seem
fitting to the rest of the Italians that they also would do.” Thucyd. VI. 44.
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period of comparative rest, and again became flourishing.
This proved to be an event of the highest importance ;
for, some years before the commencement of the Pelopon-
nesian war, the disorder which had long prevailed in the
cities of Magna Graecia had been allayed through the
intervention of the Achaeans;* party feeling, which had
run so high, had been soothed, and the banished Pytha-
goreans allowed to return. The foundation of Thurii
(443 BC.), under the auspices of Pericles, in which the
different Hellenic races joined, and which seems not to
have incurred any opposition from the native tribes, may
be regarded as an indication of the improved state of
affairs, and as a pledge for the future.* It is probable that
the pacification was effected by the Achaeans on condition

2 ¢The political creed and peculiar form of government now mentioned
also existed among the Achaeans in former times. This is clear from many other
facts, but one or two selected proofs will suffice, for the present, to make the
thing believed. At the time when the Senate-houses (ocvrédpia) of the Pytha-
goreans were burnt in the parts about Italy then called Magna Graecia, and a
universal change of the form of government was subsequently made (as was likely
when all the most eminent men in each State had been so unexpectedly cut off),
it came to pass that the Grecian cities in those parts were inundated with
bloodshed, sedition, and every kind of disorder. And when embassies came
from very many parts of Greece with a view to effect a cessation of differences in
the various States, the latter agreed in employing the Achaeans, and their well-
known integrity, for the removal of existing evils. Not only at this time did
they adopt the system of the Achaeans, but, some time after, they set about
imitating their form of government in a complete and thorough manner. For
the people of Crotona, Sybaris, and Caulon, sent for them by common consent ;
and first of all they established a common temple dedicated to Zeus, ¢ the Giver
of Concord,’ and a place in which they held their meetings and deliberations : in
the second place, they took the customs and laws of the Achaeans, and applied
themselves to their use, and to the management of their public affairs in accor-
dance with them. But some time after, being hindered by the overbearing power
of Dionysius of Syracuse, and also by the encroachments made upon them by the
neigbouring natives of the country, they renounced them, not voluntarily, but
of necessity.’ Polybius, II., 39. Polybius uses ogurédpior for the senate at
Rome: there would be one in each Graeco-Italian State—a point which, as will
be seen, has not been sufficiently noted.

3 The foundation of Thurii, near the site of Sybaris, seems to have been
regarded as an event of high importance; Herodotus was amongst the first
citizens, and Empedocles visited Thurii soon after it was founded. The names
of the tribes of Thurii show the pan-Hellenic character of the foundation,
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that, on the one hand, the banished Pythagoreans should
be allowed to return to their homes, and, on the other,
that they should give up all organised political action.t
Whether this be so or not, many Pythagoreans returned
to Italy, and the Brotherhood ceased for ever to exist as
a political association.* Pythagoreanism, thus purified,
continued as a religious society and as a philosophic
School ; further, owing to this purification and to the
members being thus enabled to give their undivided atten-

4 Chaignet, Pythagore et la Philosophie Pythagoricienne, 1., p. 93, says so, but
does not give his authority; the passage in Polybius, 11. 39, to which he refers,
does not contain this statement.

& There are so many conflicting accounts of the events referred to here that it
is impossible to reconcile them (see p. 53). The view which I have adopted
seems to me to fit best with the contemporary history, with the history of
geometry, and with the balance of the authorities. Zeller, on the other hand,
thinks that the most probable account is ¢ that the first public outbreak must have
taken place after the death of Pythagoras, though an opposition to him and his
friends may perhaps have arisen during his lifetime, and caused his migration to
Metapontum. The party struggles with the Pythagoreans, thus begun, may have
repeated themselves at different times in the cities of Magna Graecia, and the
variations in the statements may be partially accounted for as recollections of
these different facts. The burning of the assembled Pythagoreans in Crotona,
and the general assault upon the Pythagorean party, most likely did not take
place until the middle of the fifth century; and lastly, Pythagoras may have
spent the last portion of his life unmolested at Metapontum.’ (Zeller, Pre-
Socratic Philosophy, vol. 1., p. 360, E. T.).

Ueberweg takes a similar view :—

‘But the persecutions were also several times renewed. In Crotona, as it
appears, the partisans of Pythagoras and the ¢ Cylonians’ were for a long time
after the death of Pythagoras living in opposition as political parties, till at
length, about a century later, the Pythagoreans were surprised by their opponents,
while engaged in a deliberation in the ‘house of Milo’ (who himself had died
long before), and the house being set on fire and surrounded, all perished with
the exception of Archippus and Lysis of Tarentum. (According to other
accounts, the burning of the house, in which the Pythagoreans were assembled,
took place on the occasion of the first reaction against the Society, in the
lifetime of Pythagoras.) Lysis went to Thebes, and was there (soon after 400
B.C.) a teacher of the youthful Epaminondas.’ (Ueberweg, History of Philosophy,
vol. 1., p. 46, E. T.)

Zeller, in a note on the passage quoted above, gives the reasons on which his
suppositions are chiefly based. Chaignet, Pyth. et la Phil. Pyth. vol. 1., p. 88, and
note, states Zeller’s opinion, and, while admitting that the reasons advanced by
him do not want force, says that they are not strong enough to convince him: he
then gives his objections. Chaignet, further on, p. 94, 7., referring to the name
Italian, by which the Pythagorean philosophy is known, says: ¢ C’est méme ce qui



Aprchytas. 105

tion and their whole energy to the solution of scientific
questions, it became as distinguised and flourishing as
ever : at this time, too, remarkable instances of devoted
friendship and of elevation of character are recorded of
some of the body. Towards the end of this and the begin-
ning of the following centuries encroachments were made
on the more southerly cities by the native populations, and
some of them were attacked and taken by the elder Dio-
nysius :* meanwhile Tarentum, provided with an excellent

me fait croire que les luttes intestines n’ont pas eu la durée que suppose M.
Zeller; car si les pythagoriciens avaient été exilés pendant prés de soixante dix
ans de I'Italie, comment le nom de I'Italie serait-il devenu ou resté attaché a leur
école 2’ Referring to this objection of Chaignet, Zeller says, ¢ I know not with
what eyes he can have read a discussion which expressly attempts to show that
the Pythagoreans were not expelled till 440, and returned before 406° (loc cit. p.
363, note).

To the objections urged by Chaignet I would add—

1. Nearly all agree in attributing the origin of the troubles in Lower Italy to
the events which followed the destruction of Sybaris.

2. The fortunes of Magna Graecia seem to have been at their lowest ebb at
the time of the Persian war; this appears from the fact that, before the battle of
Salamis, ambassadors were sent by the Lacedemonians and Athenians to
Syracuse and Corcyra, to invite them to join the defensive league against the
Persians, but passed by Lower Italy.

3. The revival of trade consequent on the formation of the confederacy of
Delos, 476 B.C., for the protection of the Aegean Sea, must have had a beneficial
influence on the cities of Magna Graecia, and the foundation of Thurii, 443 B.C.,
is in itself an indication that the settlement of the country had been already
effected.

4. The answer of the Rhegians to Nicias, 415 B.C., shows that at that time
there existed a good understanding between the Italiot cities.

5. Zeller’s argument chiefly rests on the assumption that Lysis, the teacher of
Epaminondas, was the same as the Lysis who in nearly all the statements is
mentioned along with Archippus as being the only Pythagoreans who escaped the
slaughter. Bentley had long ago suggested that they were not the same. Lysis
and Archippus are mentioned as having handed down Pythagorean lore as heir-
looms in their families (Porphyry, Vit. Pyth., p. 101, Didot). This fact is in my
judgment decisive of the matter; for when Lysis, the teacher of Epaminondas,
lived there were no longer any secrets. See p. 22, 7. 1I.

6 In 393 B.C. a league was formed by some of the cities in order to protect
themselves against the Lucanians and against Dionysius. Tarentum appears not
to have joined the league till later, and then its colony Heraclea was the place of
meeting. The passage in Thucydides, quoted above, shows, however, that long
before that date a good understanding existed between the cities of Magna,
Graecia.
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harbour, and, on account of its remote situation, not yet
threatened, had gained in importance, and was now the
most opulent and powerful city in Magna Graecia. In
this city, at this time, Archytas—the last great Pytha-
gorean— grew to manhod.

ARCHYTAS of Tarentum’ was a contemporary of Plato
(428-347 B.C.), but probably senior to him, and was said
by some to have been one of Plato’s Pythagorean teachers®
when he visited Italy. Their friendship® was proverbial,
and it was he who saved Plato’s life when he was in
danger of being put to death by the younger Dionysius
(about 361 B.C.). Archytas was probably, almost certainly,
a pupil of Philolaus." We have the following particulars
of his life :—

He was a great statesman, and was seven times! ap-
pointed general of his fellow-citizens, notwithstanding the
law which forbade the command to be held for more than
one year, and he was, moreover, chosen commander-in-
chief, with autocratic powers, by the confederation of the
Hellenic cities of Magna Graecia;' it is further stated that

7 See Diog. Laert. viII. c. iv. See also J. Navarro, Zentamen de Archytae
Tarentini vita atque operibus, Pars Prior. Hafniae, 1819, and authorities given by
him.

8 Cic de Fin. v., xxix. 87; Rep. 1. 10, 16; de Senec. 12, 41. Val. Max.
VIIL 7. *

9 Iambl., Vit. Pytk. 127, p. 48, ed. Didot. ¢Verum ergo illud est quod, a
Tarentino Archyta, ut opinor, dici solitum, nostros senes commemorare audivi ab
aliis senibus auditum: *‘si quis in caelum ascendisset naturamque mundi et
pulchritudinem siderum perspexisset, insuavem illam admirationem ei fore, quae
jucundissuma fuisset, si aliquem cui narraret habuisset.”” Sic natura solitarium
nihil amat, semperque ad aliquod tamquam adminiculum adnititur quod in ami-
cissimo quoque dulcissimum est.’—Cic., de Amic. 23, 87.

10 Cic., de Oratore, Lib. 111. xxxiv. 139, aut Philolaus Archytam Tarentinum ?
The common reading Philolaum Archytas Tarentinus, which is manifestly
wrong, was corrected by Orellius.

1 Diog. Laert. loc. cit. ZElian, Var. Hist. VI1. 14, says six.

12 Tof koot 8¢ 7@y 'IraAwrdy xpoéarn, orparnyds aipedels abroxpdrep Sxd T@w
woAiTdy Kal Ty wepl dxeivov TO» Téwov ‘EAAfywy. Suidas, swd v. This title
arparnyds abroxpdrwp was conferred on Nicias and his colleagues by the
Athenians when they sent their great expedition to Sicily: it was also conferred
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he was never defeated as a general, but that, having once
given up his command through being envied, the troops he
had commanded were at once taken prisoners: he was
celebrated for his domestic virtues, and several touching
anecdotes are preserved of his just dealings with his
slaves, and of his kindness to them and to children.”
Aristotle even mentions with praise a toy that was in-
vented by him for the amusement of infants:* he was
the object of universal admiration on account of his being
endowed with every virtue ;** and Horace, in a beautiful
Ode," in which he refers to the death of Archytas by
shipwreck in the Adriatic Sea, recognises his eminence
as an arithmetician, geometer, and astronomer.

In the list of works written by Aristotle, but unfortu-
nately lost, we find three books on the philosophy of
Archytas, and one [ra i rob Tiualov xal Tav 'Apyvreiwy d];
these, however, may have been part of his works'” on the
Pythagoreans which occur in the same list, but which also
are lost. Some works attributed to Archytas have come
down to us, but their authenticity has been questioned,
especially by Griippe, and is still a matter of dispute:'
these works, however, do not concern geometry.

He is mentioned by Eudemus in the passage quoted
from Proclus in the Introduction (p. 4.) along with his
contemporaries, Leodamas of Thasos and Theaetetus of

by the Syracusans on the elder Dionysius: Diodorus, XIiI. 94. See Arnold,
History of Rome, 1. p. 448, n. 18.

13 As to the former, which was in accordance with Pythagorean principles, see
Iambl., Vit. Pyth. XXXI1. 197, pp. 66, 67, ed. Did. ; Plutarch, de ed. puer. 111., p.
12, ed. Did. ; as to the latter, see Athenaeus, X1I. 16; Aelian, Var. kist. XI11. 15.

M Aristot. Pol. V. (8), c. vi. See also Suidas.

15 d0avudero 8¢ xal wapd Tols woAAois éx) xdoyp &perfi, Diog. Laert. loc. cit.

161, 28,

17 Djog. Laert. V. i., ed. Cobet, p. 116. This, however, could hardly have
been so, as oze book only on the Pythagoreans is mentioned, and oze against
them.

18 Griippe, ucber die Fragmente des Archytas und der dlteren Pythagoreer.
Berlin, 1840.
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Athens, who were also contemporaries of Plato, as having
increased the number of demonstrations of theorems and
solutions of problems, and developed them into a larger
and more systematic body of knowledge."

The services of Archytas, in relation to the doctrine of
proportion, which are mentioned in conjunction with those
of Hippasus and Eudoxus, have been noticed in pp. 27 (0)
and 45.

One of the two methods of finding right-angled tri-
angles whose sides can be expressed by numbers—the
Platonic one, namely, which sets out from even numbers—
is ascribed to Architas [no doubt, Archytas of Tarentum]
by Boethius :* see pp. 34, 35, and note 53. I have there
given the two rules of Pythagoras and Plato for finding
right-angled triangles, whose sides can be expressed by
numbers; and I have shown how the method of Pytha-
goras, which sets out from odd numbers, results at once
from the consideration of the formation of squares by the
addition of consecutive gnomons, each of which contains
an odd number of squares. I have shown, further, that
the method attributed to Plato by Heron and Proclus,
which proceeds from even numbers, is a simple and
natural extension of the method of Pythagoras: indeed
it is difficult to conceive that an extension so simple and
natural could have escaped the notice of his successors.
Now Aristotle tells us that Plato followed the Pytha-
goreans in many things;* Alexander Aphrodisiensis, in

19 Proclus, ed. Friedlein, p. 66.

2 Boet., Geomn., ed. Friedlein, p. 408. Heiberg, in a notice of Cantor’s
¢ History of Mathematics,” Revue Critigue & Histoire et de Littérature, 16 Mai,
1881, pp. 378, 9, remarks, ‘Il est difficile de croire a l'existence d’un auteur
romain nommé Architas, qui aurait &crit sur P’arithmétique, et dont le nom, qui
ne serait, du reste, ni grec ni latin, aurait totalement disparu avec ses ceuvres, a
Pexception de quelques passages dans Bodce.” The question, however, still
remains as to the authenticity of the Ars Geometriae. Cantor stoutly maintains
that the Geometry of Boethius is genuiue: Friedlein, the editor of the edition
quoted, on the other hand dissents; and the great majority of philologists agree
in regarding the question as still sub judice. See Rev. Crit. loc. cit.

2 Arist., Met. 1. 6, p. 987*, ed. Bek.



Aprchytas. 109

his Commentary on the Metaphysics, repeats this state-
ment;* Asclepius goes further and says, not in many
things but in everything.®® Even Theon of Smyrna, a
Platonist, in his work ¢Concerning those things which in
Mathematics are useful for the reading of Plato,” says that
Plato in many places follows the Pythagoreans.* All this
being considered, it seems to me to amount almost to a
certainty that Plato learned his method for finding right-
angled triangles whose sides can be expressed numerically
from the Pythagoreans; he probably then introduced it
into Greece, and thereby got the credit of having invented
his rule. It follows also, I think, that the Architas refer-
red to by Boethius could be no other than the great Pytha-
gorean philosopher of Tarentum.

The belief in the existence of a Roman agrimensor
named Architas, and that he was the man to whom Boe-
thius—or the pseudo-Boethius—refers, is founded on a
remarkable passage of the Ars Geomelriae,’ which, I think,
has been incorrectly interpreted, and also on another pas-
sage in which Euclid is mentioned as prior to Architas.?
The former passage, which is as follows :—¢ Sed jam tem-
pus est ad geometricalis mensae traditionem ab Archita,
non sordido hujus disciplinae auctore, Latio accommo-
datam venire, si prius praemisero,’ &c., is translated by
Cantor thus: ¢But it is time to pass over to the communi-
cation of the geometrical table, which was prepared for
Latium by Architas, no mean author of this science, when
I shall first have mentioned,” &c. :* this, in my opinion, is
not the sense of the passage. I think that ¢‘ab Archita’
should be taken with #aeditionem, and not with accommo-

22 Alex. Aph., Sckol. in Arist., Brand., p. 5484, 8.
23 Asclep., Sckol. loc. cit., p. 548, 35.

24 Theon. Smym. Arithm., ed. de Gelder, p. 17.
25 Boet., ed. Friedlein, p. 393.

26 /d., p. 412.

21 Cantor, Gesch, der Math., p. 493.
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datam, the correct translation being—¢ But it is now time
to come to the account of the geometrical table as given
by Architas (“ no mean authority ”’ in this branch of learn-
ing), as adapted by me to Latin readers; when,” &c. Now
it is remarkable—and this, as far as I know, has been over-
looked—that the author of the Ars Geometriae, whoever he
may have been, applies to Architas the very expression
applied by Archytas to Pythagoras in Hor. Od. 1. 28::

¢ judice te, non sordidus auctor
‘ naturae verique.’

The mention of Euclid as prior to Archytas is easily
explained, since we know that for centuries Euclid the
geometer was confounded with Euclid of Megara,” who
was a contemporary of Archytas, but senior to him. _

We learn from Diogenes Laertius that he was the first
to employ scientific method in the treatment of Mechanics,
by introducing the use of mathematical principles; and
was also the first to apply a mechanical motion in the
solution of a geometrical problem, while trying to find
by means of the section of a semi-cylinder two mean
proportionals, with a view to the duplication of the
cube.®

Eratosthenes, too, in his letter to Ptolemy III., having

28 This error seems to have originated with Valerius Maximus (vIII. 12), an
author probably of the time of the emperor Tiberius, and was current in the
middle ages.

29 ofros xp@Tos T& unxavikd Tais pabnuarikals xpooxpnoduevos &pxals uebbddevoe,
xal wpdTos xlvnaw dpyavikhy Biaypduuart yewperpikg xpoafyaye, 8id Tis Touis Tod
huicvAfrSpov 8%o uéoas avd Adyov AaBetv (n1av eis TOv Tob KbBov BixAaciacudy.
Diog. Laert. loc. cit., ed. Cobet., p. 224.

That is, he first propounded the affinity and connection of Mechanics and
Mathematics with one another, by applying Mathematics to Mechanics, and
mechanical motion to Mathematics.

This seems to be the meaning of the passage : but Mechanics, or rather Sta-
tics, was first raised to the rank of a demonstrative science by Archimedes, who
founded it on the principle of the lever. Archytas, however, was a practical
mechanician, and his wooden flying dove was the wonder of antiquity. Favorinus,
see Aul. Gell., Noctes Atticae, X. 12.
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related the origin of the Delian Problem (see p. 85), tells
us that ‘the Delians sent a deputation to the geometers
who were staying with Plato at Academia, and requested
them to solve the problem for them. While they were
devoting themselves without stint of labour to the work,
and trying to find two mean proportionals between the two
given lines, Archytas of Tarentum is said to have dis-
covered them by means of his semicylinders, and Eudoxus
by means of the so called ¢Curved Lines’ (3ia r@v xalov-
uévwy xaumbAwv ypauuov). It was the lot, however, of all
these men to be able to solve the problem with satisfactory
demonstration ; while it was impossible to apply their
methods practically so that they should come into use;
except, to some small extent and with difficulty, that of
Menaechmus.’®

There is also a reference to this in the epigram which
closes the letter of Eratosthenes.*

The solution of Archytas, to which these passages
refer, has come down to us through Eutocius, and is as
follows :—

¢ The invention of Archylas as Eudemus relales it

‘Let there be two given lines, ad, y; it is required to
find two mean proportionals to them. Let a circle a38
be described round the greater line ad; and let the line
af3, equal to v, be inserted in it; and being produced let it
meet at the point x, the line touching the circle at the

% Archimedes, ex recens. Torelli, p. 144; Archimedis, Opera Omnia, ed. J.
L. Heiberg, vol. 111., pp. 104, 106.
" und¢ ol v’ *Apxirew Suoufixava épya xvAlvSpur,
und¢ Mevexuelovs xwvoroueiv Tpiddas
S{(nat, und’ € 1: Beovdéos EdBbEoto
KauxtAov év ypauuais eldos &vaypdperar.
Archim., ex. rec. Torelli, p. 146; Archim. Opera, ed. Heiberg, vol. 111,
p. 112,
% Jbid., ex. rec. Tor. p. 143; 7bid., ed. Heib. vol. 11, p. 98.
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point &: further let (3¢ be drawn parallel to 8. Now let
it be conceived that a semicylinder is erected on the semi-
circle af33, at right angles to it: also, at right angles to it,
let there be drawn on the line a8 a semicircle lying in the
parallelogram of the cylinder. Then let this semicircle be
turned round from the point § towards (3, the extremity a
of the diameter remaining fixed ; it will in its circuit cut
the cylindrical surface and describe on it a certain line.

Y

¢

Again, if, the line ad remaining fixed, the triangle axd be
turned round, with a motion contrary to that of the semi-
circle, it will form a conical surface with the straight line
am, which in its circuit will meet the cylindrical line [z.¢. the
line which is described on the cylindrical surface by the
motion of the semicircle] in some point; at the same time
the point 3 will describe a semicircle on the surface of the
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cone. Now, at the place® of meeting of the lines, let the
semicircle in the course of its motion have a position &'xa,
and the triangle in the course of its opposite motion a
position dAa; and let the point of the said meeting be «.
Also let the semicircle described by 3 be (u&, and the
common section of it and of the circle 384a be (3{: now
from the point « let a perpendicular be drawn to the plane
of the semicircle B3a; it will fall on the periphery of the
circle, because the cylinder stands perpendicularly. Let it
fall, and let it be x; and let the line joining the points ¢
and a meet the line 3§ in the point 6; and let the right
line aA meet the semicircle BuZ in the point u; also let the
lines «d’, ut, u@ be drawn.

¢ Since, then, each of the semicircles &'xa, Bu is at right
angles to the underlying plane, and, therefore, their common
section uf is at right angles to the plane of the circle;
so also is the line uf at right angles to 3. Therefore, the
rectangle under the lines 683, 0%; that is, under fa, 0.; is
equal to the square on uf. The triangle au: is therefore
similar to each of the triangles u#f, paf, and the angle
wa is right. But the angle &'ca is also right. Therefore,
the lines «&’, u are parallel. And there will be the propor-
tion :—As the line &'a is to ax, z.¢. ka to ai, S0 is the line
- to au, on account of the similarity of the triangles. The
four straight lines &'a, ax, ai, au are, therefore, in continued
proportion. Also the line au is equal to v, since it is equal
to the line a3. So the two lines ad, y being given, two
mean proportionals have been found, viz. ax, at.’

Although this extract from the History of Geometry of
Eudemus seems to have been to some extent modernised
by the omission of certain archaic expressions such as
those referred to in the preceding chapter (p. 72, 7. 45)
[and by the introduction of the phrase ¢parallelogram of

3 ¢xérw 8% 0o xatd TV Téwov Ths ouunTdoews TGV Ypauudy TO utv Kivod-
puevoy Huidxhioy &s Thv Tot AKA., &c.

I
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the cylinder’],* yet the whole passage appears to me to bear
the impress of Eudemus’s clear and concise style: further,
it agrees perfectly with the report of Diogenes Laertius,
and also with the words in the letter of Eratosthenes to
Ptolemy III., which have been given above. If now we
examine its contents, and compare them with those of the
more ancient fragment, we shall find a remarkable progress.

The following theorems occur in it:—

(a). If a perpendicular be drawn from the vertex of a
right-angled triangle on the hypotenuse, each side is a
mean proportional between the hypotenuse and its ad-
jacent segment.**

(6). The perpendicular is the mean proportional be-
tween the segments of the hypotenuse;* and, conversely,
if the perpendicular on the base of a triangle be a mean
proportional between the segments of the base, the ver-
tical angle is right.

(¢). If two chords of a circle cut one another, the rect-
angle under the segments of one is equal to the rectangle
under the segments of the other. This was most probably
obtained by similar triangles, and, therefore, required the
following theorem, the ascription of which to Hippocrates
has been questioned.

(). The angles in the same segment of a circle are
equal to each other.

(¢). Two planes which are perpendicular to a third
plane intersect in a line which is perpendicular to that
plane, and also to their lines of intersection with the third
plane.

Archytas, as we see from his solution, was familiar

¢ [The term parallelogram was invented by Euclid : see Proclus, ed. Friedlein,
PP- 392, 3. Cf. Heiberg, Litterargeschichtliche Studien iiber Euklid, p. 35.]

3 The whole investigation is, in fact, based on this theorem.

36 The solution of the Delian problem attributed to Plato, and by Me-
naechmus, are founded on this theorem,
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with the generation of cylinders and cones, and had also
clear ideas on the interpenetration of surfaces; he had,
moreover, a correct conception of geometrical loci, and of
their application to the determination of a point by means
of their intersection. Further, since by the theorem of
Thales the point u must lie on a semicircle of which a: is
the diameter, we shall see hereafter that in the solution of
Archytas the same conceptions are made use of and the
same course of reasoning is pursued, which, in the hands
of his successor and contemporary Menaechmus, led to the
discovery of the three conic sections. Such knowledge
and inventive power surely outweigh in importance many
special theorems.

Cantor, indeed, misconceiving the sense of the word
rdwoc, supposes that the expression ¢geometrical locus’
occurs in this passage. He says: ¢‘In the text handed
down by Eutocius, even the word réwog, geomelrical locus,
occurs. If we knew with certainty that here Eutocius
reports literally according to Eudemus, and Eudemus lite-
rally according to Archytas, this expression would be
very remarkable, because it corresponds with an impor-
tant mathematical conception, the beginnings of which we
are indeed compelled to attribute to Archytas, whilst we .
find it hard to believe in a development of it at that time
which has proceeded so far as to give it a name. In
our opinion, therefore, Eudemus, who was probably fol-
lowed very closely by Eutocius, allowed himself, in his
report on the doubling of the cube by Archytas, some
changes in the style, and in this manner the word ¢ Jocus,”
which in the meanwhile had obtained the dignity of a
technical term, has been inserted. This supposition is
supported by the fact that the whole statement of the pro-
cedure of Archytas sounds far less antique than, for in-
stance, that of the attempts at quadrature of Hippocrates
of Chios. Of course we only assume that Eudemus has,
to a certain extent, treated the wording of Archytas freely.

12
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The sense he must have rendered faithfully, and thus the
conclusions we have drawn as to the stereometrical know-
ledge of Archytas remain untouched.’*

This reasoning of Cantor is based on a misconception
of the meaning of the passage in which the word rdmo¢
occurs ; rémwoc in it merely means place, as translated above,
Though Cantor’s argument, founded on the occurrence of
the word rémog, is not sound; yet, as I have said, the
solution of Archytas involves the conception of geometrical
Joct, and the determination of a point by means of their
intersection—not merely ‘the beginnings of the concep-
tion,” as Cantor supposes; for surely such a notion could
not first arise with a curve of double curvature. The first
beginning of this notion has been referred to Thales in the
first chapter™ (p. 13).

Further, Archytas makes use of the theorem of Thales—
the angle in a semicircle is right. He shows, moreover,
that uf is a mean proportional between af and 6, and
concludes that the angle ua is right : it seems to me, there-
fore, to be a fair inference from this that he must have seen
that the point u may lie anywhere on the circumference of
a circle of which a¢ is the diameter. Now Eutocius, in his
Commentaries on the Conics of Apollonius,* tells us what
the old geometers meant by Plane Locz, and gives some
examples of them, the first of which is this very theorem.
It is as follows :—

3 Cantor, Gesch. der Mathk., p. 197.

3 Speaking of the solution of the ¢ Delian Problem’ by Menaechmus, Favaro
observes : ¢ Avvertiamo espressamente che Menecmo non fu egli stesso ’inventore
di questa dottrina [dei luoghi geometrici]. Montucla (Histoire des Mathématiques,
nouvelle édition, tome premier, 3 Paris, An. VIL, p. 171); e Chasles (Apercu
historigue, Bruxelles, 1837, p. 5) la attribuiscono alla scuola di Platone; G.
Johnston Allman (Greek Geometry from Thales to Euclid, Dublin, 1877, p. 171)
la fa risalire a Talete, appoggiando la sua argumentazione con valide ragioni.’
Antonio Favaro, Notizie Storico-Critiche sulla Contrusi delle Equasions.
Modena, 1878, p. 2I. ' '

_ 38 Apollonius, Conic., ed. Halleius, p. 1o.
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¢ A finite straight line being given, to find a point from
which the perpendicular drawn to the given line shall be a
mean proportional between the segments. Geometers call
such a point a Jocus, since not one point only is the solu-
‘tion of the problem, but the whole place which the circum-
ference of a circle described on the given line as diameter
occupies : for if a semicircle be described on the given line,
whatever point you may take on the circumference, and
draw from it a perpendicular on the diameter, that point
will solve the problem.’

Eutocius then gives a second example—¢A straight
line being given, to find a point without it from which the
straight lines drawn to its extremities shall be equal to
_each other’—on which he makes observations of a similar
.character, and then adds: ‘To the same effect Apollonius

_himself writes in his Locus Resolutus, with the subjoined
[figure] : ‘

“¢<Two points in a plane being given, and the ratio
of two unequal lines being also given, a circle can be
_described in the plane, so that the straight lines in-
flected from the given points to the circumference of the
circle shall have the same ratio as the given one.”’

Then follows the solution, which is accompanied with a
diagram. Asthis passage isremarkable in many respects,
I give the original :—

To 8¢ Tplrov Tév KwvikdY Tepiéxel, Pyai, oAl kai mapddofa Bewpr-
pata xpriowa wpds Tas ouvbésers TdV oTepedv Témwyv. EmmwéSovs
’, y ~ ~ , L ~ - ’ Py
Témovs &fos Tols makaiols yewpérpais Aeyew, Sre TdV mpoSAnudrwv odk
4’ &ds omuelov pdvov, AN’ dwd wAedvwy yiverar 76 wolqpa’ olov év
&murdée, s ebleias Sobeions memepaopuévys elpeiv TL onpeiov 4’ ob 7

9 ~ ’ JERYRY ~ , s ’ ~ ’
dxleiga kdferos émi Ty Bobeioay péon dvddoyov yiverar Tdv Tpumpdrov.
Témov kaXobor 16 TotodTov, 0 povov yip & onpeidy éor 76 mowobv TO
wpofAypa, &AL Témos Shos By Exel 1 mepipépera Tob Tepl Sdperpov TV

~ ) ~ 4 \ \ 3\ ~ ’ 3 ’ < ’
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xal ypdper atros "Axoddavios &v 7@ dvalvopévy Témy, éxi Tob Tmoxet-
pévov®

Avdo Sobévrwv anpeiwy &v émmrédy xai Adyov ofévros dvicwy ebbfeay
duvardv dorwv &v 7§ émméde ypdyar kixAov dore Tas dnd Tav dobévrwy
anpelwy érl Ty wepipépeiay Tob kikAov KAwpévas ebelas Adyov Ixew
7oV abrov 1@ Sobévre.

It is to be observed, in the first place, that a contrast is
here made between Apollonius and the old geometers (oi
walawl yewpérpat), the same expression which, in p. go, we
found was used by Pappus in speaking of the geometers be-
fore the time of Menaechmus. Secondly, on examination it
will be seen that oz, as e¢. g. those given above, partake of
a certain ambiguity, since they can be enunciated either as
theorems or as problems ; and we shall see later that, about
the middle of the fourth century B. C., there was a discus-
sion between Speusippus and the philosophers of the Aca-
demy on the one side, and Menaechmus, the pupil and, no
doubt, successor of Eudoxus, and the mathematicians of
the school of Cyzicus, on the other, as to whether every-
thing was a theorem or everything a problem : the mathe-
maticians, as might be expected, took the latter view, and
the philosophers, just as naturally, held the former. Now
it was to propositions of this ambiguous character that the
term porism, in the sense in which it is now always used,
was applied—a signification which was quite consistent
with the etymology of the word.*® Lastly, the reader will
not fail to observe that the first of the three Jocs given above

3 Heiberg, in his Studien iiber Euklid, p. 70, reads 1b Uwoxefpevor, and adds
in a note that Halley has swoxeiuévy, in place of vd Jworefuevor, a statement
which is not correct. I have interpreted Halley's reading as referring to the
subjoined diagram.

40 wopi{eaai, to procure. The question is—in a theorem, to prove something;
in a problem to construct something; in a porism, to find something. So the
conclusion of the theorem is, §wep €3t Seitas, Q. E. D., of the problem, Jwep
e woificas, Q. E. F., and of the porism, Ixep &es edpeiv, Q.E. I. Amongst the
ancients the word porism had also another siguification, that of corollary. See
Heiberg, Stud. iiber Eukl., pp. 56—79, where the obscure subject of porisms is
treated with remarkable clearness.
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is strikingly suggestive of the method of Analytic Geo-
metry. As to the term réxog, it may be noticed that Aris-
taeus, who was later than Menaechmus, but prior to Euclid,
wrote five books on So/id Loci (ol orepeol réwor).'' In conclu-
sion, I cannot agree with Cantor’s view that the passage
has the appearance of being modernised in expression
[with the exception of the use of the Euclidean term
¢ parallelogram ’]: there is nothing in the text from which
any alteration in phraseology can be inferred, as there
can be in the two solutions of the ‘Delian Problem’ by
Menaechmus, in which the words parabola and hyperbola
occur.

The solution of Archytas seems to me not to have been
duly appreciated. Montucla does not give the solution,
but refers to it in a loose manner, and says that it was
merely a geometrical curiosity, and of no practical impor-
tance.” Chasles, who, as we have seen (p. 13, 7. 19),
in the History of Geometry before Euclid, copies Mon-
tucla, also says that the solution was purely specula-
tive; he even gives an inaccurate description of the
construction—taking an aréZe of the cylinder as axis of the
cone®—in which he is followed by some more recent
writers.# Flauti, on the other hand, gives a clear and full
account of the method of Archytas, and shows how his
solution may be actually constructed. For this purpose it
is necessary to give a construction for finding the inter-
section of the surface of the semicylinder with that of the
fore generated by the revolution of the semicircle round
the sizde of the cylinder through the point a as axis; and
also for finding the intersection of the surface of the same

41 Pappi, Collect., ed. Hultsch, vol. I1., p. 672.

42 ¢ Mais ce n’étoit-1 qu’une curiosité géométrique, uniquement propre a
satisfaire I'esprit, et dont la pratique ne sgauroit tirer aucun secours.’—Montucla,
Histoire des Math., tom. 1., p. 188.

43 Chasles, Apergu hist., p. 6.

4 ¢. g. Hoefer, Histoire des Matk., p. 133.
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semicylinder with that of the cone described by the revo-
lution of the triangle and: the intersection of these curves
gives the point x, and then the point ¢, by means of which
the problem is solved. Now, in order to determine the
point «, it will be sufficient to find the projections of these
two curves on the vertical plane on a8, which contains the
axes of the three surfaces of revolution concerned, and
which Archytas calls the parallelogram of the cylinder.
The projection on this plane of the curve of intersection of
the /ore and semicylinder can be easily found: the pro-
jection of the point «, for example, is at once obtained by
drawing from the point ¢, which is the projection of the
point « on the horizontal plane af33, a perpendicular & on
ad, and then at the point & erecting in the vertical plane a
perpendicular &y equal to «, the ordinate of the semicircle
axd’, corresponding to the point ¢(; and in like manner for
all other points. The projection on the same vertical plane
of the curve of intersection of the cone and semicylinder can
also be found: for example, the projection of the point «,
‘which is the intersection of ax and w, the sides of the cone
and cylinder, on the vertical plane, is the intersection of
the projections of these lines on that plane ; the latter pro-
jection is the line &, and the former is obtained by draw-
ing in the vertical plane, through the point ¢ a line ev
perpendicular to a8 and equal to Ou, the ordinate of the
semicircle BuZ, and then joining av, and producing it to
meet Ey; and so for all other points on the curve of inter-
section of the cone and cylinder.** So far Flauti.

Each ofthese projections can be constructed by points :—

To find the ordinate of the first of these curves cor-
responding to any point & we have only to describe a
square, whose area is-the excess of the rectangle under the
line ad and a mean proportional between the lines ad and
a&, over the square on the mean: the side of this square is

45 Flauti, Geometria di Sito, terza edizione, Napoli, 1842, pp. 192-194.
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the ordinate required.* In order to describe the projection
of the intersection of the cone and cylinder, it will be suffi-
cient to find the length, a&, which corresponds to any ordi-
nate, &y (= «), supposed known, of this curve; and to effect
this we have only to apply to the given line ae a rectangle,
which shall be equal to the square on the line &y, and
which shall be excesstve by a rectangle similar to a given
one, namely, one whose sides are the lines a8 and a—
z.e. the greater of the two given lines, between which the
two mean proportionals are sought, and the third propor-
tional to it and the less.”

46 For, =uwl=a.d=a.(ad - ai); but ad’ = a3;
therefore, tn*=al.a1 — a. Again, since a:ai:: ai:af,
we have also tt=ab.(Vad.at —al).

47 Thus,  6u®=Be—0¢. Now Ou=ev,and ev: {n::ae:at;

2 pon
we have, therefore, e? =£¢'€zﬂ = Be? — Oel.
Be? o€ Be?
H 2= al?— — . afd = e | af? — i
ences & ae ae? o ae? of” — %
since ° Oe:if::ae:al.
But ?=af. (ad-af);
aB?
hence we get . &*=— .al’—ad.a};
aE€
and, finally, since ad:aB::aB:ae,
32

h t= T af—ad.af.

we have 12} B at’—ad.af

The equations of these projections can, as M. Paul Tannery has shown (Sur
les Solutions du Probléme de Délos par Archytas et par Eudoxe, Mémoires de la
Société des Sciences physiques et naturelles de Bordeaux, 2¢ série, tome II.,
P. 277), be easily obtained by analytic geometry. Taking, as axes of co-ordinates,
the line a3, the tangent to the circle aB3 at the point a, and the side of the
cylinder through the point a, the equations of the three surfaces are : —

the cylinder, 24 92 =ax;

the tore, A+ 4 = aVir+ y2;
. 2

the cone, X442t = 7 22,

where @ and 5 are the lines a3 and a8, between which the two mean proportionals
are sought.
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So much ingenuity and ability are shown in the treat-
ment of this problem by Archytas, that the investigation
of these projections, in itself so natural,*® seems to have
been quite within his reach, especially as we know that
the subject of Perspective had been treated of already by
Anaxagoras and Democritus (see pp. 79, 83). It may be
observed, further, that the construction of the first projec-
tion is easily obtained ; and as to the construction of the
second projection, we see that it requires merely the solu-
tion of a problem attributed to, the Pythagoreans by
Eudemus, simpler cases of which we have already met
with (see p. 24 (¢), and pp. 41, 72, 72.46). On the other hand,
it should be noticed—1° that we do not know when the
description of a curve by points was first made; 2° that
the second projection, which is a hyperbola, was obtained
later by Menaechmus as a section of the cone; 3° and
lastly, that the names of the conic sections—parabola, kyper-
bola, and ellipse—derived from the problems concerning the
application, excess, and defect of areas, were first given to
them by Apollonius.”

‘We easily obtain from these three equations :—
3 N I —
x= b:/a; 2 +y’=:/abz; and \/.:\':2+y'+xv2 =Va’b.

The last two give the first and second mean proportionals between 4 and a.
‘We also obtain easily the projections on the plane of zx of the curves of inter-
section of the cylinder and tore— .

B =aVx (Va - Vx),

and of the cylinder and cone,
2 a 2
#=-x2—ax.

These results agree with those obtained above geometrically.

48 ¢ La recherche des projections sur les plans donnés des intersections deux a
deux des surfaces auxiliaires est, 3 cet &gard, si naturelle que, si ’on peut
s'étonner d’une chose, c’est précisément qu’ Archytas ait conservé 3 sa solution
une forme purement theorique.” P. Tannery, loc. cit., p. 279.

49 See supra, p. 24, and 7. 26: see also Apollonii Conica, ed. Halleius, p. 9,
also pp. 31, 33, 35; and Pappi Collect., ed. Hultsch, vol. 1I., p. 674; and
Proclus, ed. Friedlein, p. 419,
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Several authors give Archytas credit for a knowledge
of the geometry of space, which was quite exceptional
and remarkable at that time, and they notice the pecu-
liarity of his making use of a curve of double curvature
—the first, as far as we know, conceived by any geome-
ter; but no one, I believe, has pointed out the importance
of the conceptions and method of Archytas in relation to
the invention of the conic sections, and the filiation of
ideas seems to me to have been completely overlooked.

Bretschneider, not bearing in mind what Simplicius
tells us of Eudemus’s concise proofs, thinks that this solu-
tion, though faithfully transmitted, may have been some-
what abbreviated. He thinks, too, that it must belong to
the later age of Archytas—a long time after the opening
of the Academy—inasmuch as the discussion of sections of
solids by planes, and of their intersections with each other,
must have made some progress before a geometer could
have hit upon such a solution as this; and also because
such a solution was, no doubt, possible only when Analysis
was substituted for Synthesis.*

Bretschneider even attempts to detect the particular
analysis by which Archytas arrived at his solution, and
as Cantor thinks, with tolerable success.®* The latter
reason goes on the assumption, current since Montucla,
that Plato was the inventor of the method of geometrical
analysis—an assumption which is based on the following
passages in Diogenes Laertius and Proclus :—

He [Plato] first taught Leodamas of Thasos the ana-
lytic method of inquiry.®

Methods are also handed down, of which the best is
that through analysis, which brings back what is required

50 Bretsch., Geom. vor Eukl., pp. 151, 152.
51 Cantor, Gesck. der Matk., p. 198.

52 kol wp@ros TOV KaTd THy GvdAvew Tis (nrhoews Tpémov elonyhoaro Aew-
Sduavt. 7§ Oacip. Diog. Laert., 111, 24, ed. Cobet, p. 74.
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to some admitted principle, and which Plato, as they say,
transmitted to Leodamas, who is reported to have become
thereby the discoverer of many geometrical theorems.®
Some authors, on the other hand, think, and as it seems
‘to me with justice, that these passages prove nothing more
than that Plato communicated to Leodamas of Thasos this
method of analysis with which he had become acquainted,
most probably, in Cyrene and Italy.* It is to be remem-
bered that Plato—who in mathematics seems to have been
painstaking rather than inventive—has not treated of this
method in any of his numerous writings, nor is he reported
to have made any discoveries by means of it, as Leodamas
and Eudoxus are said to have done, and as we know
Archytas and Menaechmus did. Indeed we have only to
compare the solution attributed to Plato of the problem of
finding two mean proportionals—which must be regarded
as purely mechanical, inasmuch as the geometrical theo-
rem on which it is based is met with in the solution of
Archytas—with the highly rational solutions of the same
problem by Archytas and Menaechmus, to see the wide
interval between them and him in a mathematical point of
view. Plato, moreover, was the pupil of Socrates, who
held such mean views of geometry as to say that it might
be cultivated only so far as that a person might be able to
distribute and accept a piece of land by measure.”* We
know that Plato, after his master’s death, went to Cyrene

53 Mé0o30s 3¢ Buws wapadldorrai® kaAAloTy uly % Sid Tiis &varboews éx’ dpxhy

Suoroyoupbrmy &vdyovoa > (nrolueuor, Hv xal 8 TMAdrwr, &s Paci, Acwdduart:

- wapédwnev. &p’ Rs xal éxeivos WoAAGY Katd yewperplav edperhs lorépnrar ye-
végfar.—Proclus, ed. Friedlein, p. 211.

& J. J. de Gelder quotes these passages of Diogenes Laertius and Proclus,
and adds: ¢‘Haec satis testantur doctissimum Montucla methodi analyticae
inventionem perperam Platoni tribuere. Bruckerum rectius scripsisse existimo ;
scilicet eos, qui Platonem hanc methodum invenisse volunt, non cogitare, illum
audivisse Theodorum Cyrenaeum, celeberrimum Geometram, quem hanc rationem
reducendi quaestiones ad sua principia ignoravisse, non verosimile est (Bruckeri,
Hist. Crit. Phil., tom. 1. p. 642)’—De Gelder, Zheonis Smyrn. Arithm., Prae-
monenda, p. xlix., Lugd. Bat.

56 Xenophon, Memorab., 1v. 7 ; Diog. Laert., 11. 32, p. 41, ed. Cobet.
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to learn geometry from Theodorus, and then to the Pytha-
goreans in Italy. Is it likely, then, that Plato, who, as far
as we know, never solved a geometrical question, should
have invented this method of solving problems in geometry
and taught it to Archytas, who was probably his teacher,
and who certainly was the foremost geometer of that time,
and that thereby Archytas was led to his celebrated solu-
tion of the Delian problem ?

The former of the two reasons advanced by DBret-
schneider, and given above, has reference to and is based
upon the following well-known and remarkable passage of
the Republic of Plato. The question under consideration
is the order in which the sciences should be studied :
having placed arithmetic first, and geometry—z. e. the
geometry of plane surfaces—second, and having proposed
to make astronomy the third, he stops and proceeds :—

¢ ¢Then take a step backward, for we have gone wrong
in the order of the sciences.’

¢ What was the mistake ?’ he said. .

¢ After plane geometry,’ I said, ¢ we took solids in revolu-
tion, instead of taking solids in themselves ; whereas, after
the second dimension the third, which is concerned with
cubes and dimensions of depth, ought to have followed.’

¢ That is true, Socrates; but these subjects seem to be
as yet hardly explored.

¢ Why, yes,” I said, ‘and for two reasons: in the first
place, no government patronises them, which leads to a
want of energy in the study of them, and they are difficult;
in the second place, students cannot learn them unless
they have a teacher. But then a teacher is hardly to be
found; and even if one could be found, as matters now
stand, the students of these subjects, who are very con-
ceited, would not mind him. That, however, would be
otherwise if the whole state patronised and honoured
this science; then they would listen, and there would be
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continuous and earnest search, and discoveries would be
made; since even now, disregarded as these studies are
by the world, and maimed of their fair proportions, and
although none of their votaries can tell the use of them,
still they force their way by their natural charm, and very
likely they may emerge into light.’

¢Yes,’ he said, ¢ there is a remarkable charm in them.
But I do not clearly understand the change in the order.
First you began with a geometry of plane surfaces ?’

¢Yes,’ I said.

¢ And you placed astronomy next, and then you made a
step backward !’

‘Yes,” I said, ‘the more haste the less speed; the
ludicrous state of solid geometry made me pass over this
branch and go on to astronomy, or motion of solids.’

¢True,’ he said.

¢ Then regarding the science now omitted as supplied,
if only encouraged by the State, let us go on to astro-
nomy.’

¢ That is the natural order,’ he said.”’*

Cantor, too, says that ¢stereometry proper, notwith-
standing the knowledge of the regular solids, seems on
the whole to have been yet [at the time of Plato] in a very
backward state,’® and in confirmation of his opinion quotes
part of a passage from the Laws.®* It will be seen, how-
ever, on reading it to the end, that the ignorance of the
Hellenes referred to by Plato, and denounced by him in
such strong language, is an ignorance—not, as Cantor
thinks, of stereometry—but of incommensurables,

‘We do not know the date of the Repudlic, nor that of
the discovery of the cubature of the pyramid by Eudoxus,

56 Plato, Rep., VIL. 528 ; Jowett, the Dialogues of Plato, vol. 11., pp. 363, 364.
87 Cantor, Gesch. der Math., p. 193.
o Plato, Leges, VIL., 819, 820; Jowett, op. cit., vol. 1v., pp, 333, 334.
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which founded stereometry,” and which was an important
advance in the direction indicated in the passage given
above: it is probable, however, that Plato had heard from
his Pythagorean teachers of this desideratum; and I have
in the last chapter (p. 86, sg.) pointed out a problem
of high philosophical importance to the Pythagoreans at
that time, which required for its solution a knowledge
of stereometry. Further, the investigation given above
shows, as Cantor remarks, that Archytas formed an ho-
nourable exception to the general ignorance of geometry
of three dimensions complained of by Plato. It is note-
worthy that this difficult problem—the cubature of the
pyramid—was solved, not through the encouragement
of any State, as suggested by Plato, but, and in Plato’s
own lifetime, by a solitary thinker—the great man whose
important services to geometry we have now to consider.

59 It should be noticed, however, that with the Greeks Sterecometry had the
wider signification of geometry of three dimensions, as may be seen from the
following passage in Proclus: 7 utv yewuerpla Siaipeirar wdAwv €ls Te Thy éxime-
Sov fewplay kal THv orepeouerplav.—Proclus, ed. Friedlein, p. 39: see also #bid.,
Pp- 73, 116.
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CHAPTER V.
EUDOXUS,

Eudoxus of Cnidus.—His life. —Founded the School of Cyzicus.—Notices of his
Geometrical work.—Examination of and inferences from these Notices.—
Eudozxus discovered the Cubature of the Pyramid, invented the Method of
Exhaustions, and was the Founder of the Doctrine of Proportion as given in
the Fifth Book of Euclid.—xauwira: vypauual and Hippopede.—Retro-
spective view of the progress of Geometry.—Effect of the Dialectic Method
in general, and, in particular, in Geometry.—Necessity of recasting the
methods of investigation and proof.—Estimate of the services of Eudoxus.—
Though his fame was very great in antiquity, yet he was for centuries unduly
depreciated.—Justice is now done to him.—His place in the History of
Science.

Eupoxus of Cnidus'—astronomer, geometer, physician,
lawgiver—was born about 407 B.C.;,and was a pupil of
Archytas in geometry, and of Philistion, the Sicilian [or
Italian Locrian], in medicine, as Callimachus relates in his
Tablels. Sotion in his Swuccessions, moreover, says that he
also heard Plato; for when he was twenty-three years of
age and in narrow circumstances, he was attracted by the
reputation of the Socratic school, and, in company with
Theomedon the physician, by whom he was supported, he
went to Athens, where—or rather at Pireus—he remained
two months, going each day to the city to hear the lectures
of the Sophists, Plato being one of them, by whom, how-
ever, he was coldly received. He then returned home,
and, being again aided by the contributions of his friends,
he set sail for Egypt with Chrysippus—also a physician,
and who, as well as Eudoxus, learnt medicine from Philis-
tion—bearing with him letters of recommendation from
Agesilaus to Nectanabis, by whom he was commended to

! Diog. Laert., VI1I., c. viii; A. Boeckh, weber die vierjihrigen Sonnenkreise
der Alten, vorziiglich den Eudoxischen, Berlin, 1863.
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the priests. When he was in Egypt with Chonuphis of
Heliopolis, Apis licked his garment, whereupon the priests
said that he would be illustrious ({vdo&ov), but short-lived.?
He remained in Egypt one year and four months, and
composed the Oclaélerss>—an octennial period. Eudoxus
then—his years of study and travel now over—took up
his abode at Cyzicus, where he founded a school (which
became famous in geometry and astronomy), teaching there
and in the neighbouring cities of the Propontis; he also
went to Mausolus. Subsequently, at the height of his
reputation, he returned to Athens, accompanied by a great
many pupils, for the sake, as some say, of annoying Plato,
because formerly he had not held him worthy of attention.
Some say that, on one occasion, when Plato gave an enter-
tainment, Eudoxus, as there were many guests, introduced
the fashion of sitting in a semicirclet Aristotle tells
us that Eudoxus thought that pleasure was the summum
bonum ; and, though dissenting from his theory, he praises
Eudoxus in a manner which with him is quite unusual :—
¢And his words were believed, more from the excellence
of his character than for themselves; for he had the repu-.
tation of being singularly virtuous, sé¢pwv: it therefore
seemed that he did not hold this language as being a

2 Boeckh thinks, and advances weighty reasons for his opinion, that the
voyage of Eudoxus to Egypt took place when he was still young—that is, about
378 B. C.; and not in 362 B. C., in which year it is placed by Letronne and others.
Boeckh shows that it is probable that the letters of recommendation from
Agesilaus to Nectanabis, which Eudoxus took with him, were of a much earlier
date than the military expedition of Agesilaus to Egypt. In this view Grote
agrees. = See Boeckh, Somnenkreise, pp. 140-148; Grote, Plato, vol. 1., pp. 120~
124.

3 The Octaéteris was an intercalary cycle of eight years, which was formed
with the object of establishing a correspondence between the revolutions of the
sun and moon; eight lunar years of 354 days, together with three months of 30
days each, make up 2922 days: this is precisely the number of days in eight
years of 365} days each. This period, therefore, presupposes a knowledge of the
true length of the solar year ; its invention, however, is attributed by Censorinus
to Cleostratus.

4 Is this the foundation of the statement in Grote’s Plat, vol. 1., p. 124—
¢the two then became friends’ ?

K
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friend to pleasure, but that the case really was so.”® On
his return to his own country he was received with great
honours—as is manifest, Diogenes Laertius adds, from the
decree passed concerning him—and gave laws to his fel-
low-citizens; he also wrote treatises on astronomy and
geometry, and some other important works. He was
accounted most illustrious by the Greeks, and instead of
Eudoxus they used to call him Endoxus, on account of the
brilliancy of his fame. He died in the fifty-third year of
his age, cz7c. 354 B. C.

The above account of the life of Eudoxus, with the ex-
ception of the reference to Aristotle, is handed down by
Diogenes Laertius, and rests on good authorities.® Un-
fortunately, some circumstances in it are left undetermined
as to the time of their occurrence. I have endeavoured to
present the events in what seems to me to be their natural
sequence. I regret, however, that in a few particulars as to
their sequence I am obliged to differ from Boeckh, who
has done so much to give a just view of the life and career
of Eudoxus, and of the importance of his work, and of the
high character of the school founded by him at Cyzicus.
Boeckh thinks it likely that Eudoxus heard Archytas in
geometry, and Philistion in medicine, in the interval be-
tween his Egyptian journey and his abode at Cyzicus.

Grote, too, in the notice which he gives of Eudoxus,
takes the same view. He says:—*Eudoxus was born in
poor circumstances; but so marked was his early promise,
that some of the medical school at Knidus assisted him to
prosecute his studies—to visit Athens, and hear the So-
phists, Plato among them—to visit Egypt, Tarentum

8 Aristot, Etk. Nic., X. 2, p. 1172, ed. Bek.

¢ Callimachus of Cyrene; he was invited by Ptolemy II., Philadelphus, to a
place in the Museum ; and was chief librarian of the library of Alexandria; he
held this office from about 250 B. C. until his death, about 240 B. c. Hermippus
of Smyma. Sotion of Alexandria flourished at the close of the third century B. .
Apollodorus of Athens flourished about the vear 143 B. C.—Smith’s Dictionary.

7 Boeckh, Sonnenkreise, p. 149.
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(where he studied geometry with Archytas), and Sicily
(where he studied ra iarpica with Philistion). These facts
depend upon the Iivaxec of Kallimachus, which are good
authority (Diog. Laert. vIiI. 86).”*

Now I think it is mmuch more likely that, as narrated
above, Eudoxus went in his youth from Cnidus to Taren-
tum—Dbetween which cities, as we have seen, an old com-
mercial intercourse existed’—and there studied geometry
under Archytas, and that he then studied medicine under
the Sicilian [or Italian Locrian] Philistion. In support of
this view, it is to be observed that—

1°. The narrative of Diogenes Laertius commences with
this statement, which rests on Callimachus, who is good
authority ;

2°. The life of Eudoxus is given by Diogenes Laertius
in his eighth book, which is devoted exclusively to the
Pythagorean philosophers: this could scarcely have been
so, if he was over thirty years of age when he heard Archy-
tas, and that, too, only casually, as some think;

3°. The statement that he went from Tarentum to
Sicily [or the Italian Locri] to hear Philistion, who pro-
bably was a Pythagorean—for we know that medicine was
cultivated by the Pythagoreans—is in itself credible ;

4°. Chrysippus, the physician in whose company Eu-
doxus travelled to Egypt, was also a pupil of Philistion in
medicine, and Theomedon, with whom Eudoxus went to
Athens, was a physician likewise; in this way might arise
the relation between Eudoxus and some of the medical
school of Cnidus noticed by Grote.

The statement of Grote, that ¢these facts depend on the
Nivaxec of Kallimachus,’ is not correct; nor is there any
authority for his statement that Eudoxus was assisted by
the medical school of Cnidus to visit Tarentum and Sicily :

¢ Grote, Plato, vol. 1., p. 123, 7.
? Supra, p. 19: Herod., 111. 138.

K2
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the probability is that he became acquainted with some
physicians of Cnidus as fellow-pupils of Philistion.

The geometrical works of Eudoxus have unfortunately
been lost; and only the following brief notices of them
have come down to us:—

(). Eudoxus of Cnidus, a little younger than Leon, and
a companion of Plato’s pupils, in the first place increased
the number of general theorems, added three proportions
to the three already existing, and also developed further
the things begun by Plato concerning the section [of a
line], making use, for the purpose, of the analytical
method;®

(8). The discovery of the three later proportions, re-
ferred to by Eudemus in the passage just quoted, is at-
tributed by Iamblichus to Hippasus, Archytas, and
Eudoxus; "

(¢). Proclus tells us that Euclid collected the elements,
and arranged much of what Eudoxus had discovered. »*

(d). We learn further from an anonymous scholium on
the Elements of Euclid, which Knoche attributes to Pro-
clus, that the Fifth Book, which treats of proportion, is com-
mon to geometry, arithmetic, music, and, in a word, to all
mathematical science; and that this Book is’'said to be the
invention of Eudoxus (Edd6€ov two¢ rov MMAdrwvoe Sidac-
kaAov); 13

(¢). Diogenes Laertius tells us, on the authority of the
Chronicles of Apollodorus, that Eudoxus was the disco-
verer of the theory of curved lines (epeiv re ra wepl TA¢ Kau-
wblag ypauudc);

(f). Eratosthenes says, in the passage quoted above

10 Proclus, ed. Friedlein, p. 67 : see Introduction, p. 4.

11 Tambl. in Nic. Arithm., ed. Tennulius, pp. 142, 159, 163.

12 Proclus, ed. Friedlein, p. 68 : see introduction, p. .

13 Euclidis Elem., ed. August., pars ii., p. 328; Knoche, Untersuchungen,
&c., p. 10 : see p. 49.

't Diog. Laert., vIIL,, c. viii., ed. Cobet, p- 226.
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(p-111), that Eudoxus employed these so called curved lines
to solve the problem of finding two mean proportionals
between two given lines;'® and in the epigram which
concludes his letter to Ptolemy III., Eratosthenes asso-
ciates him with Archytas and Menaechmus;

(£). In the history of the ‘Delian Problem’ given by
Plutarch, Plato is stated to have referred the Delians, who
implored his aid, to Eudoxus of Cnidus or to Helicon of
Cyzicus, for its solution ;'

(£). We learn from Seneca that Eudoxus first brought
back with him from Egypt the knowledge of the motions
of the planets;"* and from Simplicius, on the authority of
Eudemus, that, in order to explain these motions, and in
particular the retrograde and stationary appearances of
the planets, Eudoxus conceived a certain curve, which he
called the Azppopede ; ¥

(z). Archimedes tells us expressly that Eudoxus disco-
vered the following theorems :—

Any pyramid is the third part of a prism which
has the same base and the same altitude as the
pyramid ;

Any cone is the third part of a cylinder which has
the same base and the same altitude as the
cone.*

(/). Archimedes, moreover, points out the way in which
these theorems were discovered : he tells us that he himself
obtained the quadrature of the parabola by means of the
following lemma :—¢If two spaces are unequal, it is pos-
sible to add their difference to itself so often that every

18 Archim., ed. Torelli, p. 144 ; ed. Heiberg., 111, p. 106.

16 Archim., ed. Tor., p. 146; ed. Heib., I11., p. 112. Some writers translate
8eovdéos in this epigram by ¢ divine,’ but the true sense seems to be ¢ God-fearing,’
¢ pious’ : see Arist. (p. 129, supra).

17 Plutarch, de Gen. Soc. 1, Opera, ed. Didot, vol. 111., p. 699.

18 Seneca, Quaest. Nat., V1L 3.

19 Brandis, Sckolia in Aristot., p. 500%.

20 Archim., ed. Torelli, p. 64; ed. Heiberg, vol. L., p. 4.
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finite space can be surpassed. Former geometers have
also used this lemma ; for, by making use of it, they proved
that circles have to each other the duplicate ratio of their
diameters, and that spheres have to each other the tripli-
cate ratio of their diameters; further, that any pyramid is
the third part of a prism which has the same base and the
same altitude as the pyramid; and that any cone is the
third part of a cylinder which has the same base and the
same altitude as the cone.’”

Archimedes, moreover, enunciates the same lemma for
lines and for volumes, as well as for surfaces.”® And the
fourth definition of the Fifth Book of Euclid—which Book,
we have seen, has been ascribed to Eudoxus—is some-
what similar.® It should be observed that Archimedes
does not say that the lemma used by former geometers was
exactly the same as his, but like it: his words are :—o6uoiov

¢ wpoepnuévy Nijupd Tt AapBdvovree Eypagoy.

Concerning the three new proportions referred to in (a)
and (8), see pp. 44, 45. In Proclus they are ascribed to
Eudoxus; whereas Iamblichus reports that they are the
invention of Archytas and Hippasus, and says that Eu-
doxus and his school (ol wept Eddoov uabnuarwcoi) only
changed their names. The explanation of these conflict-
ing statements, as Bretschneider has suggested, probably
lies in this—that Eudoxus, as pupil of Archytas, learned
these proportions from his teacher; and first brought them
to Greece, and that later writers then believed him to
have been the inventor of them.*

21 Archim., ed. Tor., p. 18; ed. Heib., vol. 11., p. 296.

22 Eri 8¢ Tdv dviowy ypauuav kal Tév dvicwy émipaveidy kal Tdv dvicwy ore-
pedv 7d ueifov Tov exdoaovos imepéxew Towbry, d cuvtiBéuevor atrd éavr@ Suvardy
oy imepéxew mwavtds Toi wporelévros Tiv wpds EAAnAG Aeyouévwy. Archim.,
ed. Tor., p. 65; ed. Heib., vol. 1., p. I10.

23 This definition is—

Adyov Exéw mpds bAAAa peyédn Aéyerar, & Sivaral moAAarAacialduera RAAGAWY
vmepéxew.

4 Bretsch., Geom. vor Eukl., p. 164.
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For additional information on this subject, and with
relation to the further development of this doctrine by later
Greek mathematicians, who added four more means to the
six existing at this period, the reader is referred to Pappus,
Nicomachus, Iamblichus, and also to the observations of
Cantor with relation to them.*

The passage (a) concerning the section (xepl v rounv)
was for a long time regarded as extremely obscure : it was
explained by Bretschneider as meaning the section of a
straight line in extreme and mean ratio, sec/io aurea, and
in the /néroduction (p. 4, note) I adopted this explanation.
Bretschneider’s interpretation has since been followed by
Cantor in his classical work on the Hislory of Mathematics,*
and may now be regarded as generally accepted.

A proportion contains in general four terms : the second
and third terms may, however, be equal, and then three
magnitudes only are concerned : further, if the magnitudes
are /Jines, the third term may be the difference between the
first and second, and thus the geometrical and arithmetical
ratios may occur in the same proportion: the greatest line
is then the sum of the two others, and is said to be cut in
extreme and mean ratio. The construction of the regu-
lar pentagon depends-ultimately on this section—which
Kepler says was called sec/io aurea, sectio divina, and pro-
portio divina, on account of its many wonderful properties.
This problem, to cut a given straight line in extreme and
mean ratio, is solved in Euclid II. 11, and V1. 30; and
the solution depends on the application of areas, which
Eudemus tells us was an invention of the Pythagoreans.
Use is made of the problem in Euclid IV. 10-14; and the
subject is again taken up in the Thirteenth Book of the
Elements.

Bretschneider observes that the first five propositions

2 Pappi Collect., ed. Hultsch, vol. I., p. 70, sq.; Cantor, Gesch. der Math. p.
206.
28 Ibid., p 208.



136 Greck Geomelry from Thales to Euclid.

of this book are treated there in connection with the ana-
lytical method, which is nowhere else mentioned by Euclid;
and infers, therefore, that these theorems are the property
of Eudoxus.” Cantor repeats this observation of Bret-
schneider, and thinks that there is much probability in the
supposition that these five theorems are due to Eudoxus,
and have been piously preserved by Euclid.® Heiberg, in
a notice of Cantor’s Vorlesungen uber Geschichte der Mathe-
maltstk, already referred to, has pointed out that these ana-
lyses and syntheses proceed from a scholiast : ** the reason-
ing of Bretschneider and Cantor is, therefore, not con-
clusive.

There is, however, I think, internal evidence to show
that these five propositions are older than Euclid, for—

1. The demonstrations of the first four of these theo-
rems depend on the dissection of areas, and use is made
in them of the gnomon—an indication, it seems to me, of
their antiquity.

2. The first and fifth of these theorems can be obtained
at once from the solution of Euclid II. 11; and of these two
theorems the third is an immediate consequence; the solu-
tion, therefore, of this problem given in Book II. must be
of later date.

These theorems, then, regard being had to the passage
of Proclus quoted above, may, as Bretschneider and Cantor
think, be due to Eudoxus: it appears to me, however, to
be more probable that the theorems have come down from
an older time; but that the definitions of analysis and
synthesis given there, and also the &AAw¢ (or alefer proofs),

21 Bretsch., Geom. vor Eukl., p. 168.

28.Cantor, Gesck. der Math., p. 208.

2 Rev. Crit., &c., 16 Mai, 1881, p. 380. ¢P. 189 et surtout, p. 236, M. C.
parait accepter pour authentiques les synthéses et analyses insérées dams les
éléments d’Euclide (xiii. 1-5). Elles proviennent d'un scholiaste, ce qui ressort,-
dailleurs, de ce que, dans les manuscrits, elles se trouvent tant6t juxtaposées aux
theéses une 2 une, tantot réunies aprés le chap. xiii. 5.’
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in which the analytical method is used, are the work of
Eudoxus.®

As most of the editions of the Elements do not contain
the Thirteenth Book, I give here the enunciations of the
first five propositions :—

Prop. I. If a straight line be cut in extreme and mean
ratio, the square on the greater segment, increased by half
of the whole line, is equal to five times the square of half
of the whole line.

Prop. II. If the square on a straight line is equal to
five times the square on one of its segments, and if the
double of this segment is cut in extreme and mean ratio,
the greater segment is the remaining part of the straight
line first proposed.

Prop. III. If a straightline is cut in extreme and mean
ratio, the square on the lesser segment, increased by half
the greater segment, is equal to five times the square on
half the greater segment.

Prop. IV. If a straight line is cut in extreme and
mean ratio, the squares on the whole line and on the
lesser segment, taken together, are equal to three times
the square on the greater segment.

Prop. V. If a straight line is cut in extreme and mean
ratio, and if there be added to it a line equal to the greater
segment, the whole line will be cut in extreme and mean
ratio, and the greater segment will be the line first pro-
posed.

From the last of these propositions it follows that, if a
line be cut in extreme and mean ratio, the greater seg-

30 T have since learned that Dr. Heiberg takes the same view ; he thinks that
Cantor’s supposition—or rather, as he should have said, Bretschneider's—that
these definitions are due to Eudoxus is probable. Zeitschrift fiir Math. und
Phys., XXIX. Jahrgang, p. 20, 1883-4.
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ment will be cut in a similar manner by taking on it a
part equal to the less; and so on continually ; and it re-
sults from Prop. III. that twice the lesser segment exceeds
the greater. If now reference be made to the Tenth Book,
which treats of incommensurable magnitudes, we find that
the first proposition is as follows :—¢ Two unequal magni-
tudes being given, if from the greater a part be taken
away which is greater than its half, and if from the re-
mainder a greater part than its half, and so on, there will
remain a certain magnitude which will be less than the
lesser given magnitude’; and that the second proposition
is—¢ Two unequal magnitudes being proposed, if the lesser
be continually taken away from the greater, and if the
remainder never measures the preceding remainder, these
magnitudes will be incommensurable’; lastly, in the third
proposition we have the method of finding the greatest
common measure of two given commensurable magni-
tudes. Taking these propositions together, and consider-
ing them in connection with those in the Thirteenth Book,
referred to above, it seems likely that the writer to whom
the early propositions of the Tenth Book are due had in
view the section of a line in extreme and mean ratio, out
of which problem I have expressed the opinion that the
discovery of incommensurable magnitudes arose (see p. 42).

This, I think, affords an explanation of the place occu-
pied by Eucl. X. 1 in the Elements, which would otherwise
be difficult to account for: we might rather expect to find
it at the head of Book XII., since it is the theorem on
which the Method of Exhaustions, as given by Euclid in
that book, is based, and by means of which the following
theorems in it are proved:—

Circles are to each other as the squares on their
diameters, XII. 2 :

A pyramid is the third part of a prism having the
same base and same height, XII. 7;
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A cone is the third part of a cylinder having the
same base and same height, XII. 10;

Spheres are to each other in the triplicate ratio
of their diameters, XII. 18.

Now two of the foregoing theorems are attributed to
Eudoxus by Archimedes; and the lemma, which Archi-
medes tells us former geometers used in order to prove
these theorems, is substantially the same as that assumed
by Euclid in the proof of the first proposition of his Tenth
Book: itis probable, therefore, that this proposition also is
due to Eudoxus.

Eudoxus, therefore, as I have said (p. 96), must be re-
garded as the inventor of the Method of Exhaustions. We
know, too, that the doctrine of proportion, as contained in
the Fifth Book of Euclid, is attributed to him. I have,
moreover, said (loc. cz£) that ‘the invention of rigorous
proofs for theorems such as Euclid VL. 1, involves, in the
case of incommensurable quantities, the same difficulty
which is met with in proving rigorously the four theorems
stated by Archimedes in connection with this axiom.” In
all these cases the difficulty was got over, and rigorous
proofs supplied, in the same way—namely, by showing
that every supposition contrary to the existence of the
properties in question led, of necessity, to some contradic-
tion, in short by the reductio ad absurdum® (awaywyh eic
adtvarov). Hence it follows that Eudoxus must have been

31 ¢ C?était encore par la réduction 3 I’absurde que les anciens étendaient aux
quantités incommensurables les rapports qu’ils avaient découverts entre les quan-
tités commensurables’ (Carnot, Réfexions sur la Métaphysique du Calcul
Infinitésimal, p. 137, second edition : Paris, 1813).

If the bases of the triangles are commensurable, this theorem, Euclid VI. 1,
can be proved by means of the First Book and the Seventh Book, which latter
contains the theory of proportion for numbers and for commensurable magnitudes.
It is easy to see, then, that this theorem can be proved in a general manner—
so as to include the case where the bases are incommensurable—by the method
of reductio ad absurdum by means of the axiom used in Euclid X. 1, which has
been attributed above to Eudoxus: see p. 134.

32 Camot, ¢bid., p. 135.
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familiar with this method of reasoning. Now this indirect
kind of proof is merely a case of the Analytical Method,
and is indeed the case in which the subsequent synthesis,
that is usually required as a complement, may be dispensed
with. Inconnection with this it may be observed that the
term used here, araywy#, is the same that we met with
(p. 41, 7. 62) on our first introduction to the 'analytical me-
thod ; this indeed is natural, for analysis, as Duhamel re-
marked, is nothing else but a method of reduction.®

Eutocius, in his Commentary on the treatise of Archi-
medes On the Sphere and Cylinder, in which he has handed
down the letter of Eratosthenes to Ptolemy III., and in
which he has also preserved the solutions of the Delian
Problem by Archytas, Menaechmus, and other eminent
mathematicians, with respect to the solution of Eudoxus,
merely says: .

‘We have met with the writings of many illustrious
men, in which the solution of this problem is professed ;
we have declined, however, to report that of Eudoxus,
since he says in the introduction that he has found it by
means of curved lines, kauxdAwy ypauudv: in the proof, how-
ever, he not only does not make any use of these curved
lines, but also, finding a discreet proportion, takes it as
a continuons one; which was an absurd thing to con-
ceive—not merely for Eudoxus, but for those who had to
do with geometry in a very ordinary way.’*

As Eutocius omitted to transmit the solution of Eudoxus,
so I did not give the above with the other notices of his
geometrical work. It is quite unnecessary to defend
Eudoxus from either of the charges contained in this
passage. I will only remark, with Bretschneider, that it

3 ¢ L’analyse n’est donc autre chose qu’une méthode de réduction’ (Duhamel,
des Méthodes dans les Sciences de Raisonnement, premidre partie, p. 41).
3 Archim., ed. Tor., p. 135; ed. Heiberg, vol. V1. p. 66.
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is strange that Eutocius, who had before him the letter of
Eratosthenes, did not recognise in the complete corruption
of the text the source of the defects which he blames.*

We have no further notice of these so called curved
lines : it is evident, however, that they could not have been
any of the conic sections, which were only discovered later
by Menaechmus, the pupil of Eudoxus.

There is a conjecture, however, concerning them which
is worth noticing: M. Paul Tannery thinks that the term
kaumdlat ypappai has, in the text of Eratosthenes, a par-
ticular signification, and that, compared with, ¢. g. the
xauréda ré€a of Homer, it suggests the idea of a curve
symmetrical to an axis, which it cuts at right angles, and

- presenting an inflexion on each side of this axis. Tannery
conjectures that these curves of Eudoxus are to be found
amongst the projections of the curves used in the solution
of his master, Archytas; and tries to find whether, amongst
these projections, any can be found to which the denomi-
nation in question can be suitably applied. We have seen
above, pp. 119, 120, that Flauti has shown how the solution of
Archytas could be constructed by means of the projections,
on one of the vertical planes, of the curves employed in
that solution. I have further shown that the actual con-
struction of these projections can be obtained by the aid of
geometrical theorems and problems known at the time of
Archytas; though we have no evidence that he completed
his solution in this way. Tannery has considered these
curves, and shown that the term kaumilat ypapuai, in the
sense which he attaches to it, does not apply to either of
them, nor to the projections on the other vertical plane;
but that, on the contrary, the term is quite applicable to
the projection of the intesrection of the cone and torg on
the circular base of the cylinder.* :

3 Bretsch., Geom. vor Eukl., p. 166.

36 Tannery, sur les Solutions du Probléme de Délos par Archytas et par
Ludoxe,
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The astronomical work of Eudoxus is beyond the scope
of this treatise, and is only referred to in connection with
the hippopede (k). 1 may briefly state, however, that he
was a practical observer, and that he ‘may be considered
as the father of scientific astronomical observation in
Greece’; further, that ‘he was the first Greek astronomer
who devised a systematic theory for explaining the periodic
motions of the planets’;* that he did so by means of geo-
metrical hypotheses, which latter were submitted to the test
of observations, and corrected thereby; and that hence
arose the system of concentric spheres which made the
name of Eudoxus so illustrious amongst the ancients.

Although this theory was substantially geometrical,
and is in the highest degree worthy of the attention of the
students of the history of geometry, yet to render an
account of it which would be in the least degree satisfac-
tory would altogether exceed the limits prescribed to me;
I must, therefore, refer my readers to the excellent and
memorable monograph of Schiaparelli,*® who with great
ability and with rare felicity has restored the work of
Eudoxus. In this memoir the nature of the spherical curve,
called by Eudoxus the Azppopede, was first placed in a clear
light: it is the intersection of a sphere and cylinder; and
on account of its form, which resembles the figure

it is called by Schiaparelli a spherical lemniscate® A
passage in Xenophon, de 7¢ equestrs, cap. 7, explains why

1 Sir George Cornewall Lewis, a Historical Survey of the Astromomy of
the Ancients, p. 147, sq. : London, 1862.

38 G. V. Schiaparelli, /e Sfere Omocentriche di Eudosso, di Callippo e di
Apristotele (Ulrico Hoepli: Milano, 1875).

39 See Schiaparelli, loc, cit., section v,
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the name Aippopede was given to this curve, and also to
one of the sperics (n inwonédn, pla Tov oreapikov odaa)® of
Perseus, which also has the form of a lemniscate.

I have examined the work of Eudoxus, and pointed out
the important theorems discovered by him; I have also
dwelt on the importance of the methods of inquiry and
proof which he introduced. In order to appreciate this
part of his work, it seems desirable to take a brief retro-
spective glance at the progress of geometry as set forth in
the former chapters of this work, and the state in which it
was at the time of Eudoxus, and also to refer to the philo-
sophical movement during the last generation of the fifth
century, B.C.:—

In the first chapter (p. 14) I attributed to Thales the
theorem that the sides of equiangular triangles are pro-
portional ; a theorem which contains the beginnings of the
doctrine of proportion and of the similarity of figures. It
is agreed on all hands that these two theories were treated
at length by Pythagoras and his School. It is almost
certain, however, that the theorems arrived at were proved
for commensurable magnitudes only, and were assumed to
hold good for all. We have seen, moreover, that the dis-
covery of incommensurable magnitudes is attributed to
Pythagoras himself by Eudemus: this discovery, and the
construction of the regular pentagon, which involves in-
commensurability, depending as it does on the section of
a line in extreme and mean ratio, were always regarded
as glories of the School, and kept secret; and it is remark-
able that the same evil fate is said to have overtaken the
person who divulged each of these secrets—secrets, too,
regarded by the brotherhood as so peculiar that the pen-

40 Proclus, ed. Friedlein, p. 127. With respect to the spiric lmes, see
Knoche and Maerker ex Procli successoris in Euclidis El ¢ 115
definitionis quartae expositionem quae de recta est linea et sectionibus spiricis

commentati sunt . H. Knochius et F. §. Maerkerus, Herfordiae, 1856
41 See infra, p. 156, note 9.
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tagram, which might be taken to represent both these
discoveries, was used by them as a sign of recognition.
It seems to be a fair inference from what precedes, that
the Pythagoreans themselves were aware that their proofs
were not rigorous, and were open to serious objection ;#
indeed, after the invention of dialectics by Zeno, and the
great effect produced throughout Hellas by his novel and
remarkable negative argumentation, any other supposition
is not tenable. Further, it is probable that the early
Pythagoreans, who were naturally intent on enlarging the
boundaries of geometry, took for granted as self-evident
many theorems, especially the converses of those already
established. The first publication of the Pythagorean
doctrines was made by Philolaus; and Democritus, who
was intimate with him, and probably his pupil, wrote on
incommensurables.

Meanwhile the dialectic method and the negative mode
of reasoning had become more general, or to use the words
of Grote :=— :

¢ We thus see that along with the methodised question
and answer, or dialectic method, employed from hencefor-
ward more and more in philosophical inquiries, comes out
at the same time the negative tendency—the probing, test-
ing, and scrutinising force—of Grecian speculation. The
negative side of Grecian speculation stands quite as pro-
minently marked, and occupies as large a measure of the
intellectual force of their philosophers, as the positive side.
It is not simply to arrive at a conclusion, sustained by
a certain measure of plausible premise—and then to pro-
claim it as an authoritative dogma, silencing or disparag-

42 A similar view of the subject is taken by P. Tannery, de la solution géomé-
trique des problémes du second degré avant Euclide. Mémoires de la Société
des Sciences physiques et naturelles de Bourdeaux, tom. IV. (2¢ serie), p. 406.
He says :—* La découverte de l'incommensurabilité de certaines longueurs entre
elles, et avant tout de la diagonale du carré 2 son c6té, qu’elle soit due au Maitre ou
aux disciples, dut, d@s lors, étre un véritable scandale logique, une redoutable
pierre d’achoppement.’
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ing all objectors—that Grecian speculation aspires. To
unmask not only positive falsehood, but even affirmation
without evidence, exaggerated confidence in what was
only doubtful, and show of knowledge without the reality—
to look at a problem on all sides, and set forth all the diffi-
culties attending its solution—to take account of deductions
from the affirmative evidence, even in the case of conclusions
accepted as true upon the balance—all this will be found
pervading the march of their greatest thinkers. As a con-
dition of all progressive philosophy, it is not less essential
that the grounds of negation should be freely exposed than
the grounds of affirmation. We shall find the two going
hand in hand, and the negative vein, indeed, the more
impressive and characteristic of the two, from Zeno down-
ward, in our history.’®

As an immediate consequence of this, it would follow
that the truth of many theorems, which had been taken for
granted as self evident, must have been questioned; and
that, in particular, doubt must have been thrown on the
whole theory of the similarity of figures and on all geome-
trical truths resting on the doctrine of proportion : indeed
it might even have been asked what was the meaning of
ratio as applied to incommensurables, inasmuch as their
mere existence renders the arithmetical theory of propor-
tion inexact in its very definition.*

Now it is remarkable that the doctrine of proportion is
twice treated in the Elements—first, in a general manner,
so as to include incommensurables, in Book V., which tradi-
tion ascribes to Eudoxus, and then arithmetically in Book
VII., which probably, as Hankel has supposed, contains the
treatment of the subject by the older Pythagoreans.* The
twenty-first definition of Book VII. is—'AptOuvi avidAo-
ydv elowv, 8rav 6 wporoc TOb OSevrépov kal 6 Tplrogc TOU

4 Grote, History of Greece, vol. VI. p. 48.
44 See the Articles on Proportion and Raiio in the English Cyclopaedia.
45 Hankel, Gesch. der Math., p. 390.

L
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rerdprov lodxie § wolAawAdoiog, # 6 adrd uépug, i) Ta abra
pépn dow.

Further, if we compare this definition with the third,
fourth, and fifth definitions of Book V., I think we can see
evidence of a gradual change in the idea of ratio, and of a
development of the doctrine of proportion —

1. The third definition, which is generally considered
not to belong to Euclid,* seems to be an attempt to bridge
over the difficulty which is inherent in incommensurables,
and may be a survival of the manner in which the subject
was treated by Democritus.

2. The fourth definition* is generally regarded as having
for its object the exclusion of the ratios of finite magni-
tudes to magnitudes which are infinitely great on the one
side, and infinitely small on the other: it seems to me,
however, that its object may have been, rather, to include
the ratios of incommensurable magnitudes: moreover, since
the doctrine of proportion by means of the apagogic me-
thod of proof can be founded on the axiom which is con-
nected with this definition, and which is the basis of the
method of exhaustions, it is possible that the subject may
have been first presented in this manner by Eudoxus.

3. Lastly, in the fifth definition his final and systematic
manner of treating the subject is given.*

Those who are acquainted with the history of Greek
philosophy know that a state of things somewhat similar to

46 Adyos ol 800 peyeBav dpoyevdv % katd mpAwdrnTa wpds &AAnAa woid
oxéois. See Camerer, Euclidis Elementorum libri sex priores, tom. IL. p. 74,
sq., Berolini, 1824.

47 Adyov Exew wpds BAAAG peyélny Aéyerai, & Sbvarar woAlawAacialbueva
AAARAwY Imepéxey.

48 In connection with what precedes, we are reminded of the aphorism of
Aristotle—¢ We cannot prove anything by starting from a different genus, e.g.
nothing geometrical by means of arithmetic. . . .. ‘Where the subjects are so
different as they are in arithmetic and geometry we cannot apply the arithmetical
sort of proof to that which belongs to quantities in general, unless these quantities
are numbers, which can only happen in certain cases.” Anal. post. 1. vii. p. 75%,
ed. Bek.
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that represented above existed with respect to it also, and
that a problem of a similar character, also requiring a new
method, proposed itself for solution towards the close of
the fifth century B.C.; and, further, that this problem was
solved by Socrates by means of a new philosophic me-
thod—the analysis of general conceptions, This must
have been known to Eudoxus, for we are informed that he
was attracted to Athens by the fame of the Socratic School,
Now a service, similar to that rendered by Socrates to phi-
losophy, but of higher importance, was rendered by Eu.
doxus to geometry, who not only completed it by the
foundation of stereometry, but, by the introduction of new
methods of investigation and proof, placed it on the firm
basis which it has maintained ever since.

This eminent thinker—one of the most illustrious men
of his age, an age so fruitful in great men, the precur-
sor, too, of Archimedes and of Hipparchus—after having
been highly estimated in antiquity,” was for centuries un-
duly depreciated ;* and it is only within recent years that,
owing to the labours of some conscientious and learned
men, justice has been done to his memory, and his reputa-
tion restored to its original lustre.*

¥ E.g. Cicero, de Div, 11. 42, ‘Ad Chaldacorum monstra veniamus: de
quibus Eudoxus, Platonis auditor, in astrologia judicio doctissimorum hominum
facile princeps, sic opinatur, id quod scriptum reliquit : Chaldaeis in praedic-
tione et in notatione cujusque vitae ex natali die, minime esse credendum’:
Plutarch, non posse suav. vivi sec. Epic. c. xi. Ei3éfp 3¢ xal "Apxuhde xal
‘Ixxdpxy gurerbovoiduey.

8 As evidence of this depreciation I may notice—Delambre, Histoire de
D Astronomie ancienne, ‘L’ Astronomie n’a été cultivée véritablement qu’en Greéce,
et presque uniquement par deux hommes, Hipparque et Ptolemée’ (tom. 1
p- 325): ‘Rien ne prouve qu'il [Eudoxe] fut géometre’ (tom. I. p. 131). Well
may Schiaparelli say—* Questa enorme proposizione.” Equally monstrous is the
following :—* It is only in the first capucity [astronomer and not geometer] that
his fame has descended to our day, and he has more of it than can be justified
by any account of his astronomical science now in existence.” De Morgan, in
Smith’s Dictionary.

ot Ideler, wueber Eudoxus, Abh. der Berl. Akad. v. J. 1828 and 1830:
Letronne, sur les écrits et les travaux @’ Eudoxe de Cnide, d’aprés M. Ludwig

L2
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Something, however, remained to be cleared up, espe-
cially with regard to his relations, and supposed obligations,
to Plato.® I am convinced that the obligations were quite
in the opposite direction, and that Plato received from
Eudoxus incomparably more than he gave. As to his
solving problems proposed by Plato, the probablity is
that these questions were derived from the same source—
Archytas and the Pythagoreans. Yet I attach the highest
importance to the visit of Eudoxus to Athens; for although
he heard Plato for two months only, that time was suf-
ficient to enable Eudoxus to become acquainted with the
Socratic method, to see that it was indispensable to clear
up some of the fundamental conceptions of geometry, and,
above all, to free astronomy from metaphysical mystifica-
tions, and to render the treatment of that science as real and
positive as that of geometry. To accomplish this, how-
ever, it was incumbent on him to know the celestial
phenomena, and for this purpose—inasmuch as one human
life was too short—he saw the necessity of going to Egypt,
to learn from the priests the facts which an observation con-
tinued during many centuries had brought to light, and
which were there preserved. ‘

I would call particular attention to the place which
Eudoxus filled in the history of science—with him, in fact,
an epoch closed, and a new era, still in existence, opened.*

Ildeler, Journal des Savants, 1840: Boeckh, Sonnenkreise der Alten, 1863 :
Schiaparelli, le Sfere Omocentricke, &c., 1875.

52 Even those by whom the fame of Eudoxus has been revived seem to
acquiesce in this.

83 This has been pointed out by Auguste Comte:—¢Celle-ci [la seconde
évolution scientifique de la Gréce] commenga pourtant, avec tous ses caractires
propres, pendant la génération anterieure 3 cette 2re [la fondation du Musée
d’ Alexandrie], chez un savant trop méconnu, qui fournit une transition normale
entre ces deux grandes phases théoriques, composées chacune d’environ trois
siecles. Quoique nullement philosophe, Eudoxe de Cnide fut le dernier théoricien
embrassant, avec un égal succds, toutes les spéculations accessibles a 1'ésprit
mathématique. II servit pareillement la géométrie et 1’astronomie, tandis que,
bientdt aprés lui, la spécialisation devint déja telle que ces deux sciences ne
purent plus étre notablement perfectionnées par les mémes organes.” Politique
Positive, 111., p. 316, Paris, 1853.
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He was geometer, astronomer, physician, lawgiver, and
was also counted amongst the Pythagoreans, and versed
in the philosophy of his time. He was, however, much
more Zthe man of science, and, of all the ancients, no one
was more imbued with the true scientific and positive
spirit than was Eudoxus: in evidence of this, I would point
to—

1°. His work in all branches of the geometry of the
day—founding new, placing old on a rational basis, and
throwing light on all—as presented above.

2°. The fact that he was the first who made observation
the foundation of the study of the heavens, and thus be-
came the father of true astronomical science.

3°. His geometrical hypothesis of concentric spheres,
which was conceived in the true scientific spirit, and which
satisfied all the conditions of a scientific research, even
according to the strict notions attached to that expression
at the present day.

4°. His ¢practical and positive genius, which was averse
to all idle speculations,’®

5°. The purely scientific school founded by him at
Cyzicus, and the able mathematicians who issued from
that school, and who held the highest rank as geometers
and astronomers in the fourth century B. C.

We see, then, in Eudoxus something quite new—
the first appearance in the history of the world of the
man of science; and, as in all like cases, this change was

54 Ideler, and after him Schiaparelli: this appears from the fact testified by
Cicero (vid. supra, n. 49), that Eudoxus had no faith in the Chaldean astrology
which was then coming into fashion among the Greeks ; and also from this—that
he did not, like many of his predecessors and contemporaries, give expression to
opinions upon things which were inaccessible to the observations and experience
of the time. An instance of this is found in Plutarch (non posse suav. viv. sec.
Epic. cx1., vol. iv., p. 1138, ed. Didot), who relates that he, instead of speculating,
as others did, on the nature of the sun, contented himself with saying that ‘he
would willingly undergo the fate of Phaeton if, by so doing, he could ascertain
its nature, magnitude, and form.’
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effected by a man who was thoroughly versed in the old
system.®

It is not without significance, too, that Eudoxus se-
lected the retired and pleasant shores of the Propontis as
the situation of the school which he founded for the trans-
mission of his method. Among the first who arose in this
school was Menaechmus, whose work I have next to con-
sider.

IT is pleasing to see that the number of students of the history of mathematics
is ever increasing; and that the centres in which the subject is cultivated are
becoming more numerous ; it is particularly gratifying to observe that the subject
has at last attracted attention in England. Dr. Heiberg, of Copenhagen, has
completed his edition of Archimedes: Archimedis Opera @ cum iis
Eutocii : e codice Florentino recensuit, Latine vertit notisque illustravit J. L.
Heiberg, Dr. Phil., vols. 11. et 111.: Lipsiae, 1881. Dr. Heiberg has been since
engaged in bringing out, in conjunction with Professor H. Menge, a complete
edition of the works of Euclid, of which two volumes have been published :
Euclidis Elementa, edidit et Latine interpretatus est J. L. Heiberg, Dr. Phil.,
vol. 1., Libros 1-1v. continens, vol. 1I., Libros v.~IxX continens, Lipsiae, 1883,
1884. As Heiberg’s edition of Archimedes was preceded by his Quaestiones
Archimedeae, Hauniae, 1879 ; so, in anticipation of his edition of Euclid he has
published : Litterargeschichtliche Studien iber Euklid, Leipzig, 1882, a valuable
work, to which I have referred in the fourth chapter. Dr Hultsch, of Dresden,
informs me that his edition of Autolycus is finished, and that he hopes it will
appear at the end of this month (June, 1885). The publication of this work—
in itself so important, inasmuch as the Greek text of the propositions only of
Autolycus has been hitherto published—will have, moreover, an especial interest
with regard to the subject of the pre-Euclidian geometry. The Cambridge Press
announce a work by Mr. T. L. Heath (author of the Articles on ¢Pappus’ and
¢ Porisms’ in the Encyclopedia Britannica) on Diophantus; a subject on which
M. Paul Tannery also has been occupied for some time.

85 Eudoxus may even be regarded as in a peculiar manner uniting in himself
and representing the previous philosophic and scientific movement ; for—though
not an Jonian—he was a native of one of the neighbouring Dorian cities; he
studied under the Pythagoreans in Italy; and, subsequently, he went to Athens,
being attracted by the reputation of the Socratic school.
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The following works on the history of Mathematics have been recently pub-
lished :—

Marie, Maximilien, Histoire des Sciences Mathématiques et Physigues, tomes
I.—V., Paris, 1883, 1884. The first volume alone—de Thal’s & Diophante—
treats of the subject of these Papers. It is, in my judgment, inferior to the
Histoire des Mathématigues of M. Hoefer, notwithstanding the errors of the
latter, to which I called attention in p. 2, note. For the historical part of this
volume M. Marie has followed Montucla without making use, or even seeming to
suspect the existence, of the copious and valuable materials which have of late
years accumulated on this subject. Referring to this, Heiberg (Phslologus xri1.
Fahresberichte, p. 324) says: ‘The author has been engaged with his book for
forty years : one would have thought rather that the book was written forty years
ago.” M. Marie commences his Preface by saying: ¢ The history that I have
desired to write is that of the filiation of ideas and of scientific methods;’ as if
that was not the aim of all recent enlightened inquiries. Hear what Hankel, in
Bullettino Boncompagni, V. p. 300, says: la Storia della matematica non deve
semplicemente enumerare gli sciensati e i loro lavori, ma essa deve altresi esporve
2o sviluppo interno delle idee che vegnano nella sciensa (Quoted by Heiberg in
Philologus, 1. c.). ’

Gow, James, 4 Short History of Greck Mathematics, Cambridge, 1884.
This history, as far at least as geometry is concerned, is not, nor indeed does it
pretend to be, a work of independent research. Unlike M. Marie, however,
Mr. Gow has to some extent studied the recent works on the subject, and the
reader will see that he has made much use of the early chapters of this work
(published in HERMATHENA, No. v., 1877, and No. viL, 1881). On the other
hand, he has left unnoticed many important publications. In particular, the
numerous and valuable essays of M. Paul Tannery, which leave scarcely any
department of ancient mathematics untouched, and which throw light on all,
seem to be altogether unknown to him. Essays and monographs like those of
M. Tannery and others are in fact, with the single exception of Cantor’s Vor-
lesungen diber Geschichte der Mathematik, the only works in which progress in
the history of ancient mathematics has of late years been made : Bretschneider’s
Geometrie vor Euklides and Hankel’s Geschichte der Mathematik are no excep-
tions ; for the former work is a monograph, and the latter, which was interrupted
by the death of the author, contains only some fragments of a history of mathe-
matics, and consists in reality of a collection of essays. Should the reader look
at Heiberg’s Paper in the Philologus, XL111., 1884, pp. 321-346, and pp. 467-
522, which has been referred to above, he will see how numerous and how im-
portant are the publications on Greek mathematics which have appeared since
the opening of a new period of mathematico-historical research with the works of
Chasles and Nesselmann more than forty years ago.

A glance at the subjoined list of the Papers of a single writer—M. Paul
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Tannery—relating to the period from Thales to Euclid, will enable the reader to
form an opinion on the extent of the literature treated of by Dr. Heiberg.

Mémoires de la Socitté des Sciences physiques et naturelles de Bordeaux
(2* Série).—Tome 1, 1876, Note sur le systéme astronomique d’Eudoxe. Tome
11., 1878, Hippocrate de Chio et la quadrature des lunules; Sur les solutions du
probléme de Délos par Archytas et par Eudoxe. Tome 1v., 1882, De la solution
géométrique des Probldmes du second degré avant Eudoxe. Tome v., 1883,
Seconde note sur le systéme astronomique d’Eudoxe; Le fragment d’Eudeme
sur la quadrature des lunules.

Bulletin des Sciences Mathématiques et Astronomigues.—Tome vII., 1883,
Notes pour P'histoire des lignes et surfaces courbes dans I'antiquité. Tome Ix.,
1885, Sur I'Arithmétique Pythagorienne., Le vrai probléme de Ihistoire des
Mathématiques anciennes.

Annales de la _faculté des lettres de Bordeaux.—Tome 1v., 1882, Sur les frag-
ments d’Eudeéme de Rhodes relatifs & Ihistoire des mathématiques. Tome v.,
1883, Un fragment de Speusippe.

Revue philosophique de France et de I'étranger, divigée par M. Ribot.—Mars,
1880, Thal@s et ses emprunts & Egypte. )

Novembre, 1880, Mars, Aofit et Décembre, 1881, L’éducation Platonicienne.
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CHAPTER VL

THE SUCCESSORS OF EUDOXUS.

I. MENAECHMUS.

Notices of Menaechmus and of his work.—His Solution of the Problem of the
Duplication of the Cube.—He discovered the three Conic Sections.—
Passage from the ‘ Review of Mathematics’ of Geminus quoted.—Hypothesis
of Bretschneider as to the way in which Menaechmus was led to the discovery
of the Conic Sections.—Comparison of these Investigations with the Solution
of Archytas,—Various inferences from the notices of the work of Menaechmus
considered.—Successors of Eudoxus in the School of Cyzicus.—Solution of
the Problem of the Duplication of the Cube attributed to Plato.—Strong
presumption against its being genuine.—Plato’s Solution.—The Geometrical
Theorems used in it were known to Archytas.—Recapitulation.

MENAECHMUS—pupil of Eudoxus, associate of Plato, and
the discoverer of the conic sections—is rightly considered
by Th. H. Martin' to be the same as the Manaechmus of
Suidas and Eudocia, ¢ a Platonic philosopher of Alope-
connesus ; but, according to some, of Proconnesus, who
wrote philosophic works and three books on Plato’s

1 Theonis Smymaei Platonici Liber de Astronomia, Paris, 1849, p. 59. A.
Boeckh (ueber die vierjihrigen Sonnenkreise der Alten, Berlin, 1863, p.152),
Schiaparelli (% Sfere Omocentricke di Eudosso, di Callippo e di Aristotele,
Milano, 1875, p. 7), and Zeller, (Plato and the Older Academy, p. 554, note (28),
E. T.), hold the same opinion as Martin: Bretschneider (Geom. vor Eukl., p. 162),
however, though thinking it probable that they were the same, says that the
question of their identity cannot be determined with certainty. Both Martin
and Bretschneider identify Menaechmus Alopeconnesius with the one referred
to by Theon in the fragment (#) given below. Max C. P. Schmidt (Die Frag-
mente des Mathematikers Menaechmus, Philologus, Band XLII., p. 77, 1884), on
the other hand, holds that they were distinct persons, but says that it is certainly
more probable that the Menaechmus referred to by Theon was the discoverer of
the conic sections, than that he was the Alopeconnesian, inasmuch as Theon con-
nects him with Callippus, and calls them both uanuarcof. Schmidt, however,
does not give any reason in support of his opinion that the Alopeconnesian was a
distinct person. But when we consider that Alopeconneésus was in the Thracian
Chersonese, and not far from Cyzicus, and that Proconnesus, an island in the
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Republic.” From the following anecdote, taken from the
writings of the grammarian Serenus and handed down by
Stobaeus, he appears to have been the mathematical
teacher of Alexander the Great:—Alexander requested
the geometer Menaechmus to teach him geometry con-
cisely; but he replied: ¢ O king, through the country
there are private and royal roads, but in geometry there is
only one road for all.”? We have seen that a similar story
is told of Euclid and Ptolemy I. (p. 5).

‘What we know further of Menaechmus is contained in
the following eleven fragments :*—

(a). Eudemus informs us in the passage quoted from
Proclus in the Introduction (p. 4), that Amyclas of Hera-
clea, one of Plato’s companions, and Menaechmus, a
pupil of Eudoxus and also an associate of Plato, and his
brother, Deinostratus, made the whole of geometry more
perfect.

(6.) Proclus mentions Menaechmus as having pointed
out the two different senses in which the word element
(orotxetov) is used.®

(¢.) In another passage Proclus, having shown that
many so called conversions are false and are not properly

Propontis, was still nearer to Cyzicus, and that, further, the Menaechmus referred
to in the extract (%) modified the system of concentric spheres of Eudoxus, the
supposition of Th. M. Martin (. c.) that this extract occurred in the work of the
Alopeconnesian on Plato’s Repudlic in connection with the distaff of the Fates in
the tenth book becomes probable.

2 Stobaeus, Floril., ed. A. Meineke, vol. 1v., p. 205. Bretschneider (Georm.
vor Eukl., p. 162) doubts the authenticity of this anecdote, and thinks that it may
be only an imitation of the similar one concerning Euclid and Ptolemy. He does
so on the ground that it is nowhere reported that Alexander bad, besides Aristotle,
Menaechmus as a special teacher in geometry. This is an insufficient reason for
rejecting the anecdote, and, indeed, it seems to me that the probability lies in the
other direction, for we shall see that Aristotle had direct relations with the school
of Cyzicus.

3 The fragments of Menaechmus have been collected and given in Greek by
Max C. P. Schmidt (Z.c.).

4 Proclus, ed. Friedlein, p. 67.

8 7bid., p. 72.
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conversions, adds that this fact had not escaped the notice
of Menaechmus and Amphinomus and the mathematicians
who were their pupils.®

(@) In a third passage of Proclus, where he discusses
the division of mathematical propositions into problems
and theorems, he says, that whilst in the view of Speu-
sippus and Amphinomus and their followers all proposi-
tions were theorems, it was maintained on the contrary by
Menaechmus and the mathematicians of his School (ol mepi
Mévaryuov palnuaricoi) that they should all be called prob-
lems—the difference being onlyin the nature of the question
.stated, the object being at one time to find the thing sought,
at another time, taking a definite thing, to see either what
it is, or of what kind it is, or what affection it has, or
what relation it has to something else.’

(¢). In a fourth passage Proclus mentions him as the
discoverer of the conic sections. The passage is in many
respects so interesting that it deserves to be quoted in full :

¢ Again, Geminus divides a line into the compound and
the uncompounded—calling a compound that which is
broken and forms an angle; then he divides a compound
line into that which makes a figure, and that which may be
produced ad infinitum, saying that some form a figure, ¢. g.
the circle, the ellipse (Qupede),® the cissoid, whilst others do
not form a figure, e. g. the section of the right-angled cone

¢ Proclus, ed. Friedlein, pp. 253-4.

7 lbid., pp. 77, 78.

8 ¢4 Qupeds (the door-shape, oblong : cf. Heron Alexandr., ed. Hultsch, Defi-
net. 95, p. 27: wowioa oxfiua upoedés). It is called by Eutocius, Comm. to
Apollon., p. 10: EAelur, hy ral Gupedv karoios, and is used several times in
Proclus.” So Heiberg; who adds that in one passage it occurs in an extract
from Eudemus, and says that we may perhaps assume that we have here the
original name for the ellipse (Nogle Puncter af de graeske Mathematikeres
Terminologi, Philologisk-historiske Sam funds Mindeskrift, Kjobenhavn, 1879,
p. 7). With relation to the same term, Heiberg, in his Studien iiber Eukiid,
P- 88, quotes a passage of the ®awdueva of Euclid, which had hitherto been over-
looked : daw yap x@vos 9 kéAwdpos émiméSy Tundfi uh wapd Ty Baow, f Toud yiyverar
S¢vywvlov kdvov Touh), firis éorly duofa Oupe@, ed. D. Gregory, p. 561; and says
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[the parabola], the section of the obtuse-angled cone [the
hyperbola], the conchoid, the straight line, and all such.
And again, after another manner, of the uncompounded line
one kind is simple and the other mixed ; and of the simple,
one forms a figure, as the circular; but the other is indefinite,
as the straight line; but of the mixed, one sortis in planes,
the other in solids; and of that in planes, one kind meets
itself as the cissoid, another may be produced to infinity ;
but of that in solids, one may be considered in the sections
of solids, and the other may be considered as [traced]
around solids. For the helix, which is decribed about a

sphere or cone, exists around solids, but the conic sections .

and the spirical are generated from such a section of solids.
Further, as to these sections, the conics were conceived by
Menaechmus, with reference to which Eratosthenes says—

‘“Nor cut from a cone the Menaechmian triads ” ;

and the latter [the spirics] were conceived by Perseus, who
made an epigram on their invention:

“ Perseus found the three [spirical] lines in five sections,
and in honour of the discovery sacrificed to the gods.”

Now, on the one hand, the three sections of the cone are
the parabola, the hyperbola, and the ellipse; and, on the
other, of the spirical sections one kind is inwoven, like the
hippopede;® and another kind is dilated in the middle, and

that Gupeds was probably the name by which the curve was known to Menaechmus.
It may be observed, however, that an ellipse is not of the shape of a door, neither
is a shield, which is a secondary signification of gupeds ; the primary signification
of the word is not ‘door,’” but ¢ large stone’ which might close the entrance to a
cave, as in Homer (Odyssey, 1X.) : such a stone, or boulder, as may be met with
on exposed beaches is often of a flattened oval form, and the names of a shield of
such a shape, and of an ellipse, may have been thence derived.

9 1oy 8¢ oweipixdy Toudy §) uéy daTiv dumexieyuéyn, dowvia Tii Tod Txwov wédy.
The hippopede is also referred to in the two following passages of Proclus #
ixxomédn, pla rdy oxeipicdy odoa (ed. Fried., p. 127), and ralroiye % xicooedys
ula oBoa woiel yoviay kal 4 ixwoxédy (:bid., p. 128). In p. 142 I said that a passage
in Xenophon, de re equestri, cap. 7, explains why the name kippopede was given
to the curve conceived by Eudoxus for the explanation of the motions of the
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becomes narrow at each extremity; and another being
oblong, has less distance in the middle, but is dilated on
each side,’*

(f)- The line from Eratosthenes, which occurs jn the
preceding passage, is taken from the epigram which closes
his famous letter to Ptolemy III., and which has been
already more than once referred to. We now cite it with
its context :—

p1dt ob v’ *ApxiTew Svopixava pya xuAivSpov
pnde Mevexuelovs xwvoropety Tpiddas
S8fmar, . . 1

(£)- In the letter itself the following passage, which has
been already quoted (p. 111), is found :

¢The Delians sent a deputation to the geometers who
were staying with Plato at Academia, and requested them
to solve the problem [of the duplication of the cube] for
them. While they were devoting themselves without stint
of labour to the work, and trying to find two mean propor-

planets, and in particular their retrograde and stationary appearances, and also to
one of the spirics of Perseus, each of which curves has the form of the lemniscate.
The passage in Xenophon is as follows :—'Ixwacfar 3’ ¢xawoiuer Thy xédny
karovuévyy: éx’ dupoTépas ydp Tas yvdlovs orpépeaiai é0((ei. Kal Td ueraBdrrecias
3¢ Ty inxwaclay &yafdy, va dupdrepas al yvdboi kad’ éxdrepor Tijs ixxacias iod(wrrai.
"Exaivoiper 0t xal Thy érepoufin wédny pdAAov Tiis xukAotepods. Jbid.,cap. 3:
Totls ye udv érepoyvdlovs unvier udv kal § wédn xarovuévn ixwacla, . . . This
curve was named mé5y from its resemblance to the form of the loop of the wire
in a snare, which was in fact that of a figure of 8. Some writers have given a
different, and, to me it seems, not a correct, interpretation of the origin of this
term. Mr. Gow, for example, (4 Short History of Greek Mathematics, p. 184)
says: ¢Lastly, Eudoxus is reported to have invented a curve which he called
fwwowédn, or ¢“ horse fetter,”” and which resembled those hobbles which Xenophon
describes as used in the riding school.” In the next page Mr. Gow says: ‘Eudoxus
somehow used this curve in his description of planetary motions, . . .’ Thisis
not correct: the two curves were of a similar form—that of the lemniscate—and,
therefore, the same name was given to each ; but they differed widely geometrically,
and were quite distinct from each other. See Knoche and Maerker, op. cit.
P- 14, sg.; and Schiaparelli, e Sfere Omocentricke, &c., p. 32, sq.

10 Proclus, ed. Friedlein, pp. 111, 112.

11 Archimedes, ex. rec. Torelli, p. 146; Archim., Opera, ed. Heiberg., vol.
1L, p. 112.
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tionals between the two given lines, Archytas of Tarentum
is said to have discovered them by means of his semi-
cylinders, and Eudoxus by means of the so called curved
lines. It was the lot of all these men to be able to solve
the problem with satisfactory demonstration, while it was
impossible to apply their methods practically so that they
should come into use; except, to some small extent and
with difficulty, that of Menaechmus.’ **

(%). The solution of the Delian Problem by Menaech-
mus is also noticed by Proclus in his Commentary on the
Timacus of Plato :—* How then, two straight lines being
given, it is possible to determine two mean proportionals,
as a conclusion to this discussion, I, having found the solu-
tion of Archytas, will transcribe it, choosing it rather than
that of Menaechmus, because he makes use of the conic
lines, and also rather than that of Eratosthenes, because he
employs the application of a scale.’

(£). The solutions of Menaechmus—of which there are
two—have been handed down by Eutocius in his Com-
mentary on the Second Book of the Treatise of Archimedes
On the Sphere and Cylinder, and will be given at length
below."

(/). We learn from Plutarch that ‘Plato blamed Eu-
doxus, Archytas, and Menaechmus, and their School, for
endeavouring to reduce the duplication of the cube to
instrumental and mechanical contrivances; for in this way
[he said] the whole good of geometry is destroyed and
perverted, since it backslides into the things of sense, and
does not soar and try to grasp eternal and incorporeal

12 Archim., ex. rec. Torelli, p. 144 ; #bid., ed. Heiberg, vol. 111., pp. 104, 106.

13 Proclus iz Platonis Timeum, p. 149 in libro 111. (ed. Joann. Valder, Basel,
1534). I have taken this quotation and reference from Max. C. P. Schmidt,
die fragmente des Mathematikers Menaechmus, Philologus, XLIL., p. 75. Heiberg,
(Archim. Opera, vol. 111., Praefatio v.) also gives this passage, but his reference
is to p. 353, ed. Schneider.

14 Archim., ed. Torelli, p. 141, s¢. ; Archim. Opera, ed. Heiberg, vol. 111.,

p. 92, 5¢.
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images ; through the contemplation of which God is ever
(od.’"®
The same thing is repeated by Plutarch in his Ltfe of
Marcellus as far as Eudoxus and Archytas are concerned ;
but in this passage Menaechmus, though not mentioned
by name, is, it seems to me, referred to. The passage
is:—*The first who gave an impulse to the study of
mechanics, a branch of knowledge so prepossessing and
celebrated, were Eudoxus and Archytas, who embellish
geometry by means of an element of easy elegance, and
underprop, by actual experiments and the use of instru-
ments, some problems, which are not well supplied with
proof by means of abstract reasonings and diagrams;
that problem (for example) of two mean proportional
lines, which is also an indispensable element in many
drawings:—and this they each brought within the range
of mechanical contrivances, by applying certain instru-
ments for finding mean proportionals (uesoypdpovg) taken
from curved lines and sections (kaumwdAwv ypauudv «xal
Tunuérwv). But, when Plato inveighed against them with
great indignation and persistence as destroying and per-
verting all the good there is in geometry, which thus
absconds from incorporeal and intellectual to sensible
things, and besides employs again such bodies as require
much vulgar handicraft: in this way meckanics was
dissimilated and expelled from geometry, and being for
a long time looked down upon by philosophy, became one
of the arts of war.”*®
15 Plut., Quaest. Conviv., lib, vii1., Q. ii. 1; Opera, ed. Didot, vol. 1v.,
. 876.
F !Z Ibid., Vita Marcelli, c. 14,sec. 5 ; Plut., Opera, ed. Didot, vol. 1., pp. 364, 5.
The words kauwméAwy ypauudy in this passage refer to the curves of Eudoxus (see
Pp. 132 and 140) ; Tunudrww refers to the solution of Archytas, and also, in my
judgment, to the conic sections. Instead of runudrwy we should, no doubt,
expect to meet Tou@; but Plutarch was not a mathematician, and the word,
moreover, occurs in a biographical work: to this may be added, that in one of

the Definitions of Heron (Def. 91, p. 26, ed. Hultsch) we find rufjua used for
section.
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(#). Theon of Smyrna relates that ¢ he [Plato] blames
those philosophers who, identifying the stars, as if they
were inanimate, with spheres and their circles, intro-
duce a multiplicity of spheres, as Aristotle thinks fit to do,
and amongst the mathematicians, Menaechmus and Cal-
lippus, who introduced the system of deferent and restituent
spheres (ol rd¢ udv pepovoac, rac 8t avelirroboag elanyicavro).’”

The solutions of Menaechmus referred to in (¢) are as
follows :—

¢As MENAECHMUS.

¢Let the two given straight lines be a, ¢; it is required
to find two mean proportionals between them.—

n < R

) r 7

‘Let it be done, and let them be (3, y: and let the
straight line Jy, given in position and limited in 3, be laid

17 Theonis Smyrnaei Platonici, Liber de Astronomia, ed. Th. H. Martin, pp.
330, 332, Paris, 1849. The o¢aipat &veAlrTovoar were, according to this hypo-
thesis, spheres of opposite movement, which have the object of neutralising the
effect of other enveloping spheres (Aristot., Met. XII., c. viii.,, ed. Bekker, p.
1074%). This modification of the system of concentric spheres of Eudoxus is
attributed to Aristotle, but we infer from this passage of Theon of Smyrna that it
was introduced by Menaechmus (Theon. Smyrn., Liber de Astron., Dissertatio, p.
59). Simplicius, however, in his Commentary on Aristotle, de Caelo (Schol. in
Aristot., Brandis, p. 498%), ascribes this modification to Eudoxus himself.
Martin (/. ¢.) thinks it probable that this hypothesis was put forward by Me-
naechmus in his work on Plato’s ‘Republic, with reference to the description of
the distaff of the Fates in the tenth book.
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down; and at & let &%, equal to the straight line vy, be
placed on it, and let the line 6% be drawn at right angles,
and let Z0, equal to the line 3, be laid down: since, then,
the three straight lines a, (3, y are proportional, the rect-
angle under the lines a, y, is equal to the square on 3:
therefore the rectangle under the given line a and the line
v, that is the line &%, is equal to the square on the line 3,
that is to the square on the line {0; therefore the point 6
lies on a parabola described through 8. Let the parallel
straight lines Ok, 8« be drawn : since the rectangle under
B, v is given (for it is equal to the rectangle under a, &),
the rectangle «0¢ is also given : the point 0, therefore, lies
on a hyperbola described with the straight lines «3, 8¢ as
asymptotes. The point @ is therefore given; so also is
the point &.

¢The synthesis will be as follows :—

¢Let the given straight lines be g, ¢, and let the line &, be
given in position and terminated at J; through & let a para-
bola be described whose axis is 8y and parameter a. And
let the squares of the ordinates drawn at right angles to 8y
be equal to the rectangles applied to a, and having for
breadths the lines cut off by them to the point 8. Let
it [the parabola] be described, and let it be 80, and let the
line 3« [be drawn and let it] be a perpendicular; and with
the straight lines «3, 8 as asymptotes, let the hyperbola
be described, so that the lines drawn from it parallel to
the lines 8, 8 shall form an area equal to the rectangle
under a, ¢: it [the hyperbola] will cut the parabola: let
them cut in 6, and let perpendiculars Ok, 6Z, be drawn.
Since, then, the square on £ is equal to the rectangle
under a and 8%, there will be: as the linea is to &6, so is
the line Z0 to 8. Again, since the rectangle under a, ¢ is
equal to the rectangle 628, there will be: as the line a is
to the line 0, so is the line & to the line ¢: but the line a
is to the line £0, as the line 0 is to £8. And, therefore:

M
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as the line a is to the line Z6, so is the line Z0 to &3, and
the line &3 toe. Let the line [3 be taken equal to the line
0Z, and the line y equal to the line &Z; there will be,
therefore : as the line a is to the line 3, so is the line 3
to the line y, and the line y to ¢: the lines g, 3, v, € are,
therefore, in continued proportion; which was required to
be found. :

OTHERWISE.

‘Let af3, By be the two given straight lines [placed] at
right angles to each other; and let their mean propor-
tionals be &8, (3¢, so that, as the line yf3 is to 39, so is the

€ $
o g ]
Y

line 38 to B¢, and the line B¢ to Ba, and let the perpen-
diculars 8, £ be drawn. Since then there is: as the line
vf3 is to 33, so is the line (38 to (B¢ ; therefore the rectangle
7B, that is, the rectangle under the given straight line [y(3]
and the line (3¢ will be equal to the square on 3, that is
[the square] on ¢ : since then the rectangle under a given
line and the line B¢ is equal to the square on ¢, therefore
the point Z lies on a parabola described about the axis [e.
Again, since there is : as the line af3 is to 3¢, so is the line
Be to 33, therefore the rectangle af23, that is, the rectangle
under the given straight line [a3] and the line 33, is equal
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to the square on ¢f3, that is [the square] on &7; the point
g, therefore, lies on a parabola described about the axis 33 :
but it [the point {] lies also on another given [parabola]
described about [the axis](e: the point { is therefore given;
as are also the perpendiculars 3, e : the points §, ¢ are,
therefore, given.

The synthesis will be as follows : —

‘Let a3, By be the two given lines placed at right
angles to each other, and let them be produced indefi-
nitely from the point 3: and let there be described about
the axis (3¢ a parabola, so that the square on any ordinate
[Ze] -shall be equal to the rectangle applied to the line
{3y with the line (3¢ as height. Again, let a parabola be
described about 3@ as axis, so that the squares on its ordi-
nates shall be equal to rectangles applied to the line of3.
These parabolas cut each other: let them cut at the point
Z,and from { let the perpendiculars Z3, Z¢ be drawn.
Since then, in the parabola, the line &g, that is, the line &3,
has been drawn, there will be: the rectangle under f3, Be
equals the square on (33: there is, therefore: as the line
vBis to 33, so is the line &3 to Be. Again, since in the
parabola the line £, that is, the line ¢3, has been drawn,
there will be: the rectangle under &3, (3a equals the
square on ¢3: there is, therefore: as the line 33 is to (¢,
so is the line (B¢ to Ba; but there was: as the line 33 is to
{3¢, so is the line y3 to (38: and thus there will be, there-
fore: as the line (3 is to 33, so is the line 38 to 3¢, and the
line B¢ to Ba; which was required to be found.’

Eutocius adds—* The parabola is described by means of
a compass (dwa@irov) invented by Isidore of Miletus, the
engineer, our master, and described by him in his Com-
mentary on the Treatise of Heron On Arches (xauapuiov). -

We have, therefore, the highest authority—that of
Eratosthenes, confirmed by Geminus, (¢) and (f)—for the
fact that Menaechmus was the discoverer of the three

' M2
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conic sections, and that he conceived them as sections
of the cone. We see, further, that he employed two of
them, the parabola and the rectangular hyperbola, in his
solutions of the Delian problem. We learn, however,
from a passage of Geminus, quoted by Eutocius in his
Commentary on the Conics of Apollonius, which has
already been referred to in another connection (p. 11) that
these names, parabola and hyperbola, are of later origin, and
were given to these curves by Apollonius:—

‘But what Geminus says is true, that the ancients (oi
walawol), defining a cone as the revolution of a right-angled
triangle, one of the sides about the right angle remaining
fixed, naturally supposed also that all cones were right,
and that there was one section only in each—in the right-
angled one, the section now called a parabola, in the ob-
tuse-angled, the #Ayperdola, and in the acute-angled the
ellipse ; and you will find the sections so named by them.
As then the original investigators (apyaflwv) observed the
two right angles in each individual kind of triangle, first
in the equilateral, again in the isosceles, and lastly in the
scalene; those that came after them proved the general
theorem as follows :—* The three angles of every triangle
are equal to two right angles.” So also in the sections of
a cone; for they viewed the so called “section of the right-
angled cone” in the right-angled cone only, cut by a plane
at right angles to one side of the cone; but the section of
the obtuse-angled cone they used to show as existing
in the obtuse-angled cone; and the section of the acute-
angled cone in the acute-angled coﬁe; in like manner in
all the cones drawing the planes at right angles to one
side of the cone; which also even the original names them-
selves of the lines indicate. But, afterwards, Apollonius
of Perga observed something which is universally true—
that in every cone, as well right as scalene, all these sec-
tions exist according to the different application of the
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plane to the cone. His contemporaries, admiring him on
acccount of the wonderful excellence of the theorems of
conics proved by him, called Apollonius the ¢ Great
Geomeler.”” Geminus says this in the sixth book of his
Review of Mathematics.” *®

The statement in the preceding passage as to the ori-
ginal names of the conic sections is also made by Pappus,
who says, further, that these names were given to them by
Aristaeus, and were subsequently changed by Apollonius
to those which have been in use ever since.'” In the writ-
ings of Archimedes, moreover, the conic sections are
always called by their old names, and thus this statement
of Geminus is indirectly confirmed.*

It is much to be regretted that the two solutions of
Menaechmus have not been transmitted to us in their ori-
ginal form. That they have been altered, either by Euto-

-cius or by some author whom he followed, appears not
only from the employment in these solutions of the terms
parabola and hyperbola, as has been already frequently
pointed out,” but much more from the fact that the lan-

16 Apollonii Conica, ed. Halleius, p. 9.

19 Pappi Alexand. Collect. viI., ed. Hultsch, p. 672, sg. Mr. Gow (0p. cit.),
p- 186, note, says: ‘That Menaechmus used the name * section of right-angled
cone,”’ etc., is attested by Pappus, viI. (ed. Hultsch), p. 672" This is not
correct ; the name of Menaechmus does flot occur in Pappus.

20 Heiberg (Nogle Puncter af de graeske Mathematikeres Terminology,
Kjobenhavn, 1879, p. 3.) points out that ‘only in three passages is the word
EAejus found in the works of Archimedes, but everywhere it ought to be removed
as a later interpolation, as Nizze has already asserted.” These passages are: 1°.
wepl kwvoedéwr, ed. Torelli, p. 270, ed. Heiberg, vol. 1. pp. 324, 326; 2°. ibdd.
Tor. p. 272, Heib., id. p. 332, 1. 22; 3°. #bid. Tor. p. 273, Heib. . p. 334,
1. 5. Heiberg, moreover, calls attention to a passage where Eutocius (Comm.
to Archimedes, wepl ogalpas xal kvAfrdpov, I1. ed. Tor. p. 163, ed. Heib., vol. 111.,
p. 154, 1. 9) attributes to Archimedes a fragment he had discovered, containing
the solution of a problem which requires the application of conic sections,
among other reasons because in it their original names are used.

2 First, as far as I know, by Reimer, Historia problematis de cubi duplica-
tione, Gottingae, 1798, p. 64, note.
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guage used in them is, in its character, altogether that
of Apollonius.”

Let us now examine whether any inference can be
drawn from the previous notices as to the way in which
Menaechmus was led to the discovery of his curves. This
question has been considered by Bretschneider,” whose
hypothesis as to the course of the inquiry is very simple
and quite in accordance with what we know of the state of
geometry at that time. '

We have seen that the right cone only was consndered
and was conceived to be cut by a plane perpendicular to a
side; it is evident, moreover, that this plane is at right
angles to the plane passing through that side and the axis
of the cone. We have seen, further, that if the vertical
angle of the cone is right, the section is the curve, of which
the fundamental property—expressed now by the equation
9*=px—was known to Menaechmus. This being pre-
mised, Bretschneider proceeds to show how this property
of the parabola may be obtained in the manner indicated.

Let DEF be a plane drawn at right angles to the side
AC of the right cone whose vertex is A, and circular base
BFC; and let the triangle BAC (right-angled at A) be the
section of the cone made by the plane drawn through AC
and the axis of the cone. Let the plane DEF cut the cone
in the curve DKF, and the plane BAC in the line DE. If]
now, through any point J of the line DE a plane HKG be
drawn parallel to the base BFC of the cone, the section of
the cone made by this plane will be a circle, whose plane
will be at right angles to the plane BAC; to which plane
the plane of the section DKF is also perpendicular; the

22 ¢, g, wapaBoAf), dwepBorfl, &oluwrwros, #fwy, dpbia wAevpd. The original
name for the asymptotes, ai &yyiora, is met with in Archimedes, de Conoididus,
&c. (ai Eyyiora Tds 700 auBAvywriov kdvov Touas, ed. Heiberg, vol. 1., p. 276,
1. 22; and again, af &yyioTa edfeias, x. 1. A, id., p. 278, 1. 1). See Heiberg, Nogie
Punct., &c., p. 11,

23 Bretsch., Geom. vor Eukl., p. 186, sq.
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line JK of intersection of these two planes will then be at
right angles to the plane BAC, and, therefore, to each of
the lines HG and DE in that plane. Let now the line DL

be drawn parallel to HG, and the line LM at right angles
to LD. In the semicircle HKG the square on JK is equal
to the rectangle HJG, that is, to the rectangle under LD
and JG, or, on account of the similar triangles JDG and
DLM, to the rectangle under D] and DM. The section of
the right-angled cone, therefore, is such that the square on
the ordinate KJ is equal to the rectangle under a given
line DM and the abscissa D]J.

Bretschneider proceeds then to the consideration of
the sections of the acute-angled and obtuse-angled cones,
and investigates the manner in which Menaechmus may
have been led to the discovery of properties similar to those
which he had known in the semicircle, and found in the
case of the section of the right-angled cone.

Let a plane be drawn perpendicular to the side AC of
an acute-angled cone, and let it cut the cone in the curve
DKE, and let the plane through AC and the axis cut the
cone in the triangle BAC. Through any point J of the line
DE let a plane be drawn parallel to the base of the cone,
cutting the cone in the circle HKG, whose plane will be at
right angles to the plane BAC, to which plane the plane
of the section DKE is also perpendicular. The line JK
of intersection of these two planes will then be at right
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angles to the plane BAC; and, therefore, to each of the
lines HG and DE in that plane, draw. LD and EF
parallel to HG, and at the point L draw a perpen-

dicular to LD, intersecting DE in the point M.” We

have then
HJ:JE::LD:DE,

JG:JD::EF:DE;
HJ.JG:JE.JD::LD.EF:DE

therefore,

But, on account of the similar triangles DEF and DLM,

EF:DE:: MD:LD.
Hence we get

H].JG:JE.JD:: MD:DE.
But in the semicircle HKG
JK*= HJ . ]G;

JK*:JE.JD::MD: DE,

therefore,

that is, the square of the ordinate JK is to the rectangle
under EJ and JD in a constant ratio.

The investigation in the case of the section of the obtuse-
angled cone is similar to the above.
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Bretschneider observes that the construction given for
MD in the preceding investigations is so closely connected
with the position of the plane of section DKE at right angles
to the side AC, that it could scarcely have escaped the
observation of Menaechmus.

This hypothesis of Bretschneider, as to the properties
of the conic sections first perceived by Menaechmus, which
properties he employed to distinguish his curves from each
other, seems to me to be quite in accordance as well with
the state of geometry at that time as with the place which
Menaechmus occupied in its development.

A comparison of these investigations with the solution
of Archytas (see p. 111, sg.) will show, as there stated,
that ¢ the same conceptions are made use of, and the same
course of reasoning is pursued’ in each (p. 115):

In each investigation two planes are perpendicular to
an underlying plane; and the intersection of the two
planes is a common ordinate to two curves lying one in
each plane. In one of the intersecting planes the curve is
in each case a semicircle, and the common ordinate is,
therefore, a mean proportional between the segments of
its diameter. So far the investigation is the same for all.
Now, from the consideration of the figure in the underly-
ing plane—which is different in each case—it follows
that:—in the first case—the solution of Archytas—the
ordinate in the second intersecting plane is a mean pro-
portional between the segments of its base, whence it is
inferred that the extremity of the ordinate in this plane
also lies on a semicircle; in the second case—the section
of the right-angled cone—fhe ordinate is a mean propor-
tional between a given straight line and the abscissa;
and, lastly, in the third case—the section of an acute-
angled cone—the ordinate is proportional to the geometric
mean between the segments of the base.

So far, it seems to me, we can safely go, but not farther.
From the first solution of Menaechmus, however, it has
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been generally inferred that he must have discovered the
asymptotes of the hyperbola, and have known the property
of the curve with relation to these lines, which property
we now express by the equation xy=4'. Menaechmus
may have discovered the asymptotes; but, in my judg-
ment, we are not justified in making this assertion, on
account of the fact, which is undoubted, that the solutions
of Menaechmus have not come down to us in his own
words. To this may be added that the words ZAyperbola
and asymploles could not have been used by him, as these
terms were unknown to Archimedes.

From the passage in the letter of Eratosthenes at the
end of extract (g), coupled with the statement of Plutarch
(7), Bretschneider infers that it is not improbable that
Menaechmus invented some instrument for drawing his
curves.® Cantor considers this interpretation as not impos-
sible, and points out that there is in it no real contradiction
to the observation in Eutocius concerning the description
of the parabola by Isidore of Miletus.” Bretschneider adds
that if Menaechmus had found out such an instrument it
could never have been in general use, since not the slightest
further mention of it has come down to us. It appears to
me, however, that it is more probable that Menaechmus
constructed the parabola and hyperbola by points, though
this supposition is rejected by Bretschneider on the ground
that such a construction would be very tedious. On the
other hand, it seems to me that the words of Eratosthenes
would apply very well to such a procedure. We know, on
the authority of Eudemus (see p. 24), that ¢ the inventions
concerning the application of areas’—on which, moreover,
the construction by points of the curves 3*=px and xy=4*
depend —‘ are ancient, apyaia, and are due to the Pytha-
goreans’:* it may be fairly inferred, then, that problems

24 Bretsch., Geom. vor Eukl., p. 162.
 Gesch. der. Math., p. 211.
26 Proclus, ed. Friedlein, p. 419.
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of application were frequently solved by the Greeks. And
we have the very direct testimony of Proclus in the passage
referred to, that the inventors of these constructions applied
them also to the arithmetical solution of the corresponding
problems. It is not surprising, therefore,to find—as M. Paul
Tannery*” has remarked—Diophantus constantly using the
expression wapaf3dAdew wapa in the sense dividing.™

The extracts from Proclus (b), (¢), and (&) are interesting
as showing that Menaechmus was not only a discoverer in
geometry, but that questions on the philosophy of mathe-
matics also engaged his attention. .

In the passages (¢) and (@), moreover, the expression
oi mepl Mévarxpov pabnuarwol occurs—precisely the same
expression as that used by Iamblichus with reference to

21 De la Solution Géométrique des Problémes du Second Degré avant Euclide
(Mémoires de la Société des Sciences phys. et nat. de Bordeaux, tom. Iv., 2*
Série, 1882, p. 409. Tannery (Bulletin des Sciences math. et astron., tom. 1v.,
1880, p. 309) says that we must believe that Menaechmus made use of the
properties of the conic sections, which are now expressed by the equation
between the ordinate and the abscissa measured from the vertex, for the
construction of these curves by points.

28 In a paper published in the Philologus, Griechische und romische mathe.
matik (Phil. XL111., 1884, pp. 474~5), Heiberg puts forward views which differ
widely from those stated above. He holds :—that it is not certain that Menaech-
mus contrived an apparatus for the delineation of the conic sections: that the
only meaning which can be attached to Plato’s blame (s) is, that Archytas,
Eudoxus, and Menaechmus had employed, for the duplication of the cube, curves
which could not be constructed with the rule and compass; and that the
passage of Eratosthenes merely says that the curves of Menaechmus could be
constructed, and not that he had found an apparatus for the purpose. Heiberg
says, moreover, that it cannot be doubted that the Pythagoreans solved, by
means of the application of areas, the equations, which we now call the vertical
equations of the conic sections : but while admitting this, he holds that there is
no ground for inferring thence that these equations were employed for the
description of the conic sections by points; and says that such a descrip.tion by
points runs counter to the whole spirit of Greek geometry. On the other hand, it
seems to me that Tannery is right in believing that the guadratrix of Deinostra-
tus (the brother of Menaechmus), or of Hippias, the contemporary of Socrates,
was constructed in this manner (see Bulletin des Sciences math. et astron., pour
Uhistoire des lignes and surfaces courbes dans I’ Antiquité, tom. VIL., p. 279).
Moreover, the construction of the parabola and rectangular hyperbola by points
depends on the simplest problems of application of areas—the wapaBorf) without
the addition of the SwepBorf or EAenus.
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Eudoxus (p. 134)—and we observe that in (&) this expres-
sion stands in contrast with ol wept Swebauwrwov, which is
met with .in the same sentence. From this it follows that
Menaechmus had a school, and that it was looked on as
a mathematical rather than as a philosophical school.
Further, we have seen that Theon of Smyrna makes a
similar distinction between Aristotle on the one side and
Menaechmus and Callippus on the other (£). Lastly, we
learn from Simplicius that Callippus of Cyzicus, a pupil of
Polemarchus—the friend of Eudoxus—went subsequently
to Athens and lived with Aristotle, with whom he con-
ferred in order to revise and complete the inventions of
Eudoxus.”

When these statements are put together, and taken
in conjunction with the fact mentioned by Ptolemy, that
Callippus made astronomical and meteorological obser-
vations at the Hellespont,*® we are, I think, justified in
assuming that the reference in each is to the School of
Cyzicus, founded by Eudoxus, whose successors were—
Helicon (probably), Menaechmus, Polemarchus, and Cal-

lippus.

From the passages of Plutarch referred to in (') we see
that Plato blamed Archytas, Eudoxus, and Menaechmus
for reducing the duplication of the cube to mechanical con-
trivances. On the other hand the solution of this problem,

? The passage is in the Commentary of Simplicius on the Second Book of
Aristotle de Caelo, and is as follows :—elpyras xal Ir: wp@ros EdSolos 6 Kvidios
énéBare Tais 3:d T@v dvehiTTovgEY KaAovuévwy cpaip@y dwobéaeat, KdAAxwos 8¢ &
Kvienrds ToAendpxy ovoxordoas 7@ Eddéfov yvwplup, kal per’ dxeivor eis
’Abfvas eNOGv, T 'ApioToTéAet ovyxateBlw, TA Sxd Tod ELddfov edpedévra odv
7@ "ApioroTénes Siopboluerds Te Kal mpocavamAnpdv.—Scholia in Aristot. Brandis,
P. 498>, Callippus and Polemarchus, as Boeckh has remarked, could not have
been fellow-pupils of Eudoxus : Callippus, who flourished cérc. 330 B.C., was too
young. The meaning of the passage must be as stated above. Boeckh conjectures
that Polemarchus was about twenty years older than Callippus. See Sonnenkreise,
p. 155.

30 pdoeis dxAaviy &oTépwy kal guvaywyy) émionuacidy, Ptolemy, ed. Halma,
Paris, 1819, p. 53.
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attributed to Plato, and handed down by Eutocius, is purely
mechanical. Hence grave doubts have arisen as to whether
this solution is really due to Plato. These doubts are in-
creased if reference be made to the following authorities :—

_Eratosthenes, in his letter in which the history of the
Delian problem is given, refers to the solutions of Archy-
tas, Eudoxus, and Menaechmus, but takes no notice of
any solution by Plato, though mentioning him by name;
Theon of Smyrna also, quoting a writing of Eratosthenes
entitled ¢ The Platonic,” relates that the Delians sent to
Plato to consult him on this problem, and that he replied
that the god gave this oracle to the Delians, not that he
wanted his altar doubled, but that he meant to blame the
-Hellenes for their neglect of mathematics and their con-
tempt of geometry.”® Plutarch, too, gives a similar account
of the matter, and adds that Plato referred the Delians,
who implored his aid, to Eudoxus of Cnidus, and Helicon
of Cyzicus, for its solution.® Lastly, Jo. Philoponus, in his
account of the matter, agrees in the main with Plutarch,
but in Plato’s answer to the Delians he omits all reference
to others.®

Cantor, who has collected these authorities, sums up the
evidence, and says the choice lies between—1° the assump-
tion that Plato, when blaming Archytas, Eudoxus, and
Menaechmus, added, that it was not difficult to execute the
doubling of the cube mechanically; that it could be effected
by a simple machine, but that this was not geometry; or
2° the rejection,’as far.as Plato is concerned, of the com-
munication of Eutocius, on the ground of the statements of
Plutarch and the silence of Eratosthenes; or lastly, 3° the
admission that a contradiction exists here which we have
not sufficient means to clear up.*

31 Theon. Smyrn. Arithm., ed. de Gelder, Lugdun. Bat. 1827, p. 5.

32 Plutarch, de Genio Socratis, Opera, ed. Didot., vol. III., p. 699.

33 Jo. Philop. ad Aristot. Analyt. post., 1. vii. '
3 Cantor, Gesch. der Math., p. 202.
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The fact that Eratosthenes takes no notice of the solu-
tion of Plato seems to me in itself to be a strong presump-
tion against its genuineness. When, however, this silence
is taken in connection with the statements of Plutarch, that
Plato referred the Delians to others for the solution of their
difficulty, and also that Plato blamed the solutions of the
three great geometers, who were his contemporaries, as
mechanical—a condemnation quite in accordance, more-
over, with the whole spirit of the Platonic philosophy—we
are forced, I think, to the conclusion that the sources from
which Eutocius took his acoount of this solution are not
trustworthy. This inference is strengthened by the fact,
that the source, from which the solution given by Eudoxus
of the same problem was known to Eutocius, was so
corrupt that it was unintelligible to him, and, therefore,
not handed down by him.*

The solution atttributed to Plato is as follows :—

¢As PLATO.

¢Two straight lines being given to find two mean pro-
portionals in continued proportion.

A
[oK oA‘U
€ B8 Y
é

¢Let the two given straight lines a3, By, between which
it is required to find two mean proportionals, be at right

3 See p. 140.
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angles to each other. Let them be produced to 3, e&. Now
let there be constructed a right angle ZHO, and in either
leg, as ZH, let a ruler KA be moved in a groove which is in
ZH, so as to remain parallel to HO. This will take place
if we imagine another ruler connected with OH and
parallel to ZH, as ©M. For the upper surfaces of the
rulers ZH, OM being furrowed with grooves shaped like a
dove-tail, in these grooves tenons connected with the ruler
KA being inserted, the motion of the ruler KA will be
always parallel to HO. This being arranged, let either
leg of the angle, as HO, be placed in contact with the
point vy, and let the angle and the ruler.be moved so far
that the point H may fall on the line (33, whilst the leg
HO is in contact with the point y, and the ruler KA be in
contact with the line e at the point K, but on the other
side with the point a: so that, as in the diagram, a right
angle be placed as the angle yd¢, but the ruler KA have
the position of the line ea. This being so, what was re-
quired will be done; for the angles at & and ¢ being right,
there will be the line y3 to 33, as the line 83 to (B¢ and
the line 3 to Ba.” *

The instrument is in fact a gnomon, or carpenter’s
square, with a ruler movable on one leg and at right
angles to it, after the manner of a shoemaker’s size-stick.

If this solution be compared with the second solution
of Menaechmus it will be seen that the arrangement of the
two given lines and their mean proportionals is precisely
the same in each, and that, moreover, the analysis must
also be the same. Further, a reference to the solution of
Archytas (see pp. 111 and 114 (4)) will show that the only
geometrical theorems made use of in the solution attri-
buted to Plato were known to Archytas. Hence it seems

36 Archim., ed. Torelli, p..135; Archim. Opera, ed. Heiberg, vol. 111., p. 66,
sg. I have taken the diagrams used in this solution and that of Menaechmus
from Heiberg’s edition of Archimedes.
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to me that it may be fairly inferred that this solution was
subsequent to that of Menaechmus, as his solution was to
that of Archytas. This, so far as it goes, is in favour of
the first supposition of Cantor given above.

On account of the importance of the subject treated of
here, I will state briefly my views on the matter in ques-
tion :—Menaechmus was led by the study of the solution
of Archytas, in the manner given above, to the discovery
of the curve whose property (sburrwua) is that now defined
by the equation y*=px. Starting from this, he arrived at
the properties of the sections of the acute-angled and of
the obtuse-angled right cones, which are analogous to the
well-known property of the semicircle—the ordinate is a
mean proportional between the segments of the diameter.
Having found the curve defined by the property, that its
ordinate is a mean proportional between a given line and
the abscissa, Menaechmus saw that by means of two such
curves the problem of finding two mean proportionals
could be solved, as given in the second of his two solu-
tions, which, I think, was the one first arrived at by him.
The question was then raised—Of what practical use is
your solution? or, in other words, how can your curve be
described ?

Now we have seen that, side by side with the develop-
ment of abstract geometry by the Greeks, the practical
art of geometrical drawing, which they derived originally
from the Egyptians, continued to be in use: that the
Pythagoreans especially were adepts in it, and that, in
particular, they were occupied with problems concern-
ing the application (wapa(oA#) of areas, including the
working of numerical examples of the same. Now any
number of points, as near to each other as we please,
on the curve j*=px, can be obtained with the greatest
facility by this method; and in this manner, I think,
Menaechmus traced the curve known subsequently by
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the name parabola—a name transferred from the opera-
tion (which was the proper signification of wapafoAs) to
the result of the operation. We have seen that the same
name, mapaf3o), was transferred and applied to division,
which was also a transference of a name of an operation
to its result.

Having solved the problem by the intersection of two
parabolas, I think it probable that Menaechmus showed
that the practical solution of the question could be simpli-
fied by using, instead of one of them, the curve xy = a? the
construction of which by points is even easier than that of
the parabola. There is no evidence, however, for the
inference that Menaechmus knew that this curve was
the same as the one he had obtained as a section of the
obtuse-angled cone; or that he knew of the existence
of the asymptotes of the hyperbola, and its equation in
relation to them.

Let us examine now whether anything can be derived
from the sources, which would enable us to fix the time
of the Delian deputation to Plato—be it real or fictitious.

We have seen that Sotion, after mentioning that
Eudoxus took up his abode at Cyzicus and taught there
and in the neighbouring cities of the Propontis, relates
that subsequently he returned to Athens accompanied by a
great many pupils (wavv woAdod¢ wepl éavrdv Exovra palnyrdc),
for the sake, as some say, of annoying Plato, because for-
merly he had not held him worthy of attention (p. 129). We
learn, further, from Apollodorus, that Eudoxus flourished
about the hundred and third Olympiad—B.C. 367—and it
‘is probable, as Boeckh thinks, that this time falls in with
his residence at Cyzicus. Now the narrative of Plutarch—
that Plato referred the Delians to Eudoxus and Helicon
for the solution of their difficulty—points to the time of the
visit of Eudoxus and his pupils to Athens, for—1° as we
know from Sotion, Plato and Eudoxus had not been on

N
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good terms; and 2° it is not probable that, before this
visit, Helicon, who was a native of Cyzicus and a pupil of
Eudoxus, as we learn from the spurious 13th Epistle of
Plato, had become famous or wasknown to Plato. Boeckh
assumes, no doubt rightly, that the visit of Eudoxus and
his pupils to Athens, and their sojourn there, took place
a few years later than Ol 103, 1—B.C. 367; so that it
occurred between the second and third visits of Plato to
Sicily (368 B.C. and 361 B.C.). To this time, therefore, he
refers the remarkable living and working together at the
Academy of eminent men, who were distinguished in
mathematics and astronomy, according to the report of
Eudemus as handed down by Proclus. Now, amongst
those named there we find Eudoxus himself, his pupil
Menaechmus, Deinostratus—the brother of Menaechmus
—and Athenaeus of Cyzicus;* to these must be added
Helicon of Cyzicus—more distinguished as an astronomer
than a mathematician—who was recommended to Diony-
sius by Plato,® and who was at the court of Dionysius
in company with Plato at the time of his third visit to
Syracuse.* '

I quite agree with Boeckh in thinking that all the
pupils of Eudoxus and the citizens of Cyzicus, whom we
find at Athens at that time—even though they are not
expressly named as pupils of Eudoxus—belonged to the
school of Cyzicus; and I have no doubt that to these
illustrious Cyzicenians the fame of the Academy—so
far at least as mathematics and astronomy are concerned
—is chiefly due.” Itis noteworthy that Aristotle, at the

37 Boeckh, Sonnenkreise, pp. 156, 157.

38 See Introduction, pp. 4, 5.

3% Epist. Plat., xiii.

40 Plutarch, Dion.

41 Zeller says: * Among the disciples of Plato who are known to us, we find
many ‘more foreigners than Athenians: the greater number belong to that
eastern. portion of the Greek world which since the Persian war had fallen

chiefly under the influence of Athens. In the western regions, so far as these
were at- all ripe for philosophy, Pythagoreanism, then in its first and most
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time of this visit, so famous and so important in conse-
quence of the impetus thereby given to the mathematical
sciences, had recently joined the Academy, and was then
a young man; and it is easy to conceive the profound
impression made by Eudoxus and his pupils on a nature
like that of Aristotle; and an explanation is thus afforded
as well of the great respect which he entertained for
Eudoxus, as of the cordial relations which existed later
between him and the mathematicians and astronomers of
the school of Cyzicus.*

flourishing period, most probably hindered the spread of Platonism, despite the
close relation between the two systems’ (Plato and the Older Academy, E. T ,
P- 553, $g.). Zeller gives in a note a list of Plato’s pupils, in which all
-the distinguished men of the School of Cyzicus are placed to the credit of
the Academy.

42 Aristotle was born in the year 384 B.C., and went to Athens 367 B.c.
Aafter the death of Plato (B.C. 347), Aristotleleft Athens and went to Atarneus in
Mysia, where his friend Hermias was dynast. When he was there he may
have renewed his relations with the distinguished men of the School of Cyzicus,
which was not far distant. It is quite possible that Menaechmus may have been
recommended as mathematical teacher to Alexander the Great by Aristotle; and
we have seen that Callippus of Cyzicus, who had been a pupil of Polemarchus,
went to Athens to hold a conference with Aristotle on the system of Eudoxus,
with the view of revising and completing it.
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CHAPTER VIIL

THE SUCCESSORS OF EUDOXUS.

II. DEINOSTRATUS.*

Deinostratus.—The Quadratrix, its generation and characteristic property.—Use
of this curve to solve the two famous problems: 1°. the Trisection of an
Angle; 2°. the Quadrature of the Circle.—Enunciation and proof of the
property of the Quadratrix on which this second employment of the Curve
depends.—Criticisms of Sporus and Pappus on the Curve and on this use of
it.—Theorems required for, and axioms used in, the proof of this property of
the Curve.—These axioms are substantially the same as the well-known
principles assumed by Archimedes.—The Problem solved by means of the
Quadratrix is the rectification of the Quadrant, and is a complement to the
work of Eudoxus.—Is the Hippias mentioned by Proclus in connection with
the Quadratrix the same as the Sophist Hippias of Elis ?

DEINOSTRATUS was brother of Menaechmus, and is men-
tioned by Eudemus, together with Amyclas and Menaech-
mus, as having made the whole of geometry more perfect

(p- 4)-

The only notice of his work which has come down to
us is contained in the following passage of Pappus:—

‘For the quadrature of the circle a certain curve! was
employed by Deinostratus, Nicomedes, and some other
more recent geometers, which has received its name from

* The two works announced in the note (p. 150) have appeared: Autolyci de
Sphaera quae movetur Liber, de ortibus et occasibus Libri duo : una cum scholiis
antiquis e libris manuscriptis edidit Latina interpretatione et commentariis instruxit
Fridericus Hultsch, Lipsiae, 1885 ; Diophantos of Alexandria: a Study in the
History of Greek Algebra, by T. L. Heath, Cambridge, 1885.

The following works have also been pubhshed Euclidis Elementa, edldlt et
Latine interpretatus est J. L. Heiberg, Dr. Phil., vol. 1v. libros XI.-XIII. con-
tinens, Lipsiae, 1885 ; die Lekre von den Kegekchm‘ttm im Altertum von Dr.
H. G. Zeuthen, erster halbband, Kopenhagen, 1886.

! ypauuy. The Greeks had no special name for ¢a curve.’
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the property that belongs to it ; for it is called by them the
quadratrix (rerpaywvifovoa), and its generation is as follows:
‘Let a square af3yd be assumed, and about the centre y
let the quadrant? (Bed be described, and let the line y(3 be
moved so that the point y remain fixed, and the point 3 be
borne along the quadrant 3¢8: again, let the straight line
Ba, always remaining parallel to the line 8, accompany
the point 3 while it is borne along the line 3y; and let the
line y3, moving uniformly, pass over the angle 3yd—that
is, the point (3 describe the quadrant Bed—in the same
time in which the straight line Ba traverses the line By—
that is, the point 3 is borne along (By. It will evidently

B I
(3

¢ Y/

Y A 6k S

happen that each of the lines yB and Ba will coincide
simultaneously with the straight line y3. Such then being
the motion, the straight lines a, By in their motion will
cut one another in some point, which always changes its
place with them; by which point, in the space between
the straight lines (3y, v3, and the quadrant (3¢5, a certain
curve concave towards the same side such as (330, is de-
scribed ; which indeed seems to be useful for finding a
square, which shall be equal to a given circle. But its
characteristic property (apxuwdv abriic olumrwpua) is this :—if

2 wepipépera, arc. ¢ Ex recentiorum usu Graecam wepipépeiar, id est partem
aliquam totius circuli circumferentiae, Ernestum Nizze, Theodosii interpretem,

secuti plerumque arcum interpretati sumus.” (Autolycus, 0p. cit., Praefatio, pp.
xiv, xv.)
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any line, as yne, be drawn to the circumference, as the whole
quadrant 3¢d is to the arc &d, so is the straight line By to
nA; for this is evident from the generation of the curve.”

Pappus, has, moreover, transmitted to us the property
of the quadratrix, from which it received its name, together
with the proof. It is as follows :—

¢ If a[3y8 be a square, and 3ed be the quadrant about the
centre y, and the line 390 be the quadratrix described as
in the manner given above; it is proved that: as the
quadrant 83 is to the straight line By, so is By to the
straight line y0. For if it is not, the quadrant 83 will be
to the line 3y as By to a line greater than 0, or to a lesser.

‘In the first place let it be, if possible [as (y], to a
greater lineyx ; and about the centre y let the quadrant Zn«
be described, cutting the curve at the point n; let the per-
pendicular »A be drawn, and let the joining line yn be
produced to the point &. Since then: as the quadrant 3¢3
is to the straight line 3y, so is By—that is yd—to the
line yx, and as yd is to yk, so is the quadrant (3ed to the
quadrant &n« (for the circumferences of circles are to each
other as their diameters),* it is evident that the quadrant
{nx is equal to the straight line 3y. And since, on account
of the property of the curve, there is: as the quadrant [3ed
is to the arc &d, so is 3y to A ; and therefore: as the qua-
drant &n« is to the arc n«, so is the straight line By to the
line yA. And it has been shown that the quadrant &y« is
equal to the straight line 3y ; therefore the arc nk will be
equal to the straight line yA, which is absurd. Therefore it
- is not true that: as the quadrant (3¢d is to the straight line
By, so is By to a line greater than 6.’

¢ Further, I say, that neither is it to a line less than 0.
For, if possible, let it be to yx, and about the centre y let
s Pappi Collect., ed. Hultsch, vol. 1., pp. 250, 252.

4 ¢Hoc theorema extat V. propos. II et VIIL propos. 22; simul autem scrip-

tor tacite efficit circulorum arcus quibus aequales anguli insistunt mter se esse ut
radios.” (Zbid., p. 257, n.)
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the quadrant {ux be described, and let the line «y be drawn
at right angles to the line v, cutting the quadratrix at the
point 7, and let the joining line yn be produced to the
point &. In like manner then to what has been proved
above, we show that the quadrant Zux is equal to the
straight line By, and that: as the quadrant 3¢ is to the
arc ed—that is, as the quadrant {u« to the arc ux—so is the
straight line By to the line nx. From which it is evident
that the arc ux is equal to the straight line x», which is
absurd. Therefore it is not true that: as the quadrant [3ed
is to the straight line (v, so is By to a line less than 40.
Neither is it to a greater, as has been proved above: there-
fore it is to the line y0 itself.’s

I}
e
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e
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Pappus continues—¢ This also is evident, that if a third
proportional be taken to the straight lines 6y, yf3, the
straight line [thus found] will be equal to the quadrant
Bed; and four times this line will be equal to the circum-
ference of the whole circle. But the straight line, which is
equal to the circumference of a circle, being found, it is
evident thata square equal to the circle itself can be easily
constructed : for the rectangle under the perimeter of a
circle and its radius is double of the circle, as Archimedes
proved.’

§ Pappi Collect., vol. 1., pp. 256, 258.
6 ¢Paulo aliis verbis Pappus id theorema enuntiat atque ipse Archimedes

circuli dimens. propos. I: xds xfikAos Ygos ¢ord Tpiydvy dpfoywrly, o 5 utv éx Tob
kévrpov Yoy g Tov wepl Thy dpbhy, 7 B¢ weplperpos Tfi Aoinfi. (Zbid., p. 259, 7. 2.)
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Pappus also relates that Sporus justly found fault with
this curve, for two reasons :—

1. ‘It takes for granted the very thing for which the
quadratrix is employed ; for it is not possible to make one
point move from (3 to y along the straight line By in the
same time that another point moves along the quadrant
[3¢3, unless the ratio of the straight line to the quadrant is
first known, inasmuch as it is necessary that the rates of
the motions should be to each other in the same ratio.

2. ‘ The extremity of the curve which is employed for
the quadrature of the circle —that is, the point in which the
quadratrix cuts the straight line yd—is not found ; for when
the straight lines (3, Ba, being moved, are brought simul-
taneously to the end of their motion, they coincide with the
line 3, and no longer cut one another—for the cutting
ceases before the coincidence with the line ad, which inter-
section on the other hand is taken as the extremity of the
curve, in which it meets the straight line a8 : unless, per-
haps, some one might say that the curve should be con-
sidered as produced —just as we suppose that straight lines
are produced—as far as ad; but this by no means follows
from the principles laid down : but in order that this point
0 may be assumed, the ratio of the quadrant to the straight
line must be presupposed.’

He then adds, that ‘unless this ratio is given, one
should not—trusting to the authority of the inventors—
accept a curve, which is rather of a mechanical kind (rj»
ypapuiy unxavikwrépay Twe ovoav).’

Sporus was a mathematician whose solution of the
Delian problem has been handed down by Eutocius in his
Commentary on the treatise of Archimedes On fhe Sphere
and Cylinder ;® this solution, he tells us, is the same as that
of Pappus, which precedes it in Eutocius, and which is also

T Pappi Collect., vol. 1., pp. 252, 254.
8 Archim., Opera, ed. Heiberg, vol. 111., pp. 90, 92.
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given by Pappus himself in the third and eighth books of
his Collections.®* M. Paul Tannery thinks that Sporus was
the teacher, or an elder fellow-pupil of Pappus, and places
him towards the end of the third century of our era; and,
further, he identifies him with Porus (Sporus) of Nicaea,
the author of a collection entitled ’Apisroredica Knpla (see
P- 59), which contained, according to M..Tannery, extracts
from mathematical works relating to the quadrature of the
circle and the duplication of the cube, as also a compilation
in relation to the Mefeorologics of Aristotle. M. Tannery is
of opinion, moreover, that the historical works of Eudemus
were driven out of the field at an early period by compila-
tions from them ; that the Hzstory of Geometry, in particular,
did not survive the fourth century; and that this collection
of Sporus was the principal source from which Pappus,
Simplicius, and Eutocius derived their information con-
cerning these two famous geometrical problems.'

In any case, it seems to me probable that a valuable
fragment of the History of Geometry of Eudemus is pre-
served in the extracts from Pappus given above, whether
they have been taken by Pappus from that Hislory, or
derived second-hand through Sporus [Porus].

On examining the demonstration of the property of the
quadratrix given above, we see that the following theorems
are required for it:—

(a). The circumferences of circles are to each other as
their diameters.

(6). The arcs of two concentric circles, which subtend
the same angle at their common centre, are to each other
as the quadrants of those circles.

? Pappi Collect., vol. 1., p. 64, sq.; vol. IIL. p. 1070, sq.

10 Sur les fragments d& Eudéme de Rhodes relatifs a Uhistoire des mathé-
matiques ; also, sur Sporos de Nicde; Annales de la Faculté des Lettres de
Bordeaux, pp. 70-76, 257-261, 1882, Cf. Pour I’histoire des lignes et surfaces
courbes dans Pantiquité. Bulletin des Sciences mathém. et astronom., 2¢ série,
tom. VII.
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This theorem is an immediate consequence of Euclid,
VI. 33 :—

(¢). In equal circles, angles at the centre have the same
ratio to each other as the arcs on which they stand.

We see, further, that the following assumptions are
made in the proof:—

1°. An arc of a circle less than a quadrant is greater
than the perpendicular let fall from one of its extremities
on the radius drawn through the other;

2°. And is less than the tangent drawn at one ex-
tremity of the arc to meet the radius produced through
the other.

We notice, moreover, that the proof is indirect; and it
is, indeed, as Cantor has remarked, the first of the kind
with which we meet.¥ We have seen, however, that
Eudoxus must have been familiar with this method of
reasoning (p. 139); and we know that Autolycus of Pitane,
in Aeolis, who was a contemporary of Deinostratus, makes
use of the argument ad adsurdum (3wep toriv dromov, or
adbvarov), in many propositions of his book wepl xwovuévne
ogalpac.”

‘We see, too, that the investigation of Deinostratus,
which gives a graphical solution of the determination of
the ratio of the circumference of a circle to its diameter, is
a complement to the work of Eudoxus, for the problem
which was solved by means of the quadratrix arose natu-
rally from the theorem that circles are to eackh other as the
squares on therr diamelers.

It is to be observed, then, in the first place, that the
problem which is solved above by means of the quadratrix
is, in reality, the rectification of the quadrant, and that it
is taken for granted that the quadrature of the circle—
from which the name of the curve is derived—follows from

1 Cantor, Gesch. der Math., p. 213. [This remark is not correct, see p. 43,
and 7. 64,]

12 Autolycus, op. cit., pp. 12, 4; 14, 7; 24, 14; 32,4; 8, 17; 22, 1.
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its rectification. Secondly, we see that in order to make
this inference the theorem—the area of a circle is equal
to one-half the rectangle under the circumference, or four
times the quadrant, and the radius—must be assumed.
This theorem is equivalent to the first proposition of
Archimedes, Dimensio circuli, referred to above. Lastly,
it is noteworthy that the rectification of the quadrant is
obtained by means of principles which are substantially
the same as those assumed by Archimedes, and adopted
by all geometers, ancient and modern.”

It seems to be a legitimate inference from this that
these axioms must be referred back to Deinostratus, and
most probably to Eudoxus.

Pappus, no doubt, in two places—V., prop. 11, and VIIL,
prop. 22—proves that the circumferences of circles are to
each other as their diameters,' and, in each place, makes
the proof depend on the theorem cited above. He adds,
however, in the former proposition :—¢The same may be
proved without assuming that the rectangle under the
diameter of a circle and its periphery is four times the
circle. For the similar polygons, which are inscribed in
circles, or circumscribed about them, have perimeters
which have the same ratio to each other as the radii of the
circles, so that also the circumferences of circles are to
each other as their diameters.’

Bretschneider thinks that the criticisms of Sporus are
not of much importance, and says that they only come to
this :—¢ That the quadratrix cannot be constructed geo-

13¢<Nous partirons, pour la solution de ce probleme [de la rectification des
courbes], du principe d’ Archiméde, adopté par tous les géometres anciens et
modernes, suivant lequel deux lignes courbes, ou composées de droites, ayant
leurs concavités tournées du méme cdté et les mémes extrémités, celle qui renferme
I’autre est la plus longue. D’od il suit qu'un arc de courbe tout concave du
méme cbté, est plus grand que sa corde, et en méme temps moindre que la somme
des deux tangentes menées aux deux extrémités de I’arc, et comprises entre ces
extrémités et leur point d’intersection.’—Lagrange, ZThéorie des Fonctions Ana-
Uytiques, p. 218. Paris, 1813.

14 Pappi Collect., vol. 1., pp. 334, 336 ; vol. IIL., pp. 1104, 1106.



188 Greek Geometry from Thales to Euclid.

metrically, but is obtained only mechanically by means of
a series of points, which must then be joined by a steady
stroke of the free hand.'* It seems to me, however, that
these criticisms are just; and that Sporus and Pappus are
right in maintaining that the description of the curve
assumes the very thing for which the quadratrix is
employed.'

Bretschneider shows that the theorem from which the
quadratrix derives its name can be easily obtained by
the infinitesimal method, ¢ by means of the proportion
Bed : ¥8: : ed : A, from the observation that the nearer the
radius ye approaches to y8, the more nearly does the sector
ved approach to a triangle similar to the triangle yAy; and
therefore, for the limiting case, where ye and 8 coincide,
the ratio d: A actually passes over into that of vd:v0.’
He adds :—¢ Such considerations have often served the old
geometers as means for their discoveries, but are never
used as proofs. The latter are always given through the
reductio ad absurdum, which, indeed, allows no trace of the
way followed in the inquiry to be recognised.””” This
observation is both just and important.

The same remark has been made by M. P. Laffitte, who
points out that, in the establishment of any truth, there are
two parts (or operations) which, he says, have not been
hitherto sufficiently distinguished:

1°. The invention or the discovery of the proposition.
2°. Its proof.

And he further observes, that, after the discovery has been

15 Bretsch., Geom. vor Eukl., p. 96.

16 ¢ Various other modes might be found of making either of these curves [the
quadratrix of Deinostratus and the quadratrix of Tschirnhausen] square the
circle; but the fact is that the description of the curves themselves assumes
the point which their use is to determine.’—Znglish Cyclopedia, sub. v., Quad-
ratrix.

17 Bretsch., Geom. vor Eukl., p. 154.
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arrived at, the proof is often furnished by the method ex
absurdo.®

In the third chapter (p. 93, s¢.) I gave reasons in sup-
port of Hankel’s opinion that the Hippias referred to by
Proclus, in connection with the quadratrix, is not Hippias
of Elis. As I mentioned, however, in giving them,
I had not then read Cantor’s defence of the common
opinion; but, on reading it subsequently, I was much
struck with the force of his arguments, and introduced
them in a note—the only course then open to me. M.
Paul Tannery, in a Paper, the first part of which was
published in the Bulletin des Sciences mathématiques et
astronomigues, Octobre, 1883, and entitled, ¢ Pour I'histoire
des lignes et surfaces courbes dans I'antiquité,’" has criti-
cised the reasons advanced by me against the common
opinion :—

‘With reference to argument 1°, he replies :—* This omis-
sion is sufficiently explained by the discredit under which
the sophists laboured in the eyes of Eudemus; and the list
in question presents a much more remarkable one—that of
Democritus.’

With reference to 2° he says:—¢This observation is
not accurate. An indefinite number of points of the
quadratrix, as near as one wishes, may be obtained by the
ruler and compass; and it is doubtful whether the ancients
sought any other process for the construction of this curve.’
M. Tannery continues :—¢ The authority of Diogenes Laer-
tius is, moreover, so much the less acceptable, inasmuch as
he speaks in express terms of the solution of the Delian
problem by Archytas. Now, Eutocius (Azchimedes, ed.
Torelli, pp. 143-144) has preserved to us, on the one hand,
this solution, in which there is not any employment of an
instrument; and, on the other hand (p. 145), a letter, in

18 P. Laffitte, les Grands Types de I’ Humanité, vol. 11., p. 308, s¢.; p. 328, sq.
19 Bulletin des Sc. math. et astron., 2¢ série, tom. VII. 1, p. 279, sq.
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which Eratosthenes states that, ¢ if Archytas, Eudoxus,
&c., were able to prove the accuracy of their solutions,
they could not realise them manually and practically, ex-
cept, to a certain extent, Menaechmus, but in a very
troublesome way.”’ (Cf. p. 111.)

¢The Mesolabe of Eratosthenes is, in fact, the oldest
instrument of which the employment for a geometrical
construction is known. This text indicates that, before
Menaechmus, people were not engrossed with the practical
tracing of curves; whilst the inventor of the conic sections
would have tried, more or less, to resolve this question for
the lines which he had discovered.’

As to these observations of M. Tannery, I admit that
Diogenes Laertius is not a safe guide in mathematics,
as indeed I noticed in the first chapter (p. 10, 7. 12). In
quoting him, I certainly did not mean to convey that, in
my opinion, Archytas had actually traced the curve, used
in his solution of the Delian problem, by any mechanical
means; and I agree with M. Tannery that the letter of
Eratosthenes is quite decisive on that point. At the same
time it'is evident that the conception of a curve being
traced by means of motion is contained in the solution of
Archytas, to whom, along with Philolaus, his master, and.
Eudoxus, his pupil, the first notions of mechanics are
attributed. And with respect to the quadratrix itself,
although, as M. Tannery remarks, an indefinite number of
points on the quadratrix, as near as one wishes, can be
obtained with the ruler and compass, yet the conception of
motion is no less involved in the nature and very definition
of the curve.

In reply to my observation 3°, M. Tannery says:—
“The divergence of the accounts given by Proclus and by
Pappus is easily explained by the difference of the sources
from which they drew. All that the former says of curves
is undoubtedly borrowed from Geminus, an author of the
first century before the Christian era; and his language
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proves that Geminus was acquainted with a writing of
Hippias on the quadratrix, and regarded him as the in-
ventor of this curve, though he was aware that Nicomedes
also was engaged with it.” M. Tannery continues :—*‘As
to Pappus, he quotes Geminus only aprogos of the works of
Archimedes on Mechanics. He does not appear to have
borrowed anything from him for geometry, particularly in
the part which is concerned with curved lines and sur-
faces;’ and adds:—‘One can scarcely doubt but that
Sporus was the source from which Pappus has derived
what he says on the quadratrix.’” We have noticed this
above.

With reference to 4°, M. Tannery says:—‘The exist-
ence of the Hippias referred to in it is by no means proved,
for the writing in question seems to be only a pure fancy ;
but in any case it is impossible to think of any geometer
posterior to Geminus, or even, as it seems to me, to Nico-
medes.’

The suggestion which I made concerning Hippias, the
contemporary of Lucian, was thrown out by me without
sufficient consideration in reply to the observation of
Montucla. Later, I became aware of the ideal character

~of that writing, and that it was the work of a pseudo-
Lucian.®

The result of the whole discussion seems to be: that
the quadratrix was invented, probably by Hippias of Elis,
with the object of trisecting an angle, and was originally
employed for that purpose ; that subsequently Deinostratus
used the curve for the quadrature of the circle, and that its
name was thence derived. This seems to be Cantor’s view
of the matter.,* M., Tannery tells us that he, too, had at
first interpreted the passage of Pappus in the same way as
Cantor; but that, on further consideration, he thinks that

20 See Zeller, History of Greek Philosophy from the earliest period to the time
of Socrates, vol. 1L, p. 422, n. 2, E.T.

2t Cantor, Gesch. der Math., pp. 167 and 212.
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it is open to grave objections. He says:—¢‘In the first
place, the text of Geminus in Proclus clearly supposes that
the name of the curve had been given to it by its inventor,
Hippias. On the other hand, it is evident that the prac-
tical use of the curve implies the construction of a model
cut in a square, having the quadratrix in place of the
hypotenuse, and which could be applied, like our profractor,
to the figures under consideration. Consequently, the
determination of the intersection of the curve with the axis
at once becomes necessary; and the problem is not, in
reality, so difficult that we should think that Hippias was
incapable of perceiving its relation to the quadrature of the
circle. Finally, the fame of this last problem was at the
time sufficiently great to lead Hippias to borrow from it
the name of his curve, rather than from the problem which
he had, without any doubt, considered in the first place.’*
These views of M. Tannery seem to me to be inadmis-
sible, and are indeed quite inconsistent with what we
know of Greek geometry (see szpra, p. 95, s¢.; p. 138, 5s¢.).*
The problem solved by means of the quadratrix must, as
stated above, be regarded as the natural complement of the
work of Eudoxus; and it is significant, therefore, that the
solution was effected by Deinostratus, who probably was
bis pupil. Nor does the finding of the point of intersection
of the curve with the axis necessarily involve the determi-
nation of = ; for, as seems to be suggested by Pappus, the
required point might be regarded as determined by the
production of the curve. Should it be said that the
theorem required for the determination of = was obtained
first by the infinitesimal method, I would reply that it was

22 Bull, des Sc. math. et astron., 2¢ série, VII., 1., p. 281.

2 Cf, Heiberg, Griechische und romische Mathematik, Philologus, 1884,
Sahresberichte, p. 474 : ¢ Wihrend Hankel, p. 121, ff. die exhaustionsmethode
auf Hippokrates zuriickgehen liess, und Cantor, p. 209, die moglichkeit zugibt,
hebt Allman, Greek Geometry &c., II., p. 221 ff. [p. 95, sq. supra] mit recht
hervor, dass wir nicht berechtigt sind, diese methode fiir dlter als Eudoxus zu
halten.’
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not likely that this was done by Hippias of Elis, who was
a senior contemporary of Democritus. If, then, the text
in Proclus supposes that the name of the curve had been
given to it by its inventor, it follows, in my opinion, that
this could not have been Hippias of Elis. I am, however,
on the whole, disposed to accept Cantor’s view as given
above.
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CHAPTER VIIL

THE SUCCESSORS OF EUXODUS.

ITI. ARISTAEUS.

Aristaecus.—He was probably a senior contemporary of Euclid.—Passages in
Pappus relating to him quoted.—What is § &varvduevos Téwos? It was
treated of by Aristaeus, Euclid, and Apollonius of Perga.—List of the books
which are contained in it.—Aristaeus wrote five books on ¢ Solid Loci’.—
Names given by him to the three Conic Sections.—These names were changed
by Apollonius to those still in use.—Reason for the change and significance
of the new names.—Aristacus wrote a book on the ¢Comparison of the five
Regular Solids’.—He was one of the most important Geometers before
Euclid. —Discussion as to whether Aristaecus wrote one work only on
the Conic Sections, namely, the * Solid Loci’ in five books, or whether he
wrote also the ‘Elements of Conics’ likewise in five books.—Theorem of
Aristaeus.—Enumeration of the Theorems required in its proof as given by
Hypsicles.—Simple proof of the ¢ Theorem of Aristaeus’.—Retrospect.—
Relation of the work done by Aristaeus to that of Archytas, and his successors.

PAPPUS has preserved the name, and given some account
of the work, of one other great geometer, who was a prede-
cessor, and probably a senior contemporary of Euclid—
ARISTAEUS the elder. 'We have no details whatever of
his life.

The passages in Pappus relating to him are as fol-
lows :—
(@) ¢ That which is called 6 avaAvdusvog [rdmoc],! that is,

1[Téwos] & karoluevos &varvduevos. Téwos, ¢ locus, i.e. quicquid aliqua ma-
thematicarum parte comprehenditur: 8 &orpovouoduevos Témos, VI. 474, 3; & éva-
Avduevos Towos, VIL. 672,4. Index Graecitatis, Pappi Collect., voluminis 111.
tomus IIL., p. 114. ¢ & &vahvdéuevos Téwos, locus de resolutione, id est doctrina analy-
tica.’ Ibid. sub voce, &vardew, p. 5. Compare what Marinus says on the same
subject in his Commentary on the Data of Euclid :

¢ What is the value of the treatise about Data ?’

¢« The datum having been divided in a general way, and as far as is sufficient
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the department of mathematics which treats of analysis, is,
in short, a certain peculiar matter prepared for those who,
having gone through the elements, wish to acquire the
power of solving problems proposed to them in the con-
struction of lines ; and it is useful for this purpose only. It
has been treated of by three men—Euclid, the author of
the Elements, Apollonius of Perga, and Aristaeus the
elder—and proceeds by the method of analysis and syn-
thesis.’?

Pappus, having defined analysis and synthesis, pro-
ceeds to give a complete list of the books, arranged in
order, which are contained in the rémo¢ avalvduevog. He
enumerates thirty-three books in all, amongst which we
find ‘five books of Aristaeus on so/zd loct’ (’Apioralov rémwwr
orepewy wévre): the remaining books, with the exception of
two by Eratosthenes concerning means (wepl pesorfirwy 3bo),
were written by Euclid and Apollonius.?

(8) ‘[These plane problems, then, are found in the
rémwoc avalvduevoc, and are set out first, with the exception
of the means of Eratosthenes ; for these come last. Next
to plane problems order requires the consideration of solid
problems. Now, they call solid problems, not only those
which are proposed in solid figures, but also those which,
not being capable of solution by plane loci, are solved by
means of the three conic lines, and so it is necessary to
write first concerning these. Five books of the Elements of
Conics were first published by the elder Aristaeus, which

for the present need, the next point is to state the utility of treatment of the
subject. This also is one of those things which have their result in relation to
something else. For the knowledge of this is necessary in the highest degree for
Tov &vaAvduevor Téwow as it is called ; and how much value § dvarvéuevos Téwos
has in mathematical science, and the kindred science of optics and music, has been
defined elsewhere, and that analysis is the discovery of a proof, and that it helps
us to the discovery of things similar, and that it is more important to possess the
analytical faculty than to have many proofs of particular things.” Euclidis Data,
ed. Cl. Hardy, p. 13. Cf. Pappi Collect., Appendix, p. 1275.

2 Pappi Collect., v11., vol. I1., p. 634.

3 [bdd., p. 636.

02
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were written in a compendious manner, inasmuch as those
who took up the study of them were now able to follow
him.]*

(c) ¢Apollonius, completing Euclid’s four books of
conics, and adding four others, published eight volumes of
conics. But Aristaeus, who wrote the five volumes of so/td
loct, which have come down to the present time, in con-
tinuation of the conics (' Apioraioc 8, ¢ yéypape ra uéxot rod
viv avadiddueva orepedv Témwy Tebxm € ovvexi Tolg kwvikoic),
called [as also did those before Apollonius] the first of the
three conic lines, the section of the acute-angled cone ;
the second, the section of the right-angled cone; the third,
the section of the obtuse-angled cone. But since in each
of these three cones, according to the way in which it is
cut, these three lines exist, Apollonius, as it appears, felt a
difficulty as to why at all his predecessors distinguished by
name the section of an acute-angled cone, which might also
be that of the right-angled and obtuse-angled cone; and,
again, the section of the right-angled cone, which might
also be that of the acute-angled and the obtuse-angled
cone. Wherefore, changing the names, he called that
which had been named the section of the acute-angled
cone, the ellipse; the section of the right-angled cone, the
parabola; and the section of the obtuse-angled cone, the
hyperbola—each from a certain peculiar property. For the
rectangle applied to a certain straight line in the section
of the acute-angled cone is deficient (}AAefret) by a square;
in the section of the obtuse-angled cone it is excessive (Vmrep-
BéAXe) by a square; finally, in the section of the right-
angled cone the rectangle applied (wapaBalAduevov) is
neither deficient nor excessive.

¢ [But this happened to Aristaeus, since he did not per-
ceive that, according to a peculiar position of the plane
cutting the cone, the three curves exist in each of the cones,

4 Pappi Collect., p. 672. ¢ 7 uév—yeypaupéva, interpolatori tribuit Hultsch.’
The spaced words are supplied in translation,
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which curves he named from the peculiarity of the cone.
For if the cutting plane be drawn parallel to one side of
the cone, one only of the three curves is generated, and
that one always the same, which Aristacus named the
section of that so cut cone.]’®

(2) ‘But as to what he [Apollonius] says in the third
book, that the locus with three or four lines has not been
completed by Euclid—for neither he himself, nor anyone
else, could[solve that locus] by those conical[theorems]only
which had been proved up to the time of Euclid, as also he
himself testifies, saying that it was not possible to complete
it without those things which he was compelled to discuss
before-hand—[as to this, Euclid, approving of Aristaeus as
a worthy mathematician on account of the conics which he
had handed down, and not being in haste, nor wishing to lay
down anew the same treatment of these subjects (6 82 EvxAi-
Snc amodexduevoc Tov’ Aptoraiov &ov Svra i’ olg 1100 wapadediker
kwvikoig, kal un ¢pOdoac § un Oedfoag imikaraBdAdeslar rodrwy
v avriv wpayuarelav)—for he was most kind and friendly
to all those who were able to advance mathematics to any
extent, as is right, and by no means disposed to cavil, but
accurate, and no boaster like this man A pollonius—wrote
as much as could be proved by his conics: sc. those of
Aristaeus concerning that locus—not attributing any
finality to his demonstration, for then it would be neces-
sary to blame him, but, as it is, not at all; since Apollo-
nius also himself, who left many things in his conics
unfinished, is not brought to task for it. But he, Apollo-
nius, has been able to add to that locus (r¢ rémy) what
was wanting, having been furnished with the ideas by
the books already written by Euclid on the same locus
(wepl T0b TémoOV), and having been for a long time a fellow-
pupil of the disciples of Euclid in Alexandria, from which

§ Pappi Collect., p. 672, 1. 18—p. 674,1. 19. ‘1. 12. Tobro & ¥xafev (scil. &
’Apioraios)—L. 19. Touhy interpolatori tribuit Hultsch.’ Cf. Proclus, ed. Fried-
lein, pp. 419, 420. See pp. 164, 165.
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source he derived his habit of thought, which is not unsci-
entific. Such is this locus with three or four lines, on which
he plumes himself greatly, adding, that he knew that he
owed thanks to him who first wrote about it.]"

(¢) We also learn from Hypsicles that Aristaeus wrote
a book on the Comparison of the five regular solids,and that
it contained the theorem: ¢ The same circle circumscribes
the pentagon of the dodecahedron and the triangle of the
icosahedron, these solids being inscribed in the same
sphere.” Hypsicles says, further, that ¢this theorem is
also given by Apollonius in the second edition of his Com-
parison of the dodecahedron with the icosahedron,” which
is : The surface of the dodecahedron is to the surface of the
icosahedron as the dodecahedron itself is to the icosahe-
dron; since the perpendiculars from the centre of the
sphere to the pentagon of the dodecahedron and to the
triangle of the icosahedron are the same.’®

The foregoing extracts lead us to form a high opinion
of Aristaeus, and to see that he was one of the most
important geometers before Euclid. We have, therefore,
great reason to regret the total loss of his writings.

In the passage (@) Aristaeus, Euclid, and Apollonius,
are named as the three authors on the doctrine of analysis.
This passage shows, further, the value that was attached
by the ancients to the five books of Aristaeus on solzd loci,
which was one of the works—indeed one of the higher
works—included in the rdmo¢ avalvdpevoc. From the
passage (8) it would appear that Aristaeus published also
a work on the elements of conics in five books—an abridg-

¢ Pappi Collect., p. 676, 1. 19—p. 678, 1. 15.  <1.25. &8¢ EdxAeldns—p. 678,
1. 15, Totodrés éorw, scholiastae cuidam historiae quidem veterum mathematico-
rum non imperito, sed qui dicendi genere languido et inconcinno usus sit, tribuit
Hultsch,’ /id., p. 677. As Hultsch says, ©the writer of this passage has
employed a feeble and awkward manner of expression’; and it is difficult to see
the exact meaning of it. The spaced words are supplied in translation.

Txévre oxnudrwy glykpiois.

8 Euclid, Book XIV.,Prop.2. This book is in reality the work of Hypsicles.
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ment introductory to the study of solid loci. Of his work
on solid loct it is, moreover, stated in (¢): 'Apioraioc &, 8¢
yéypape ta péxpt Tov vuv avadidbueva orepevv réwwy Tebyn £
ovveyi) Toic kwwikotc. This passage admits of several inter-
Ppretations :—

1. That the work on so/td Jloct was intended as an
extension of the theory of conics;

2. Aristaeus first wrote the rémot orepeof in five books,
and then, to facilitate the study of them, he wrote the
kwwikd orotysia—an epitome—also in five books;

3. Toi¢ kwywoic might possibly refer to the conics of
Euclid.

We learn further from (¢) that Aristaeus gave to the
conic sections their original names, those by which they
were known before Apollonius.® From (4) we learn that
Euclid praised the conics of Aristaeus, whom he valued
highly, and from the words ¢’ ol¢ #3n mapadedwxer kwvikoic,

- and ¢fdoag, it has been concluded that he was a pre-
decessor, and probably a senior contemporary of Euclid.*

We have seen that the passage (§) is regarded by
Hultsch as an interpolation. In this Heiberg agrees, and
infers thence that Aristaeus wrote only one work on the
conic sections—rdmot orepeol in five books—and holds that
the generally received opinion that Aristaeus, besides the
fivé books rémot arepeol, had written five more books kwvika
oroixeia is not sufficiently well founded. He says: ‘The
only passage which can be adduced for it, Pappus ViL, p.
672, 11: #v uiv odv avadesdouéva kwvikdv ororxtiwy wpdrepov
’Aporalov Tov wpeaPBurépov & rebym, we v 110y Svvaroic olor Toic
rabra wapalaudvovowy Emroudwregov yeypauuéva, is rightly
rejected by Hultsch as not genuine,” and continues, ‘It
occurs in a perfectly wrong place where Apollonius wepi
veboswy is referred to, is objectionable in many respects in

9 Cf. pp. 164, 165. )
10 J, L. Heiberg, Studien iber Euklid, p. 85.
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point of language, and contains nothing but what a reader
of Pappus already would find in him; I believe, therefore,
that we, in the words p. 672, 4-14, have a scholium which
originally stood in the margin after p. 672, 16, and later
fell into the text in a wrong place: the scholiast has then
called the five books réwot arepeol, here incorrectly orouyeia
kwvicd. And even were the passage genuine (and only
misplaced) the probability would be then that Pappus here
by oroixsia kwvikd had meant the réwror.” !

With this conclusion of Heiberg I cannot agree. In
the first place, it should be observed that the passages of
Pappus enclosed by Hultsch in [ ] are to be considered as
interpolations for reasons of style, not of substance. The
passage referred to was either written by Pappus himself
(as Cantor and others assume), or it originated with an
experienced commentator (scholiast), whose statements in
other passages also are acknowledged as correct—or, to
doubt which there is no occasion; or else these scholia
contain remnants of the tradition of the mathematical
school of Alexandria, and this tradition must be considered
on the whole as correct, so long as the contrary is not
proved.”?

In the next place, Heiberg is not correct in saying
that ¢it is the only passage which can be adduced for it.’
The same statement is made expressly in the text of
Pappus himself, a few lines lower down, in the passage
quoted above: ’Apiwaraioc 8¢, 8¢ yéypagpe Ta uéxpt rov viv avadi-
ddueva arepewv réwov Tebxm é ovveyii Toic kwwvikoic (P. 672, 1. 20).
Heiberg tries to obviate this objection by interpreting

1 7, L. Heiberg, 2 c.

12 It is certain that Pappus had a school. It may, therefore, be assumed that
one—or perhaps several—of his pupils had taken notes of his lectures; and that
these notes, arising thus from the oral exposition of Pappus himself, were worked
out further by his pupils, and formed Commentaries, which were then written on
the margin, and subsequently received into the text, of the work which has come
down to us as Ildxwov ocvvaywyfi. These Commentaries are easily recognised by

their style, but as to their contents, they must be considered to be of almost
equal authority with the undoubted text of Pappus.
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cuveyii as meaning: ‘which stands in connection with the
doctrine of the conic sections—depends on it’. In passage
(d), moreover, the conics of Aristaeus are, I think, directly
referred to in the words: &w r@v ietvov ["Apioraiov] kwvikay.
Heiberg, further, says that the interpolation, or scholium,
occurs in a perfectly wrong place; but, as he shows, it has
to be placed only two lines lower. My view of the matter
is that given above, p. 199, 2 :—Aristaeus first wrote the
soltd loct in five books, and then, to facilitate the study of
them he wrote the Elements of Conics—an epitome—also in
five books.

The Conics of Aristaeus, no doubt, do not appear in the
list of books contained in the so-called réro¢ avaivdpevoc ;
neither do those of Euclid: they were both replaced by
the Conics of Apollonius in eight books.

We have seen that Aristaeus wrote a work on the
comparison of the five regular solids, and that it contained
the theorem : The same circle circumscribes the pentagon
of the dodecahedron and the triangle of the icosahedron,
these solids being inscribed in the same sphere (¢).

If we examine the proof of this theorem as given
by Hypsicles, we see that it depends on the following
theorems :—

1. If a regular pentagon be inscribed in a circle, the
square on a side, together with the square on the line sub-
tending two sides of the pentagon, is five times the square
on the radius of the circle; )

2. If the line subtending two sides of a regular penta-
gon be cut in extreme and mean ratio, the greater segment
is the side of the pentagon. Euclid, XIII. 8;

3. The side of a regular decagon inscribed in a circle
is the greater segment of the radius cut in extreme and
mean ratio ;

4. The square on the side of a regular pentagon in-
scribed in a circle is equal to the sum of the squares on the
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sides of the regular hexagon and decagon inscribed in the
same circle. Euclid, XIII. 10;

5. If an equilateral triangle be inscribed in a circle,
the square on the side is three times the square on the
radius. Euclid, XIII. 12;

6. The square on the diameter of a sphere is three
times the square on the side of the inscribed cube. Euclid,
XIII. 15;

7. The line subtending two sides of the pentagon of a
dodecahedron inscribed in a sphere is the side of the cube
inscribed in the same sphere ;

This follows from (2) taken with the corollary of XIII.
17 : If the side of the cube be cut in extreme and mean
ratio, the greater segment is the side of the dodecahedron; -

8. The square on the diameter of a sphere is five times
the square on the radius of the circle by means of which
the iscosahedron is descried —z. e. the circle circumscribing
the pentagon which forms the base of the five equilateral
triangles having for common vertex any vertex of the icosa-
hedron. Euclid, XIII. 16, and Corollary.

" From the fact that ¢ the work of Aristaeus on the Com-
parison of the regular solids is the newest and last that
treated, defore Euclid, of this subject,” Bretschneider infers
that ¢ the contents of the thirteenth book of the Elements is
a recapitulation, at least partial, of the work of Aristaeus.” '
This supposition of Bretschneider receives, I think, great
confirmation from the above examination, which shows
that the principal propositions in Book XIII. of the
Elements are required for the demonstration, as given by
Hypsicles, of the theorem of Aristaeus. This theorem,
moreover, goes beyond what is contained in the Elements
on this subject.

Further, one of the four problems treated of by Pappus
in the third book of his Collection is the inscription in the
sphere of the five regular polyhedra. M. Paul Tannery has

13 Geom. vor Eukl.,p. 171.
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thrown out the suggestion that it is probably taken from
the Comparison of the five figures by Aristaeus the elder, but
has given no reasons for his opinion.* In support of this
conjecture I would put forward that:—

1. Pappus concludes his treatment of the subject by
saying that ‘from the construction it is evident that the
same circle circumscribes the triangle of the icosahedron
and the pentagon of the dodecahedron inscribed in the
same sphere,””* which is the theorem of Aristaeus, and
expressed, moreover, in nearly the same words as in
Hypsicles;;

2. Pappus says in Book VII., as we have seen, pp. 194-5,
that the works in the rdroc¢ avaivdusvoc—of which the rdmroe
orepeof of Aristaeus is one—proceed by the method of
analysis and synthesis; and it is to be observed that the
investigation in Pappus of the problem, ¢ to inscribe the
regular solids,’ is made by the analytical method ;'

3. Pappus, moreover, in Book V., treats of ‘the com-
parison of the five figures having equal surface, viz. the
pyramid, cube, octahedron, dodecahedron and icosahedron,’
and says that he will do so, ‘not by the so called analytic
method, by which some of the ancients (rov raAaiov) found
their proofs, but by the synthetic method arranged by him
in a more perspicuous and shorter manner’—é&j¢ 82 robrowc
ypapouev, ¢ Vmeoxducla, rdc ovyxplose T@v Teny Empaveav
¢xdvrwy wévre oxnudrwy, mupauidoc te kal xbBov kal dkraédpov
dwdexaédpov Te kal elkosaédpov, ov did i avadvrikic Aeyouévne
Ocwplag, O fic Eviol rov walatwv irowovvro Tac amodetletg, aAla
dua riic kard obvBeoy dywyiic il 7o sapiorepov kal ouvropdrepoy
o’ duob Seoxsvaouévag.’

The theorem of Aristacus can be proved in the following
simple manner :—

18 L’ Arithmétique des Grecs dans Pappus, Mémoires de la Société des Sciences
phys. et nat. de Bordeaux, 2¢ Série, tom. III., p. 35I. 1880.
18 Pappi Collect.,vol. 1., p. 162.

16 [bid., pp. 142-162.
1 [bid., pp. 410, 412.
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If a regular dodecahedron be inscribed in a sphere, the
poles of its faces will be the vertices of a regular icosahe-
dron inscribed in the same sphere; and, conversely, the
vertices of the dodecahedron will be the poles of the faces
of the icosahedron. Now let R be the pole of the circle cir-
cumscribing the pentagon A BCDE of the dodecahedron,
and let .S and 7 be the poles of the circles circumscribing
the two other pentagons of the dodecahedron which have
the vertex A4 in common : then A will be the pole of the
circle circumscribing the triangle RS T of the icosahedron.
Now, if the points R and 4 be joined to O, thecentre of the
sphere, the lines OR, OA so drawn will be at right angles
to the planes ABCDE and RST respectively: let them
intersect these planes at the points 2 and Q respectively.
Then the two right-angled triangles ORQ, 0.4 P—having
equal hypotenuses OR, OA, and common angle ROA—
will be equal in every respect; therefore OP = OQ and
AP=BQ. But AP and BQ are the radii of the circles
circumscribing the pentagon of the dodecahedron and the
triangle of the icosahedron, and OP, OQ are the perpen-
diculars drawn from the centre to these two planes.

In the second chapter of this work (p. 38, s7.), we saw
that ¢the Pythagoreans were much occupied with the
construction of regular polygons and solids, which in their
cosmology played an essential part as the fundamental
forms of the elements of the universe’:*® and in the third

18 These Pythagorean ideas—which were adopted by Plato, NAdrwy 3% xal év
Tobrois wufayopifes (see p. 86, n. 76)—played such an important part in antiquity
that they gave rise to the belief, related by Proclus, that Euclid ¢proposed to
himself the construction of the so-called Platonic bodies [the regular solids] as
the final aim of his systematisation of the Elements’ (p. 6). This bas been noticed
by P. Ramus, who says: ¢Nihil in antiqua geometria speciosius visum est quinque
corporibus ordinatis, eorumque gratia geometriam ut ex Proclo initio dictum est,
inventam esse veteres illi crediderunt’; but he adds: ¢ At in totis elementis nihil
est istis argutiis ineptius et inutilius.’®

*® (Petri Rami Scholarum Mathematicarum Librj unus et triginta, Francofurti, 1599,
p. 306.)
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chapter (p. 86, sg.), I pointed out a problem of high
philosophical importance to the Pythagoreans, which, in
my judgment, naturally arose from their cosmological
speculations, and which required forits solution a knowledge
of stereometry, and also the solution ofthe famous problem :
lo find two mean proportionals between two given lines. In
the same chapter (p. 88) I indicated the men who first
solved this problem, and laid the foundation of stereome-
try: in the following chapters I examined their work;
and finally in this chapter we have seen that Aristaeus
wrote workson the conic sections and on the regular solids,
and, further, that he is specially mentioned as one of those
who cultivated the analytic method—the method by the
aid of which these discoveries were made, as stated in
p. 88. Aristaeus may, therefore, be regarded as having
continued and summed up the work, which, arising from the
speculations of Philolaus, was carried on by his succes-
sors—Archytas, Eudoxus, and Menaechmus. These men
were related to one another in succession as master and
pupil, and it seemed to me important that the continuity
of their work should not be broken in its presentation.

[It may be interesting to some of the readers of this work to know that
William Allman, M.D., Professor of Botany in the University of Dublin (1809-
1844), and father of the writer, in a Memoir entitled : ¢ An attempt to Illustrate a
Mathematical Connection between the parts of Vegetables’ (read before the Royal
Society of London in the year 1811), put forward the hypothesis that the minute
cells in the young shoots of vegetables are of the dodecahedral form in Dicotyle-
donous plants; and of the icosahedral form in Monocotyledonous plants; and that
by means of this hypothesis he accounted for the prevalence of the number 5, and
the exogenous growth in the former, and of the number 3, and the endogenous
growth in the latter. ] ’
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CHAPTER IX*

THEAETETUS.

Theaetetus of Athens.—Notices of his work.—Passage from Plato’s ‘Theaetetus’
quoted and annotated.—Theaetetus first wrote on the five ¢ Regular Solids.’—
In the composition of his ¢ Elements’ Euclid was most indebted to the
Pythagoreans, Theaetetus and Eudoxus.—What portions of the ¢ Elements’
are due to each of these sources >—The principal part of the original work
of Euclid himself is contained in the Tenth Book.—Probable object of this
Book.—Pythagoras discovered the Theory of Incommensurables, and it is
probable that the Pythagoreans went farther in this research than is
commonly supposed.—Conclusion.

AT the close of the last chapter I pointed out the con-
nection between the several parts of this work, and stated
the reasons for the order which I followed. This order
was founded on the belief that the true history of Greek
geometry was most correctly represented by exhibiting
in an unbroken series the work done by Archytas and
his successors. This course of proceeding led to the tem-
porary omission of at least one geometer, who had greatly
advanced the science.

THEAETETUS of Athens, a pupil of Theodorus of Cyrene,
and also a disciple of Socrates, is represented by Plato, in
the dialogue which bears his name, as having impressed
both his teachers by his great natural gifts and genius.

* Within the last year the following works have been published: Euclidis
Elementa, edidit et Latine interpretatus est J. L. Heiberg, Dr. Phil,, vol. 111.,
librum X. continens, Lipsiae, 1886 ; die Lekre von den Kegelschnitten im Alter-
tum, von Dr. H. G. Zeuthen, zweiter halbband, Kopenhagen, 1886; Notice sur
les deux Lettres Arithmétiques de Nicolas Rhabdas (texte Grec et traduction), par
M. Paul Tannery (Extrait des notices et extraits des manuscrits de la Bibliothaque
nationale, &c., tom. XXXII., It Partie), Paris, 1886.

A new journal, devoted to the History of Mathematics, has been founded this
year by Dr. Gustaf Enestrom, of Stockholm :—Bibliotheca Mathematica, Journal
d’Histoire des Mathematiques.

<
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All that we know of his work is contained in the following
notices :—

(2). He is mentioned by Eudemus in the passage quoted
from Proclus in the Infroduction (p. 4), along with his
contemporaries Archytas of Tarentum, and Leodamas of
Thasos, as having increased the number of demonstra-
tions of theorems and solutions of problems, and developed
them into a larger and more systematic body of knowledge;*

(). We learn from the same source that Hermotimus
of Colophon advanced yet further the stores of knowledge
acquired by Eudoxus and Theaetetus, and that he dis-
covered much of the ¢ Elements,” and wrote some parts
of the ¢ Loci’;?

(¢). Proclus, speaking of the collection of the ¢Ele-
ments’ made by Euclid, says that he arranged many
works of Eudoxus, and completed many of those of
Theaetetus ;* <

(4). The theorem Euclid X. 9 :—¢ The squares on right
lines, commensurable in length, have to each other the
ratio which a square number has to a square number;
and conversely. But the squares on right lines incom-
mensurable in length have not to each other the ratio
which a square number has to a square number; and
conversely’—is attributed to Theaetetus by an anonymous
Scholiast, probably Proclus. The scholium is :—rovro 70
Ocopnua Osairiireidy torw ebpnua kal péuvyrat avrov [Aérev év
Ocarriiy, AN’ kel uiv pepikdrepov Eykerar [Ekkerad], dvravfa O
xaBdov ;*

(¢). In the passage referred to, Theaetetus relates how
his master Theodorus—who was subsequently the mathe-
matical teacher of Plato—had been writing out for him

1 Proclus, ed, Friedlein, p. 66.

2 [bid., p. 67.

3 [bid., p. 68.

¢ Knoche, 0p. cit., p. 24; cf. F. Commandinus, Euclidis Elementorum Libri
XV., una cum Scholiis antiguis, fol. 129, p. 2, Pisauri, 1619,
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and the younger Socrates something about squares :* about
the squares whose areas are three feet and five feet, show-
ing that in length they are not commensurable with the
square whose area is one foot® [that the sides of the squares
whose areas are three superficial feet and five superficial
feet are incommensurable with the side of the -square
whose area is the unit of surface, 7. ¢ are incommensu-
rable with the unit of length], and that Theodorus had
taken up separately each square as far as that whose
area is seventeen square feet, and, somehow, stopped there.
Theaetetus continues :—*‘ Then this sort of thing occurred
to us, since the squares appear to be infinite in number,’

5 Tepl Surduedy Tt Huiy Oeddwpos I8¢ ¥ypagpe, Tis Te Tpiwodos wépt kal werré-
wodos &wopalvwy ¥ri pfiker ob Eduperpor 1§ wodiala. In mathematical language
3dvauus signifies ¢ power,” especially the second power or square. In the passage
(¢), however, the word seems not to be used steadily in the same signification,

-and in 148 A it certainly means ‘root.” M. Paul Tannery considers that the
present text of Plato is corrupt, and that in it §éwauis (power) should be replaced
throughout by dvvauéwy (root). Professor Campbell (Zkeaetetus of Plato, p. 21,
note) thinks that ¢ it is not clear that in Plato’s time this point of terminology was
fixed.” But, on the other hand, J. Barthélemy Saint-Hilaire believes that the
expression, 3dvauis, was probably invented by the Pythagoreans (Métaphysique
d’ Aristote, tom. 1I., p. 156, . 16). In support of this view it may be noticed
that the term 3vrdpue: is used inits proper signification throughout the oldest frag-
ment of Greek geometry—that handed down by Simplicius from the History of
Geometry of Eudemus on the quadrature of the lunes (see pp. 69-75; and, for
the revised Greek text, Simplicii in Aristotelis Physicorum tibros quatuor priores
commentaria, ed. H. Diels, pp. 61-68, Berlin, 1882)—and is so used, for the most
‘part, in paragraphs which, according to the criterion laid down in p. 72, . 45,
must be regarded as genuine. Now since Eudemus, in this fragment, gives an
analysis of the work of Hippocrates, and, moreover, frequently refers to him by
name, it is probable that, in parts at least, he quoted the work on lunes textually,
and that the word Svvdue:, which occurs throughout, must have been used by
Hippocrates, who we know was connected with the Pythagoreans. On the whole
then it seems to me probable that Plato had not fully grasped the distinction
between the terms 3évauus and Svvauéyy ; and that in this is to be found the true
explanation of the obscurity of the passage.

8 uficet ob Eopperpor Tfi wodialg. See Euclid X., Def. 1. Zbuuerpa peyétn
Aéyeta T8 76 adr@ pérpy uerpolueva, dobuperpa §é, dv undty dvdéxerar kowdy
wérpoy yevéobas. 2. EdBelarSvvdper abpuperpol elow, Srav 7d dx’ abrar rerpd-
yova 7§ abr@ xwply perpijral, doduuerpor 8¢, §rav Tois dx’ abrdv Terpaydvos
undty &vdéxnrar xwplov xowdy uérpoy yevéaa.

7 éreidh bxepos TO wARO0s ai Suvduers épalvovro. Cf. Eucl. X., Def. 3 : robray
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to try and comprise them in one term, by which to desig-
nate all these squares.’

Socr. ¢ Did you discover anything of the kind ?’

Theaet. ‘In my opinion we did. Attend, and see
whether you agree.’

Socr. ¢ Go on.’

Theaet. <We divided all number into two classes:
comparing that number which can be produced by the
multiplication of equal numbers to a square in form, we
called it quadrangular and equilateral.’®

Socr. ¢ Very good.’

Theaet. < The numbers which lie between these, such as
three and five, and every number which cannot be pro-
duced by the multiplication of equal numbers, but becomes
either a larger number taken a lesser number of times, or
a lesser taken a greater number of times (for a greater
factor and a less always compose its sides) ; this we likened
to an oblong figure, and called it an oblong number (1rpo;mm7
apBudv).’*

Smoxeuévay Selkvvrai, 811 1§ wporebelop edbela Imdpxovow edbeiar wAf0er Eweipor
aduperpol Te kal doduuerpor al udv prjres pdvov, ai 8¢ xal Juvdper.

8 vdv &piOudy wdvta Sixa SieAdBouer. TO¥ uiv Suvduevow Yooy iodkis ylyveada
7§ TeTpaydvy T oxiipa dwedoarres TeTpdywrdy Te kal iodwAevpoy mpooelmouer.
Cf. Euclid, Vi1, Def. 19: Terpdywvos &piOuds éoriv & loduis Yoos § [6] imd 8bo
fowy &pifuiv wepiexduevos ; also Aristotle, Anal. Post. 1.iv., olov Td €08 imdpyet
ypauufl kal Td wepipepés, kal TS wepirtdy Kal &priov dpiOu, xal Td wpiTov Kal
odvleroy kal lodmAevpor kal érepdunkes (see Euclid, viL, Def. 7, 6, 12, 14).
Plato’s expression is tautologous.

9 1dv Tofyuy perald TovTov, &¥ Kal T& Tpla Kal T& wévTe kal xas ds ddvartos Toos
iodris yevéoOar, dAN’ A wAclwy e arTovdiis ) exdTTav wAeovdiis Yiyverai, uel{wy
3% xal exdTTwy del XAeupd abTdy wepihauBdyer, T§ wpopfike: al oxfuaTi axeidoartes
wpoufin &pibudy éxarésauev. Cf. Euclid, vIL,, Def. 17: “Orav 8¢ 800 &pifuol
woAAaxAacidoavTes dAAAovs woidof Twa, 8 yevduevos éxixeSos Kareiras,
xAevpal 8¢ abroi of woAAawAadidoavres dAAfAous &pibuof. From the time of
Pythagoras—to whom the combination of arithmetic with geometry was due—the
properties of numbers were investigated geometrically. Thus composite numbers
(odvberor) were figured as rectangles, whose sides (wAevpal) are the factors.
Similarly, prime numbers (wp@rot) were represented by points ranged along a
right line, and were hence called linear (ypauuixol) not only by Theon. of Smyrna
(Arithm. ed. de Gelder, p. 34), and Nicomachus (Nicom. G., /ntrod. Arithm., 11.
c. 7), but also by Speusippus, who wrote a little work on Pythagorean numbers

P
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Socr. ¢ Capital! What next?’

Theaet. < The lines which form as their squares an
equilateral plane [square] number we defined as- uijkoc
[length, 7. e. containing a certain number of linear units],
and the lines which form as their squares an oblong num-
ber (rov érepounxn) we defined as Svvdpuerc, inasmuch as they
have no common measure with the former in length, but
in the surfaces of the squares, which are equivalent to
these oblong numbers. And in like manner with solid
numbers.’ !

Socr. ¢ The best thing you could do, my boys; no one
could do better.’—( Theaetetus, 147 D-148 B.)

(see Theologumena Arithmetica, ed. Ast., p. 61). Prime numbers were also
figured as rectangles whose common breadth was the linear unit, and they are thus
represented in this passage.

In geometry td érepdunxes signified a rectangle, and was so defined by Euclid,
Book 1., Def. 22: t@v 8¢ Terpaxrelpwy oxnudrwv Terpdywvor udv ¥oTwv, b lod-
wAevpdy 7€ daTi kal dpBoydviow, Erepbunxes B¢, b dpBoydviov uév, odk iodwAevpor €.
Cf. Hero, Def. 53 ; Geom.,pp. 43, 52, 53, &c., ed. Hultsch ; Pappi Alex. Collect.,
ed. Hultsch, vol. 1., p. 140. Euclid does not use the term é&repdunxes in his
Elements, but xapaAAnAdypaupov dpoydviov. It is now generally recognised that
he derived the materials of his Elements from various sources: the term érepd-
unxes may thus have been preserved in his work ; or, else, he thought it better to
avoid the use of this term, as it was employed in a particular sense. When the
sides of the rectangle were expressed in numbers, xpouficns was the general name
for an oblong. In the particular cases where the sides of the oblong contained
two consecutive units, as—2, 3; 3, 4 ; &c., the term érepoufikns was employed,
inasmuch as the lengths of the sides were of different kinds, 7. e. odd and even;
whereas in a square they were of the same kind, either both odd, or both even
(see the second chapter, p. 32, 7. 51). It should be observed that when a square
is constructed equal to an oblong of this kind (érepdunres), its side must be in-
commensurable ; but in certain cases the side of the square, which is equal to an
oblong of the former kind (xpdunkes) (. g. whose sides are 8, 2; 3,27; and so
on) is commensurable. The two words ase used in this passage in their strict
signification, and are not, as M. Paul Tannery thinks, synonymous (see Dom-
ninos de Larissa, Bulletin des Sciences math. et astrom., tom. VIII., 1884, p. 297).
Professor Campbell remarks: ¢these terms [wpoufikns érepoufikns] were dis-
tinguished by the later Pythagoreans’ (loc. cit., p. 23, #.). This is misleading,
for it seems to imply that they were not distinguished by the early Pythagoreans.

10 Sgai utv ypaupal Tdy ioéwAevpov xal iximedoy &pilbudy $erpaywrifovas, piros
bpiodueda, Soar 8¢ Tdv Erepopfikn, Suvdueis, bs phcer uv ob fuppérpovs dnefvars,
Tois 8 émimwédois & Slvavrarr kal wepl T& oTeped EAAo Torodrov. Cf. Euclid, vir.,
Def. 18 : 8rav 3¢ Tpeis apibuol xoAAawAadidoartes GAAAOYs xoidaf Tiva, & yevd-
uevos oTepeds éoTv, *Aevpal 8¢ aimoi of woAAawAacidoarTes &AAAAOUS &pibuol.
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(f). We learn from Suidas that he taught at Heraclea,
and that he first wrote on ‘the five solids’ as they are
called.!

Eudoxus and Theaetetus, then, were the original think-
ers to whom —after the Pythagoreans—Euclid was most
indebted in the composition of his ¢ Elements.’ In the
former chapters of this work we have seen that we owe to
the Pythagoreans the substance of the first, second, and
fourth Books, also the doctrine of proportion and of the
similarity of figures, together with the discoveries respect-
ing the application, excess, and defect of areas®—the subject -
matter of the Sixth Book : the theorems arrived at, how-
ever, were proved for commensurable magnitudes only,
and assumed to hold good for all. 'We have seen, further,
that the doctrine of proportion, treated in a general manner,
so as to include incommensurables (Book V.), and, conse-
quently, the recasting of Book VI., and also the Method of
Exhaustions (Book XII.), were the work of Eudoxus. If we
are asked now—In what portion of the Elements does the
work of Theaetetus survive ! We answer: since Books VII.,
VIII,, and IX. treat of numbers, and our question concerns
geometry ; and since the substance of Book XI., contain-
ing, as it does, the basis of the geometry of volumes, is
probably of ancient date, we are led to seek for the work

Solid numbers (orepeol) were also treated in the little work of Speusippus referred
to above (Zhkeol. Arith. loc. cit.).

11 ¢ Theaetetus, of Athens, astronomer, philosopher, disciple of Socrates,
taught at Heraclea. He first wrote on ¢ the five solids’’ as they are called. He
lived after the Peloponnesian war.’ )

¢ Theaetetus, of Heraclea in Pontus, philosopher, a pupil of Plato.” Sub. v.

It has been conjectured that the two Notices refer to the same person. Mak-
ing every allowance for the inaccuracy of Suidas, this seems to me by no means
probable. It is much more likely that the second was a son, or relative, of
Theaetetus of Athens, and sent by him to his native city to study at the Academy
under Plato,

12 By this method the Pythagoreans solved geometrical problems, which
depend on the solution of quadratic equations. For examples of the method, see
supra, p. 41, and p. 72, n. 46.

P2 .
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of Theaetetus in Books X. and XIII.: and it is precisely
with the subjects of these Books that the extracts (4), (¢),
and (f) are concerned.

Having regard, however, to the dlﬂ'erence in the man-
ner of expression of Proclus in (¢) :—* Euclid arranged
many works of Eudoxus, and complefed many of those of
Theaetetus '—we infer that, whereas the bulk of the fifth
and twelfth Books are due to Eudoxus, on the other hand
Theaetetus laid the foundation only of the doctrine of
incommensurables, as treated in the tenth Book. In like
manner, from (f) we infer that the thirteenth Book, treat-
ing of the regular solids, is based on the theorems
discovered by Theaetetus; but it contains, probably, ‘a
recapitulation, at least partial, of the work of Aristaeus’

(p. 202).

From what precedes, it follows that the principal part
of the original work of Euclid himself, as distinguished
from that of his predecessors, is to be found in the Tenth
Book.” DeMorgan suspected that in this Book some
definite object was sought, and suggested that the classifi-
cation of incommensurable quantities contained in it was
undertaken in the hope of determining thereby the ratio
of the circumference of the circle to its diameter, and
thus solving the vexed question of its quadrature.’* It is

13 See Heiberg., Studien fiber Euklid, p. 34: ¢Nach Proklus hat er [Euklid]
vieles von den Untersuchungen des Theitet vervollkommnet; also, da Theitet
sich besonders mit Inkommensurabilitdt und Irrationalitit beschiftigte, darf wohl
einiges von dem sehr umfangreichen und vollstindigen X Buche dem Euklid
selbst angeeignet werden, was und wie viel, wissen wir nicht.’

Professor P. Mansion, of the University of Ghent, informs me by a letter of
the 4th March, 1887, that for several years past he has pointed out this result—
the originality of the Tenth Book of the Elements of Euclid—to his pupils in his
Course on the Hxstory of Mathematics. His manner of proof is substantially the
same as that given by me above.

See also M. Paul Tannery: I’Educatxon Platonicienne, Revue Philosophique,
Mars, 1881, p. 295; la Constitution des Eléments, Bulletin des Sciences math. et
astron., 1886, p. 190.

14 The English Cyclopaedia, Geometry, vol. 1v., 375; Smith’s Dictionary of
Greek and Roman Biography, Eucleides, vol. 11., p. 67.



Theaetetus. 213

more probable, however, that the object proposed con-
cerned rather the subject of Book XIII., and had reference
to the determination of the ratios between the edges of the
regular solids and the radius of the circumscribed sphere,
ratios which in all cases are irrational.’ In this way is
seen, on the one hand, the connection which exists between
the two parts of the work of Theaetetus, and, on the other,
light is thrown on the tradition handed down by Proclus,
and referred to at the end of the last chapter, that ¢ Euclid
proposed to himself the construction of the so-called
Platonic bodies [the regular solids] as the final aim of his
systematisation of the Elements.’

We are not justified in inferring from the passage
in Theaetetus (e), that Theodorus had w-si.{zen a work on
¢ powers’ or ‘roots,” much less that the tontribution of
the Pythagoreans to the doctrine of incommensurables
was limited to proving the incommensurability of the
diagonal and side of a square, z.e. of /2. Theodorus,
who was a teacher of mathematics, is represented in the
passage merely as showing his pupils the incommensura-
bility of /3, +/5, . . - 4/ 17, and there is no evidence that
this work was original on his part. On the contrary, the
knowledge of the incommensurability of 4/ 5, at all events,
must be attributed to the Pythagoreans, inasmuch as it
is an immediate consequence of the incommensurability of
the segments of a line cut in extreme and mean ratio
which must have been known to them, and from which
indeed it is probable that the existence of incommensu-
rable lines was discovered by Pythagoras himself (see
supra, p. 42, and pp. 137-8).

There are, moreover, good reasons for believing that
the Pythagoreans went farther in this research than has
been sometimes supposed; indeed Eudemus says ex-

15 See Bretsch., Geom. vor Eukl., p. 148.
16 See P. Tannety, op. cst., pp. 188, 189.
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pressly: ¢Pythagoras discovered the theory of incom-
mensurable quantities (rov aAdywv wpayuarelav).’ Further,
the lines 4/3, /5, . . . would occur in many investigations
with which we know the Pythagoreans were occupied :—

1°. In the endeavour to find the so-called Pythagorean
triangles, i. e. right-angled triangles in rational numbers ;

2° In the determination of a square, which shall be
any multiple of the square on the linear unit, a problem
which can be easily solved by successive applications of
the ¢ Theorem of Pythagoras’—the first right-angled tri-
angle, in the construction, being isosceles, whose equal
sides are the linear unit; the second having for sides about
the right angle the hypotenuse of the first (,/2) and the
linear unit; the third having for sides about the right
angle /3 and 1, and for hypotenuse 2, and so on;

3° In the construction of the regular polygons, for the
third triangle in 2° is, in fact, the so-called ¢ most beautiful
right-angled scalene triangle’ (p. 38) ;

4°. In finding a mean proportional between two given
lines, or the construction of a square which shall be equal
to a given rectangle, in the simple case when one line is
the linear unit, and the other contains 3, 5, . . . units.

The method followed in this work differs altogether
from that pursued by most writers. The usual course has
been to treat of the works of Archytas, Theaetetus,
Eudoxus, Menaechmus, &c.—the men to whom in fact, as
we have seen, the progress of geometry at that time was
really due—under the head of ‘Plato and the Academy.’
This has given rise to an exaggerated view of the services
of Plato and of the Academy in the advancement of mathe-
matics: which is the more remarkable because a just
appreciation of the services of Plato in this respect was
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made by Eudemus in the summary of the history of
geometry, so frequently quoted in these pages:

‘Plato, who came next after them [Hippocrates of
Chios, and Theodorus of Cyrene], caused the other
branches of knowledge to make a very great advance
through his earnest zeal about them, and especially geo-
metry: it is very remarkable how he crams his essays
throughout with mathematical terms and illustrations,
and everywhere tries to rouse an admiration for them in
those who embrace the study of philosophy.""

The way in which Plato is here spoken of is in striking
contrast to that in which Eudemus has, in the summary,
written of the promoters of geometry.

Y IAdrwr & éx) Tobrois yevduevos, peyloTny éxolnoey exiSogiv Td Te EAAa
pnabhipara kal THy yewuerplay AaBeiv 81& THy wepl adTd owoudhy, 3s mov SHAds ot
xal & ovyypdupara Tols pabnuarikols Adyois xaTamvkvdoas kal wavraxoiv Td wepl
abrd Oadua T@v pirogodplas &vrexouévwy émeyelpwy. Proclus, ed. Friedlein, p. 66.
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NOTES AND ADDITIONS.

CONTINUATION OF BIBLIOGRAPHICAL NOTICES.*

INCE the publication of the concluding part of this work in
Hermathena (July, 1887), M. Paul Tannery has collected his
Papers, which appeared in the Bulletin des Sciences mathématiques
et astromomigues, since April, 1885, and published them in a volume
entitled : Za Géométrie Grecque comment son histoire nous est parvenue
et ce que nous en savons. Essai Critigue. Premiére partie. Histoire
générale de la gbométrie élémentaire.  Paris, 1887.

M. Paul Tannery has also published a volume on the origin of
science in general—Pour I’ Histoire de la Science Helléne de Thalés a
Empédocle. Paris, 1887. This work is founded on articles which
were published by M. Tannery in the Revue philosophique.

Dr. Heiberg has completed his edition of the ZElements of
Euclid by the publication of vol. v.—Continens Elementornm qui
Seruntur Libros XIV.-XV. et Scholia in Elementa cum Prolegomenis
criticis et Appendicibus. Lipsiae, 1888.

The first part of a Monograph on Eudoxus by Herr Hans
Kiinsberg has recently appeared—Der Astronom, Mathematiker und
Geograph EUDOXOS, won Knidos, 1. Theil : Lebensbeschreibung
des Eudoxos, Ueberblick iber seine astronomische Lehre und geometrische
Betrachtung der Hippopede von Hans Kiinsberg, kgl. Reallehrer.
(Programm zum Jahresbericht der vierkursigen konigl. Realschule
Dinkelsbiihl pro 1888.) Druck von C. Fritz in Dinkelsbiihl.

There has also been recently published: 4 Short Account of the
History of Mathematics, by Walter W. Rouse Ball, Fellow and
Assistant-Tutor of Trinity College, Cambridge; and of the Inner
Temple, Barrister-at-law. London, Macmillan and Co., 1888.
This book is for the most part a transcript of some lectures
delivered this year by Mr. W. W. Rouse Ball.

* See pp. I, 52, 150, 180, and 206.
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PaGges 11, 12.

The passage of Geminus referred to here is taken from his
Review of Mathematics, and is given in extenso in Chapter vi.,

pp. 164, 165.

PAGES 16, 80.

Harpedonaptae. See Cantor (Vorlesungen diber Geschichte der
Mathematik, pp. 55-57), who points out the Greek origin (dpweddvy,
a rope, and drrew, to fasten), previously overlooked, of this name,
and shows from inscriptions on the Egyptian temples that the
duty of these *rope-fasteners’ consisted in the orientation of the
buildings by reference to the constellation of the Great Bear.
The meridian being thus found, the line at right angles to it was
probably determined by the construction of a triangle with ropes
measuring 3, 4 and 5 lengths respectively. We have seen (p. 29)
that the Egyptians knew that such a triangle would be right-
angled. The operation of rope-stretching, Cantor adds, was one
of unknown antiquity, being noticed in a record of the time of
Amenembhat I., which is preserved in the Berlin Museum.

PAGEs 29-32.

In connection with this passage of Plutarch, and the observa-
tions thereon, it is interesting to note that M. Paul Tannery (/a
Géoméirie Grecque, p. 105) has found in G. Pachymeres (MSS. de la
Bibliothéque nationale) the expression 76 Gedpnua Tijs vipdys, to
designate the theorem of Pythagoras’ (Euclid 1. 47). In a letter
to me, of July 3, 1886, M. Tannery mentions that the Arabs call
it ‘the theorem of the bride.” This name for the theorem seems
to point to the old Egyptian idea as handed down by Plutarch.
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Page 37, NotE s8.

I have since found in Billingsley’s Euclide! the following note
onl 43:—

* This proposition Pelitarius calleth Gnomicall, and misticall
for that of it (sayeth he) spring infinite demonstrations and uses
in Geometry.’ (Fol. 54.)

On referring to Peletarius, however, it will be found that he
only calls the figure Gnomic: not the proposition. After the
demonstration of I. 43, he says: ‘Vix enim usquam in toto
opere Geometrico occurrit Figuratio magis feecunda quam haec
Gnomica: hoc est, quae uno parallelogrammo et Gnoma confla-
tur . . . Nam hic Gnomonis explicandi locus est maximé
oportunus: licet Euclides ad secundum librum distulerit.

‘Hanc ego Figuram mysticam soleo vocare: Ex ea enim,
velut ex locupletissimo promptuario, innumerabiles exeunt Demon-
strationes. Quod cum magna voluptate perspiciet qui re Geometrica
serio se exercebit.” (Iacobi Peletarii Cenomani, in Euclidis Elementa
Geometrica Demonstrationum Libri Sex, p. 41. Lugduni, apud Ioan.
Tornzsium et Gul. Gazeium, 1557.)

PAGE 43, NoTE 64.

This proposition—Euclid X. 117—is an interpolation, and is
recognised as such by August, who gives it in Appendix V., pars. ii.,

Y The Elements of Geometrie of the most auncient Philosopher EUCLIDE
of Megara. [Faithfully (now first) translated into the Englishe toung, by
H. Billingsley, Citizen of London.

Whereunto are d certaine Scholies, A tations, and I tions, of the best
Mathematiciens, both of time past, and in ﬂns our age.

With a very fruitfull Preface made by M. I. Dee, specifying the chiefe
Mathematicall Scieces, what they are, and whereunto commodious: where, also,
are disclosed certaine new Secrets Mathematicall and Mechanicall, untill these
our daies, greatly missed.

Imprinted at London by John Daye, 1570.

De Morgan (Smith’s Dictionary of Greek and Roman Biography, Eucletdes,
vol. II., p. 73) states that Henry Billingsley ‘‘ was a rich citizen and was mayor
(with knighthood) in 1591.”
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p- 296 ; and by Heiberg, who gives it in the Appendix to Book X.,
(Euclidis Elementa, vol. 11, p. 408). In Billingsley’s Euclide,
after this theorem, which is prop. 116 in that edition, ‘An other
demonstration after F/ussas’ is given. Then follows the observa-
tion: ¢‘This demonstration I thought good to adde, for that the
former demonstrations seme not so full, and they are thought of
some to be none of Theons, as also the proposition to be none of
Euclides” (Fol. 310, p. 2.)

PAGES 49 AND 132 (d).

P. Ramus suspected that this Scholium was due to Proclus; he
says: ‘Quintum librum Scholiastes graecus Arcadius nempe vel
Pappus vel quod apparet é 19 p. 10 [Euclid X. 19],! Proclus refert
ad Eudoxum Platonis praeceptorem, quem tamen Proclus sodalem
Platonis efficit, et scopum ait esse libri de analogiis, et certé de
solis analogiis agitur libro quinto. Proclus putat totum librum
hunc esse communem Arithmeticae et Geometriae ... . . . .
(Petri Rami Scholarum Mathematicarum libri unus et tngmta,
p. 212 Francofurti, 1599.)

PAGE s59.

Last line Apiororedika Knpla, the name of a collection made by
Porus (Sporus) of Nicaea. See Archimedis Opera, ed. Heiberg,
vol. 11, pp. 264 and 300 : cf. infra pp. 184-5. Dr. Heiberg, how-
ever, distinguishes the xypla of Porus from the «ypla of Aristotle,
and thinks that by the latter is meant his treatise wepi codiorTikdy
é\éyxwv (loc. cit., p. 265).

1 See Commandinus, Euclidss Elementorum, Libri XV., una cum Scholiis
antiguis, fol. 135, p. 2, Pisauri, 1619 ; also Euclidis Elem. Graece ed. ab August,
pars ii., p. 284; and Billingsley’s Euclide, fol. 246, in each of which a certain
lemma, scholium, or annotacion, is attributed to Proclus.
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PAGgE 61.

M. Paul Tannery (Ja Géoméirie Grecque, p. 81) thinks that this
passage of Iamblichus has hitherto been misunderstood. The last
sentence is translated by M. Tannery thus: ¢Voici comment les
Pythagoriciens disent que la Géométrie fut rendue publique.
L’argent des Pythagoriciens fut perdu par 'un d’eux;*! 4 la suite
de ce malheur, on lui accorda de battre monnaie avec la Géométrie,
—et la Géométrie fut appelée Zradition touchant Pythagore’® M.
Tannery infers that the last words of the passage were the title of a
work on Geometry which Eudemus had in his possession, and from
which he derived his information concerning the works of the
Pythagorean School.

I am unable to agree with M. Tannery either as to the inter-
pretation of this passage or in the inference he draws from it.

PaGgEs 64-75.

The first part of this extract—as far as p. 69—is taken by
Simplicius chiefly from Alexander of Aphrodisias, and the re-
mainder—from p. 69 to the end—from the second book of the
History of Geometry of Eudemus.

The Aldine edition of the commentary of Simplicius on the
Physica Auscultatio was published in 1526. In this edition the
text of the fragment of Eudemus is admitted to be very inaccurate.

* He adds the following notes :—

¢1 *AxoBareiv Tiva Thv obolay 1@y Mufayopelwy. On traduit d’ordinaire: ¢ Un
pythagoricien perdit sa fortune.”” Cette interprétation ne tient nullement compte
de la construction de la phrase, ni des mceurs de ’époque 3 laquelle se rapporte
la tradition. Les Pythagoriciens vivaient en communanté; le dépositaire de la
bourse commune la perd, il faut recourir 3 des moyens extraordinaires. Voila
1a légende ; autrement elle ne se tient pas.

€3 ’ExaAeito 3¢ §) yewuerpla xpds Mubaydpov ioropla, ce que Kiessling traduit :
¢ Vocabatur autem Geometria a Pythagora Aistoria.”” 1l semble avoir entendu :
¢¢ Pythagore appelait Géométrie Aistoire’’, interprétation insoutenable a tous les
points de vue.’
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M. Paul Tannery (la Géomélrie Grecque) has noticed the suc-
cessive attempts which have been made to explain and restore
this fragment—a subject which he had treated more fully in the
Mémoires de la Société des Sciences physiques et naturelles de Bordeaux
(Tome v., 2* série, 1883). I give here the passage from the
former work :—

¢ Bretschneider (1870) parvint le premier & expliquer conven-
ablement l'extrait d’Eudéme conservé par Simplicius, et par
reconnaitre qu'aucun paralogisme n’y est attribué & Hippocrate ;
qu’au contraire on trouve dans cet extrait une suite de théorémes
aussi intéressants qu’ irréprochables.

¢ Quoique le document ne remonte pas 4 Hippocrate lui-méme,
il n'en serait pas moins inappréciable pour permettre de juger
des connaissances géométriques de son époque, si malheureuse-
ment Simplicius, sous prétexte d’éclaircir un texte trop concis, ne
s’était pas avisé d’y introduire des explications de son cru et de
malencontreux développements, qui le défigurent singuliérement.
La restitution du texte d’Eudéme devient dés lors assez difficile
pour que Bretschneider ait été entrainé A4 de graves erreurs,
notamment 3 dénier & Hippocrate la connaissance de la pro-
priété caractéristique des segments semblables, & savoir que tous
les angles inscrits y sont égaux.

¢ M. Allman (Hermathena, 1v., No. 7, p. 196-202; 1881) a, le
premier, donné une traduction du texte d’Eudéme, en le débar-
rassant des interpolations de Simplicius, d’aprés des régles dont
I'application peut étre discutée dans les détails, mais dont les
principes sont hors de conteste. L’année suivante (Berlins 1882)
paraissait I’édition critique du Commentaire de Simplicius sur les
quatre premiers Livres de la Physique d’Aristote, avec un texte
singuliérement amélioré et un essai de distinction des inter-
polations dans le fragment d’Eudéme (p. 61-68). Pour cette
distinction, le savant éditeur, H. Diels, s’était aidé des lumiéres
de M. Usener de Bonn, qui, en procédant suivant des principes
analogues 3 ceux de M. Allman, est arrivé A des résultats con-
cordants sur divers points, divergents sur d’autres. M. Diels a,
d’autre part, inséré dans sa Préface, 3 la suite de remarques de
M. Usener (p. XXIII.-XXVI.), quelques pages (XxvI.-xxx1.) d’obser-
vations critiques qu’il m’avait demandées, et dans lesquelles, tout
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en proposant des explications ou des corrections particuliéres pour
certains passages obscurs, j’ai soutenu une partie des conclusions
de M. Allman, en abandonnant les autres.

¢ J’ai repris depuis la question dans les Mémoires de la Société des
Sciences physiques et naturelles de Bordeaux (V,, p. 179-187: 1883),
ol j’ai publié le texte d’Eudéme tel que je le comprenais, accom-
pagné d'une traduction et des observations nécessaires. Enfin,
M. Heiberg (Philologus, XL111. 2, p. 337-344) @ soumis ma restitu-
tion 4 une critique détaillée et proposé ses opinions sur divers
points spéciaux.’ (la Géométrie Grecque, pp. 116-7.)

PAGE 85, NoTrE 73.

Biering, Historia problematis cubi duplicandi, Hauniae, 1884.
Dr. Heiberg, in his notice of Cantor’s ‘ History of Mathematics,’
Revue Critiqgue d Histoire et de Littérature, 16 Mai, 1881, p. 380,
remarks on this work : ¢ Je profite de 'occasion pour rappeler qu’il
a été prouvé, lors;de la soutenance orale de cette thése, qu’elle
n’est quUun impudent plagiat de 'ouvrage de Reimer sur le méme
sujet.’

PAGES 93, 94.

With reference to the question discussed here concerning
Hippias of Elis, see infra, pp. 189 s¢.
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Absurdum, reductio ad, 43, 82, 83,
139, 186, 188.

Academy, §, 85, 118, 123, 157, 178,
179, 211, 214.

Achaeans, 103.

Achilles and tortoise, §5.

adbvarov, dxaywyfh eis, 139 ; Ixep forwy,
186.

Aelian, 1006, 107.

Zschylus, 58. -

Agatharchus, 79.

Agesilaus, 128, 129.

ArTivoypapln, 8I.

Alexander of Aphrodisias, 66, 77, 78,
108, 221.

Alexander the Great, 154, 179.

Alexandria, School of, 1, 2, 200.

Algebra, 16, 48, 70.

Allman, George Johnmston, 116, 192,
222, 223.

Allman, William, 205.

#royor, 3, 47, 83.

Amasis, 9.

Amenemhat 1., 218.

Ameristus (Mamercus), 3, 93

Amphinomus, 155.

Amyclas, 4, 79, 154, 180.

&rdAoyoy, 145.

Analysis, method of geometrical, used
by Eudoxus, 4, 88, 132; defined

- in and used by Euclid, 4, 136, 195,

- 198; known to Pythagoreans, 41;

invented or taught by Plato, 41,
123 ; elaborated or invented by Ar-
chytas, 41, 88, 123; by Theodorus,
41 ; used by Hippocrates, 41,97 ; by
Menaechmus, 88, 160-163 ; a method
of reduction, 140 ; treated of by Pap-
pus, Apollonius, and Aristaeus, 194,
195, 198, 203.

Anaxagoras, 3, 17, 54, 58, 59, 79, 83,
122.

Angles, of isosceles triangle, 8, 10; sum
of, in triangle, 10-13, 24; in semi-
circle, 10, 13, 70, 116; in same seg-
ment, 73, 114; in similar segments,
76; re-entrant, 74 ; trisection of,
88-92, 191. '

Anticleides, 22.

Antiphon, 56, 59, 62, 64-66, 77, 81,
82.

dxaywyh, 41, 58, 59, 89, 97, 139, 140.

Apollodorus (Apollodotus), 8, 25, 26,
130, 132, 177.

Apollonius, on conic sections, 93, 100,
122, 164, 165, 196, 201 ; onloci, 117,
118, 197; on doctrine of analysis,
195, 198 ; on regular solids, 198.

&roréreoua, 29.

Arc, 181.

Arcadius, 220.

Archaic Greek geometrical expressions,
8, 30, 72, 155, 166,

&pxh, 29.
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Index.

Archimedes, Opera, 3, 53, 150 : junior
to Euclid, §; quadrature of parabola,
25, 133; of circle, 47, 59, 82, 183,
187; terminology, 70, 165, 166, 170;
trisection of angle, 9o, 91 ; spirals,
92, 93 ; method of exhaustions, 95,
96, 133, 134 ; mechanics, 110 ; solid
geometry, 133, 134; ref. 57, 59, 82,
8s, 111, 157, 158, 175, 220,

Archippus, 104, 105.

Architas, 35, 108-110.

Archytas, life, 4, 106, 107; relations
with Plato, 4, 106, 148, 172-174,
175 ; doctrine of proportion, 27, 45,
108, 132, 134; numerical expression
of sides of right-angled triangles, 35,
108, 109 ; or Architas, 35, 108-110;
geometrical analysis, 41, 88; Delian

" Problem, 88, 110-114, 133, 140, 141,
152, 157-159, 189, 190; mechanics
and mechanical contrivances, 94, 110,
158, 159, 171-173, 190; mathematical
knowledge of, 114-127, 169, 175,

" 176; relations with Eudoxus, 128,
130-134, 148; continuity of work,

' 205, 206.

Areas and surfaces, geometry of, 7, 16,
28 sg.; around point, 12, 24, 38;
application (excess and defect) of, 24,
25, 41, 43, 122, 170, 171, 211.

Aristaeus, 165, 194-205.

Aristophanes, 26, 42, 78.

Aristotle, gnomonic numbers, 32, 33 ;
ref. to Hippocrates, 57, 58, 61, 100;

. quadrature of circle, 62 sg., 100; ter-

_minology, 70; &xaywyh, 97, 98; toy
invented by Archytas, 107; lost
works, 107; character of Eudoxus,
129; aphorism of, 146; relations
with Alexander the Great, 154 ; with
School of Cyzicus, 154, 178, 179;
astronomical theory, 160, 172 ; square
and oblong numbers, 209 ; ref., 19,
22, 43, 56, 98, 108, 220, 222.

Aristoxenus, 20, 23, 79.

Arithmetic, 21-23, 48-50, 125, 132,
146.

Arneth, 1, 46, 93.

Arrow, flying, 55.

&pri0s, 32, 209.

Asclepius, 109.

Ast, 27, 28.

Astronomy, 7, 8, 17, 21, 23, 125, 126,
142, 148, 149, 160.

&abpperpa, 208, 209.

Asymptotes, 166, 170, 177.

Athenaeus, 107.

Athenaeus of Cyzicus, §, 178.

Acthenians, 102, 105.

Athens, 18, 53, 54, 102,

Actomists, 22, 56.

August, 49, 132, 219, 220.

Aulus Gellius, 110.

Autolycus, 150, 180, 181, 186,

Babylonians, 14, 27, 50.

Ball, W. W. Rouse, 217.

Bentley, 105.

Bibliographical Notes, 1-3, §2, §3,
roz, 150-152, 180, 206, 217.

Biering, 85, 223.

Billingsley, 219, 220.

Birch, 16.

Boeckh, 129, 130, 153, 172, 178.

Boethius. (Boetius), 3, 35, 48, 109.

Brandis, 19.

Bretschneider, notices of works, 1, 2,
§2, 62, 151 ; on determination of dis-
tances by Thales, 14; on squares on
sides of right-angled triangle, 36; on
geometry of Hippocrates, 63, 71-
74, 100 ; on quadratrix, 93, 187, 188;
on Archytas’ solution of Delian
Problem, 123, 125; on proportions
ascribed to Eudoxus, 134; on Eu-
clid’s Elements, 135-137, 202; on
Eutocius’ criticism of Eudoxus, 140;
on Menaechmus, 153, 154 ; do. as to
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conic sections, 166-170; ref., 4, 14,
46, 48, 56, 60, 68, 69, 222.
Bryson, 62, 77, 81, 82.

Callimachus, 128, 130, 131.

Callippus, 153, 160, 172, 179.

Camerer, 36, 146.

Campbell, 208, 210.

Cantor, notices of works, §2, 102, 151;
on Hippias, 94, 189; on Architas,
108, 109; on loci asknown to Archy-
tas, 115, 116, 119; on stereometry of
Plato’s time, 126, 127; on Euclid’s
Elements, 136, 137 ; on invention of
instrument by Menaechmus, 170; on
objection of Plato to geometrical in-
struments, 173 ; on indirect proof by
Deinostgatus, 186; on quadratrix,
94, 191-193; on method of exhaus-
tions, 192 ; on Harpedonaptae, 218;
ref., 60, 123, 135, 200, 223.

Carnot, 139.

Censorinus, 129.

Chaignet, 99, 104.

Chaldaeans, 14, 147.

Chdsles, 13, 26, 46, 93, 119, I5I.

Chonuphis, 129.

Chrysippus, 128, 131.

Cicero, 20, 79, 106, 147, 149.

Circle, properties of, 8, 10, 46, 76, 79,
96, 114, 138, 185-187, 201-204;
problems relating to, 77 ; most beau-
tiful of all plane figures, 28, 46; con-
tact of, 8o, 83; on quadrature of, 62—
75, 77-79, 81, 82, 96, 97, 99, 100,
180-184.

Cissoid, 9o, 155, 156.

Clairaut, 15, 55.

Cleinias, 79.

Clemens, Alexandrinus, 16, 80.

Cleostratus, 129.

Commandinus, 207, 220.

Comte, 8, 15, 16, 48, 148.

Conchoid, g0, 92, 93, 156.

Cone (see also conic sections), 81, 96,
133, 134, 139.

Conic sections, names of, 24, 100, 122,
155, 164, 196; not known to Pytha-
goreans, 46; treated of by Apollonius,
93, 100, 122, 164, 165; by Aristaeus,
196-199 ; discovered by Menaechmus,
115, 123, 155-157, 163, 164, 170,
171, 176, 177 ; employed by him to
solve Delian Problem, 160-164; on
way in which he was led to the dis-
covery, 166-169; discovery related
to work of Archytas, 115, 123, 169;
relations to cone, 164-168, 196, 197.

Contact of circle and of sphere, 80, 83.

Cosmogony, Cosmology, 29, 38, 40, 46,
86, 87, 204, 205.

Counters, 31.

Crotona, 20, 22, §3, 103, 104.

Cube, known to Egyptians, 39; dupli-
cation of (Delian Problem), 84, 85,
110, 111, 140, 157159, 173, 176, 177;
held as one of the Elements, 86, 87;
propositions regarding, 86-88, 202.

Curve (see alSo Line, curved), 180.

Cyclopaedia, English, 188.

Cylinder, 96, r10-114, 119-122, 133,
134, 139, 141, 142, 158.

Cylon, 20.

Cylonians, 104.

Cyzicinus, see Athenaeus.

Cyzicus, School of, 118, 129, 130, 149,
150, 172, 177-79.

Dante, 13.

Data of Euclid, 194, 195.

Daye. 219,

Decagon, 201, 202.

Dee, 219.

Definitions, 23.

Deinostratus, §, 92, 94, 154, 171, 178,
180-193.

Delambre, 147.

Delian Problem, see Cube, duphcauon
of, Proportionals, two mean.

Q2
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Democritus, on Egyptian Harpedo-
naptae, 16, 80 ; atomic philosophy
founded by, §6; on incommensu-
rables, 57, 146; not named by Pro-
clus, 79, 189; Plato’s antagonism
to, 79 ; Education of, 79, 80; mathe-
matical writings of, 8o, 81, 83; on
section of cone, 81; ref., 98, 122,
144, 193.

De Morgan, 3, 147, 212, 219.

Descartes, 48.

Dialectics, 55-57, 144

Diels, 28, 208, 222.

Diogenes Laertius, ignorance of geo-
metry, 10, I4, 190; on views of Py-
thagoras, as to circle and sphere, 28,
46 ; on Plato in relation to analytical
method, 41, 123 ; ref. to Democritus,
57, 79-81; on use by Archytas of
mechanical motion in geometry, 94,
110, 189 ; on Eudoxus, 128-132 ; ref.,
14, 19, 20, 22, 23, 26, 56, 93, 128.

Dionysius, elder, 103, 105, 107 ; younger,
178.

Diophantus, 150, 171. *

Bwopiouds, 4.

Disaster in connection with disclosure
of secrets, 25, 43, 60, 143.

Dodecahedron, 26, 39, 40, 43, 60, 61,
86, 198, 201—-204.

Domninos, 210. -

Dosithess, 95, 96.

Drawing, geometrical, 176.

Duhamel, 140.

Svvauéry, Slvauus, 208.

Duplication of the cube, see Cube.

% &’ §, AB, 72.
Egyptians, invention of geometry by,
2; its elementary character, 7, 15;
- geometry and astronomy learned by
Thales from, 7, 8; tiled pavements
of, 12, 29, 31, 33; ignorant of simi-
.. larity and proportion of figures, 14;
square and level used by, 15; skilled

in practical geometry, 16, 80, 218;
Democritus taught by, 16, 80; cos-
mology of, 29-32, 218; geometry of
Pythagoreans compared with, 28, 39,
47, 78; geometrical facts known to,
7, 26, 29, 33, 37, 38, 39, 43; quadra-
ture of circle sought by, 47, 79, 97 ;
trisection of right angle possible for,
88 ; motions of planets learned by
Eudoxus from, 133, 148; art of
geometrical drawing derived from,
176.

Eisenlohr, 16.

Eleatic School, 54-56.

Elements, natural, represented by re-
gular solids, 38, 40, 86, 87, 204.

Elements, writers of, 4, 5; of Euclid,
terms used in, 4, 25, 65, 209, 210;
construction of Platonic bodies, the
final aim of, 6, 204; propositions
in, referred to Thales, 9, 11, 14; to
School of Pythagoras, 11, 24, 26,
40-44, 47, 145, 211; to Egyptians,
37, 38; to Eudoxus, g6, 132, 134~
140, 145, 146, 211, 212; to Demo-
critus, 146; to Aristaeus, 202; to
Theaetetus, 207, 211, 212 ; reference
to by Simplicius in extract from
Eudemus, 63, 64, 69, 71; Heiberg’s
edition of, 150, 180, 206, 217, 220;
ref,, 35, 36, 45, 49, 57, 72, 82,
208-210, 219, 220.

Eetus, 24, 155, 165, 171,

Ellipse, 24, 100, 122, 155, 156.

Enestrém, 206.

Equation, 48, 171,

Equations, quadratic, 73, 211.

Eratosthenes, proportion as bond of
mathematics, 49; reduction of De-
lian Problem by Hippocrates, 59,
84 ; legend of Delian Problem, 85;
its solution by Archytas, Eudoxus,
and Menaechmus, 111, 158, 159, 173,
190 ; discovery of conic sections by
Menaechmus, 156, 163, 170, 171;



Index. 229

epigram, 156, 157; Plato’s answeu
to Delians, 173, 174; works, 173,
195 ; Mesolabe, 190; ref., 114, 140,
141.

érepdunxes, Erepoufixns, 32, 209, 210,

Euclid (see also Elements), s, §5, 110,
114, 132, 155, 195, 197-199, 291.

Eudemus, historical summary, 2-§5;
application of areas, 24 ; quadrature
of lune, 69-75, 221, 222 ; solution of
Delian Problem by Archytas, 111~
113, 185, 215 ; ref. passim.

Eudoxus, sketch of life, 4, 128-132;
geometrical work of, 45, 88, 96, 111,
132-143, 149-159, 187 ; doctrines in
Euclid’s Elements attributed to, see
Elements; relations with Archytas,
128, 131; with Plato, 128, 129, 147,
148, 159, 172-174, 177, with
Menaechmus, 153; school of
Cyzicus, 129, 130, 149, 150, 178,
179; term hippopede invented by,
142, 156, 157; supposed use of in-
struments by, 159, I7I, 190;
place in history of science, 148-150;
ref., go, 158, 160, 172, 186, 205,
207, 214, 217, 220.

Euripides, 54, 85.

Eutocius, on quadrature of circle, 59;
on solution of Delian Problem by
Archytas, 111-113; by Eudoxus, 140,
141 ; by Menaechmus, 158, 160-163;
by Plato, 173~175; by Sporus, 184,
185 ; on loci, 115-119; on names of
conic sections, 155, 164 ; on use of
instruments in geometry, 163, 170;
ref., 21, 98, 189.

édywror, 65.

Exhaustions, method of, 82, g5, 96,
138, 139, 146, 192, 211.

Fabricius, 60, 61.
Favaro, 116.
Favorinus, 23, 110.

Figures, similar, 14, 15, 25, 44, 75, 76,
143.

Finger, 11.

Flauti, 119, 120, 141.

Flussas, 220.

Friedlein, 3, 108.

Frisch, 49.

Gelder de, 124.

Geminus, 11, 155, 163~165, 191, 192,
218.

Geometry, invented by Egyptians, 2;
no royal road to, §, 154; brought to
Greece by Thales, 3, 7, 19; of Egyp-
tians and Thales compared, 7, 15,
16; of Thales analysed, 10-17;
raised to rank of science by Pytha-
goras, 19, 22 ; of Pythagorean school
analysed, 28-48, 143, 144, 211; of
Pythagoreans and Egyptians com-
pared, 28, 29 ; first published by Hip-
pocrates in Athens, §4; influence of
Eleatic School and of Sophists on
development of, §4-57, I0I, I44—
147; of Hippocrates analysed, 75—
77; of Democritus, 81-83; of
Archytas, 114-116, 122, 123; ser-
vices of Eudoxus to, 148, 149; of
Deinostratus analysed, 185, 186 ; of
Aristaeus analysed, 201, 202,

yvéuwy, 30.

Gnomon, 30-33, 35, 37, 80, 83, 136,
219.

Gnomonic numbers, see Numbers, gno-
monic.

Gow, 151, 157, 165.

ypauuixof, 209.

Greece, see Hellas.

Gregory, D., 155.

Grote, 19, 129-131, 144.

Griippe, 107.

Halley, 11, 118,
Hankel, work by, 2; on reputed know-
ledge of musical proportion by Baby-
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lonians, 27, 28; on Pythagoreans
in reference to square and oblong,
33: to pentagon and dodecahedron,
38; to Euclid's Elements, 43, 145 ;
on Eleatic Philosophy, 354, §5; on
invention of quadratrix, 93, 94; on
method of exhaustions, 95, 192 ; on
method in history of mathematics,
151; ref. 19, 52, 73, 101.

Harmonical proportion, 27, 44, 45.

Harpedonaptae, 16, 8o, 218.

Heath, 150, 180.

Heiberg, works by, §3, 150, 180, 206,
217; on Lemmata of Archimedes,
91 ; on passage from Eutocius, 118;
from Pappus, 199-201; ref. to Eu-
clid’s Elements, 136, 137, 212, 220;
on Marie’s Hist. des Sc. math. et
phys., 151 ; on mathematical terms,
155, 165, 166 ; on description of conic
sections, 171; ref, 114, 158, 175,
192, 220, 223.

Helicon, 133, 172, 177, 178.

Helix, 156.

Hellas, review of events in, 18, 19, 52~
54, 102-106.

Hermias, 179.

Hermotimus, 5, 207.

Herodotus, 18, 19, 103.

Heron, 3, 34, 37, 108, 159, 210.

Hexagon, 12, 24, 40, 65, 76, 202.

Hieronymus, 8, 14.

Hiller, s2.

Hippasus, 25, 27, 42, 45, 6o, 61, 132,
134.

Hippias of Elis, 3, 92-94, 171, 189—
193, 223.

Hippocrates of Chios, biographical
references to, 4, §7-59, 61, 62, 98-
100; first writer of Elements, 4, 58;
quadrature of lunes, 4, 41, 58, 59,
67-75, 99, 100 ; of circle, 59, 62, 67,
68, 96, 97, 99, 100; use of method
of reduction by, 41, 58, 59, 84, 97;
inferences as to geometrical know-

ledge of, 76, 77, 84; disclosure of
Pythagorean secrets by, 58, 60, 61;
reduction of Delian Problem by, 59,
84 ; supposed use of method of ex-
haustions by, 95, 96, 192; term
dwdue: used by, 208; ref. 44, 47,
114, 115, 222.

Hippopede, 133, 142, 143, 156, 157,
217.

Hoche, 3.

Hoefer, 2, 16, 35, 151.

Homer, 78, 141, 156.

Horace, 107, 110.

Horus, 29, 32.

Hultsch, 3, 52, 102, 150, 180, 196-200,
210. Seealso Autolycus, Heron, and
Pappus.

Hyperbola, 24, 90, 100, 119, 122, 164—
166, 170, 171, 177.

Hypsicles, 198, 201-203. i

Iamblichus, on shipwreck of Hippasus,
25, 43, 61 ; on Pythagoreans in refe-
rence to disclosure of secrets, 25, 42,
43, 58, 60, 61 ; to jealousy regarding
Pythagoras, 26, 61; to signs of re-
cognition, 26, 42 ; to maxim quoted,
5I; on proportions, 27, 45, 46, 132,
134; on quadrature of circle, 28;
ref., 20, 45, 77, 98, 99, 100, 135,
171, 221.

Icosahedron, 39, 86, 87, 198, 201-204.

Ideler, 149.

Incommensurables, Irrational quanti-
ties, theory of, discovered by Py-
thagoras, 3, 22, 27, 33, 42, 47, 96,
137-139, 143, 144, 213, 214; treated
of in Elements of Euclid, 42, 43,
138, 145, 146, 207, 211-213; by
Democritus, 80, 83, 144 ; by Eu-
doxus, 96, 139, 145, 211; by Theo-
dorus, 207, 208, 213 ; by Theaetetus,
207, 212, 213; dialogue on, from
Plato’s Zheaetetus, 207-210; diffi-
culties resulting from, 56, 57,73, 145.
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Index Graecitatis, §2, 102.

Infinitesimals, 81-83, 192.

Infinity, 55, 57.

Instruments, geometrical, 15, 158, 159,
163, 170, 172-175, 184, 189, 190,
192,

Tonia, 7, 18, §3.

Ionic School, 12, 17.

Irrational, see Incommensurables.

Isidore, 163, 170.

Isis, 29.

Isocrates, 20.

Isoperimetry, 46.

Italic School, 19.

xauxiAar ypaupal, 111, 132, 140, 141.

Kepler, 26, 32, 35, 45, 49, 135.

Keria (CApiotoreixd xnpla), 59, 185,
220.

Kiessling, 51, 221.

Knoche, 43, 49, 132, 15].

Kiinsberg, 217.

Laertius, see Diogenes.

Laffitte, 8, 11, 17, 98, 188, 189.

Leibnitz, 82, 83.

Lemmata, 9o, 91.

Lemniscate, 142, 143.

Leodamas, 4, 41, 123, 124, 207.

Leon, 4.

Letronne, 129.

Letters, eatly use of, in diagrams, 26,
72; archaic manuer of expression in
denoting lines and points by, 72;
employed by Aristotle to denote
conceptions, 97, 98.

Leucippus, 56, 79.

Level, 15.

Lewes, 19.

Lewis, I0.

Lines, geometry of, founded by Thales,
7, 15; analogous to duad, 24;
Aristotle on indivisible, 56 ; prob-
lems concerning, 76, 77 ; conchoidal,
92 ; mixed, 92, 156 ; curved, 92, 93,

111, 122, 132, 140, 141, 180, 187}
classified by Geminus, 155-157. See
also under Proportionals, Ratio.

Loci, §, 207.

Locus, réwos, 13, 115-119, 19§, 201,
203.

Adyos, 146.

Lucian, 28, 42, 94, 191.

Lune, Lunule, quadrature of, 4, 41, 58,
63, 67-75, 97-100.

Lysis, 104, 105.

Maerker, 157.

Magna Graecia, 18, 19, 53, 102-106.

Mamercus, see Ameristus.

Manaechmus, 153.

Mansion, 212.

Marie, 151.

Marinus, 194.

Martin, 153, 160.

Mathematics, 19, 22, 23.

Matrimony, 29, 218, 219.

Means, see proportion; work by Era-
tosthenes, 195.

Measures and Weights, 23.

Mechanics, 110, 159, 190.

uiixos, 208, 210.

Medmaeus, see Mendaeus.

Menaechmus, relations with Eudoxus,
4, 88, 90, 150, 153, 154, 178, 205;
with Plato, 4, 153, 154, 178; with
Deinostratus, 4, 154, 178, 180; with
Alexander the Great, 154, 179; solu-
tion of Delian Problem by, 88, 114,
116, 124, 158-165, 172-177; conic
sections discovered by, 88, 9o, 155—
157, 163-171, 176, 177; analytical
method used by, 88, 124; on prob-
lem and theorem, 118, 155; iden-
tical with Manaechmus of Suidas and
Eudocia, 153 ; on word element, 154;
on false conversions, 154, 155;
studied philosophy of mathematics,
171; ref. 111, 115, 118, 119, 122,
140, 141, 190.
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Mendaeus (Medmaeus), §.

Menge, 150.

Mesolabe, 190.

Miletus, 7, 18, 53.

Moeris, 22,

Monad, 24.

Montucla, on foundation of doctrine of
Isoperimetry, 46; on expulsion of
Hippocrates by Pythagoreans, 60;
on invention of quadratrix, 92-94,
191 ; on solution of Delian Problem
by Archytas, 119; on Plato, in refe-
rence to method of analysis, 123-4;
ref., 13, 99, I§I.

Motion, 55, 94, 110, I90.

Multiplicity, 55.

Music, 22, 23, 49, 132.

Musical proportion : see Proportion.

Navarro, 106.

Nectanabis, 128, 129.

Neocleides, 4.

Neo-Pythagoreans, 19, 20.

Nesselmann, 151.

Nicias, 105, 106.

Nicomachus, 3, 27, 44, 135, 209.

Nicomedes, 92, 93, 94, 180, I9I.

Nizze, 3, 165, 181.

Numbers, base of Pythagorean philo-
sophy, 2r1; sides of right-angled
triangles expressible by, 26, 27, 33,
34, 108, 109; triangular, 28; gno-
monic, 31-33; square, 31-33, 208-
210; oblong, 32, 33, 209, 210; sum-
mation of the natural, odd and even,
46 ; cyclical, in relation to quadrature
of circle, 78 ; treated of by Democri-
tus, 80; composite, 209 ; prime, 209,
210; linear, 209, 210; solid, 210.
See also under Proportion, Ratio.

vbudns, T Bedpnua s, 218,

Oath, Pythagorean, 28.
Octaéteris, 129.

Octahedron, 39, 86, 203.
Oenopides, 3, 12, 30, §8.
Sxrdywvor, 65.

Orellius, 106.

Orientals, 7, 8, 37.
Osiris, 29.

w, 192,

Pachymeres, 218,

Pamphila, 8, 9, 14.

Pappus, Collectiones (ed. Hultsch), 3,

§2,102; terms and expressions used
by, 65, 75, 118; on trisection of angle,
89, 90; on plane, solid, and linear
problems, 9o ; on quadratrix, 94,
180-184, 188, 190, 191 ; on names of
conic sections, 165 ; relations with
Sporus, 185, 191; on proportion of
circumference to diameter of circles,
187; on Aristaecus the elder, 194-
198; on rdwos dvarvdueros, 194, 195 ;
on inscription of polyhedra in sphere,
202, 203; ref. passim.,

wapaBdArew, wapaBoAf, 24, 25, 171,
177.

Parabola, 24, 25, 100, 119, 122, 133,
160-164, 166, 177.

Paracelsus, 26.

Parallelogram, 112, 114, 119, 120.
Parmenides, 55.

Peletarius, 219.

xnAlxov, 23. .
Pentagon, 39, 40, 45, 65, 143, 198, 201,

202.

Pentagram, 26, 45, 143-144.
Pericles, 54, 103.

wepioads (wepirrds), 32, 33, 209.
wxepipépera, 181,

Perseus, 93, 143, 156.
Perspective, 79, 81, 83.
$avdueva of Euclid, 155.
Philippus Mendaeus, §.
Philistion, 128, 131.
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Philolaus, 22, 62, 80, 86, 100, 106, 144
205.

Philosponus, 33, 58, 61, 62, 173.

Philosophy, Greek, 1, 144, 145; of
Thales, 1, 17; of Pythagoras and
Pythagoreans, 1, 21, 48-50, 86, 87,
178; Ionic, §4, 56; Eleatic, 54-57,
144 ; atomic, §6, §7; of Socrates,
146, 147 ; Eudoxus versed in, 149,
150 ; of mathematics studied by Me-
naechmus, 171; Platonic, 174, 179.

Pheenicians, 50, 53, 54.

Planets, niotions of the, 133.

Plato (NAdrwr), mathematical services
of, 4, 124, 214, 215; relations with
Archytas, 4, 106, 108, 125; with
Theodorus of Cyrene, 61, 124, 207;
with Socrates, 124; with Eudoxus,
128-130, 148, 177, 178; with
Menaechmus, 4, 153, 178; with
Deinostratus, Athenaeus, and Heli-
con of Cyzicus, 178 ; with Theaetetus,
206, 211; School of, in reference to
_conception of loci, 13; on right-
angled triangles with sides expressible
by numbers, 29, 34, 35, 108, 109:
on dissection of figures, 38; on
regular solids, 38, 86; in relation to
method of analysis, 41, 123, 124;
term worefvovoa used by, 75; de-
struction of writings of Democritus
desired by, 79; in relation to the
Pythagoreans, 86, 108, 109, 204;
on solution of Delian Problem,
114, 124, 133, 157-159, 171-176;
on solid geometry, 125, 126; on
order in study of sciences, 125, 126 ;
on ignorance of incommensurables,
126 ; use of instruments in geometry
condemned by, 158, 159, 172-174;
on geometrical conception of num-
bers (from Theactetus), 207~210; ref.,
3, 46, 85, 86, 108, 111, 132, 147,
179, 220. .

wAevpal, 209, 210.

Pliny, 9, 15.

Plutarch, on measurement of pyramids
by Thales, g, 14, 15; on figure simi-
lar to one and equal to another, 25,
44 ; on triangle with sides of 3, 4,
and § parts, 26, 29, 218 ; on Thales
and Hippocrates as merchants, §7;
on Democritus in ref. to section of
cone, 81, 82; oun Pythagorean cos-
mology, 85-87; on Plato in ref. to
Delian Problem, 133, 158, 159, 170,
172-174,177; on Helicon of Cyzicus,
178,

Point, plane round a, 12,24, 38; Py-
thagorean definition of, 24; analo-
gous to monad, 24; determination
of, see Locus.

Points, construction of curves by, 170,
171, 188-190.

Polemarchus, 172, 179.

Polybius, 18, 103.

Polygon, 12, 28, 38, 44, 47, 65, 66, 78,
82,

Polyhedron, 88. See also] Solids,
regular.

Porism, 118.

Porphyrius, 22.

Porus, 185, 220.

woody, 23.

Power, 208, 213.

Prime numbers, 209.

Prism, 88, 96, 133, 134, 138.

Problem and theorem, 10, 118, 155.

Problems, three kinds of, go.

Proclus on History of Geometry, 2-6;
on application of areas, 24, 2§; on
Pythagorean triangles, 34, 35; on
theorem of Pythagoras, 36; on é&ra-
yoyh, 41; on Plato in reference to
analytical method, 123, 124; on
Menaechmus, 154-157; ref. passim.

Progressions, 27, 28, 46.

Projections, 120-122, 141.

. wpoufkns, 209, 210.
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Proportion, doctrine of, 4, 44-50, 108,
132, 143, 145, 146, 211; in theorem
of Thales, 14, 16, 143 ; arithmetical,
geometrical, harmonical, and most
perfect or musical, 27, ¢44-46; dis-
crete and continuous, 140.

Proportional, mean, 40, 43, 84, 117,
214.

Proportionals, two mean, reduction of
Delian Problem to finding, 41, 59;
84 ; in relation to Pythagorean cos-
mology, 85-88, 205; solution by
Archytas, 88, r111-1i4, 158, 159;
by Eudoxus, 88, 111, 133, 158, 159;
by Menaechmus, 88, 111, 158, 160~
163; by Eratosthenes, 158; attri-
buted to Plato, 174, 175.

wp@Toi, 209.

Protractor, 192.

Yevdoypdpnua, 64, 68, 98.

Ptolemy I., 5, 154, 172; IIL, letter of
Eratosthenes to, 59, 85, 110, I14,
133, 140, 157, 173.

Pyramid, height of, measured by
Thales, 8, 9, 14 ; in papyrus Rhind,
16; compared with prism, 88,96, 133,
134, 138; cubature of, 126, 127.
See also Solids, regular, and Tetra-
hedron.

Pythagoras, personal notices of, 19, 20;
relations with Thales, 19, 20, 49;
with Egypt and Egyptians, 20, 50;
Brotherhood of, 20, 53, 54, 102-105;
veneration entertained for, 20, 21,
26; raised mathematics to rank of a
science, 22 ; discovered the irrational
aund the construction of the regular
solids, 3, 22; added arithmetic and
music, 22, 23; employed definitions,
23 ; measures and weights introduced
by, 23; theorem of, 25, 26 ; Pytha-
gorae figura, 26; services of, 50.

Pythagoras and Pythagoreans, mathe-
matical work of, 3, 22-28, 32-5I,
88, 108, 143, 171, 213, 214; in ref.

to Elements of Euclid, see Elements ;
in relation to Egyptians, 28, 29, 37,
38, 78, 176; difficulties in treating
of, 20, 21; intimate connection be-
tween science and philosophy of, 21,
22; did not commit their doctrines
to writing, 21, 99; doctrines of, pre-
served secret, 21, 22, 43; disclosure
of ditto, 25, 43, 58, 60, 61, 143;
publication of, first made by Philo-
laus, 22, 100, 144; signs and sym-
bols used by, 26, 42, §1, 143, 144;
oath of, 28; guadrivium, 23, 48;
cosmology of, 38, 40, 86, 87, 204,
205 ; maxim of, 51 ; silent meditation
enjoined by, 89, 99; axovaTukol,
uadnuarwcol, 99; Pythagorean num-
bers, 209 ; ref. passim.

Quadrant, 181, 184, 186.

Quadratrix, 92-94, 171, 180-184, 186-
193.

Quadrature, of the circle, see Circle;
of lunes, see Lune ; of the parabola,
25, 133.

Quadrivium, 48.

Quantity, discrete and continuous, 23,
48.

Ramus, 204, 220.

Ratio (see Proportion), extreme and
mean (sectio aurea, proportio divina),
40, 42, 45, 135, 137, 138, 143, 201.

Rectangle, 43, 44, 210.

Rectification, of the circle, 186, 187.

Reductio ad absurdum, 43, 139, 186,
188.

Reduction (see also &raywy4), 87, 88,
92, 97, 98.

Reimer, 85, 165.

Rhabdas, 206.

Rhind, papyrus, 16, 47, 70.

Ritter, 19.

Root, 208, 213.
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Saint-Hilaire, 208.

Schiaparelli, 142, 153, 157.

Schmidt, 153, 154, 158.

Science, 1, 3, 7, 8, 22, 148-150.

Section, 4, 132, 135.

Segment, 67, 75, 76.

Segments, similar, 69-76.

Seneca, 133.

Serenus, 154.

Sextus, 28.

Ship at sea, determination of distance
of, 9, 14.

Sigps, secret, 26, 42, 144.

Simplicius, on Hist. Geom. of Eudemus,
21, 62-64, 69-75, 101, 123, 208, 223 ;
on gnomons, 33; on quadrature of
circle and of lunes, 62-75, 221, 222 ;
on hippopede, 133; on oaipa: dve-
Alrrovoas, 160, 172; term duvduet
used by, 208 ; ref., 28, 6o, 62, 77, 78.

Smith, 3, 22, §3, 130, 147, 212, 219.

Socrates, 22, 61, 62, 77, 92, 100, 124—
126, 147, 206,

Socrates the younger, 208-210.

Solids, measurement of, in papyrus
Rhind, 16 ; Plato on study of, 12§,
126,

Solids, regular, construction of by Py-
thagoras, 3, 22, 25, 28, 38, 39, 40, 47
204 ; final aim of Euclid’s Elements,
6, 204, 213; in Egyptian architecture,
28, 39; in Pythagorean cosmology,
38, 86-88, 204; Aristacus on, 198
201-205 ; Apollonius on, 198; Pap-
puson, 202, 203 ; in relation to vege-
table structure, 205; treated of by
Theaetetus, 212, 213.

Sophists, 55, 101.

Sotion, 128, 130, 177.

Speusippus, 118, 155, 209, 211.

opaipat dveAlrTovoa, 160, 172,

opatpikd, 23.

Sphere, most beautiful solid, 28, 46;
contact of, 80, 83; solids inscribed
in, 198, 201-204, 213.

Spheres, in triplicate ratio of diame-
ters, 96, 134, 139; concentric, 142,
149, 160; deferent and restituent,
160.

Spiral, 92.

Spirics, 93, 143, 156.

Sporus, 184, 185, 187, 188, 191, 220.

Square, carpenter’s (see also Gnomon),
12, 15, 30 ; generation of, 32, 33; do
and that of oblong distinguished,
32; dissection of, 36-38; incom-
mensurability of side and diagonal
of, 43, 56, 144. See also Circle,
quadrature of.

Squares, round a point, 12, 24, 38;
law of three [theorem of Pythagoras),
25, 28, 35-38, 43, 44; problems
and theorems concerning, 43, 44, 76,
137, 138, 201, 202.

orepeol, 211, See also rdwor.

Stereometry, 84, 88, 125-127.

Stesichorus, 3.

Stobaeus, 32, 33, 154.

groixeia kovikd, 199, 200.

aroixeiov, 154.

Suidas, 106, 107, 153, 2I1.

oduperpa, 208.

olumrrwua, 176.

awvaywyth, Mdrxov, 200,

owvédpia, 53, 103.

abvleros, 209,

Superficies, 24.

Surfaces, see Areas.

Suter, 2, 93.

Synthesis, 4, 123, 136, 195, 203.

Tannery, on projections in Archytas’
solution of Delian Problem, 121; on
xauwiAar ypauual, I4I; on incom-
mensurability, 144 ; on construction
of curves, 171; on Sporus, 185; on
Hippias in reference to quadratrix,
189-193 ; on polyhedra inscribed in
sphere, 202, 203; on 3draus and
Suvauévy, 208; works by, 150-152,
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206, 217; on passage in Iamblichus,
221 ; on fragment of Eudemus, 222,
223; ref., 210, 212, 218.

Taylor, Thomas, 10, 51.

Taylor, Charles, 53, 60, 100.

Tennulius, 23.

Terms, Greek mathematical, 65, 69, 70,
155, 156, 159, 165, 166, 171, 177,
180, 181, 208-211.

TeTpaywviouds, Tod klxAov, 79.

rerpaywvifovoa, 181.

rerpdywror, 32, 33, 65, 209.

rerpdywvos &piuds, 209.

retpdwAevpor, 65.

Tetrahedron, 38, 39, 86. See Pyramid.

Thales, founder of Greek philosophy
and science, 1 ; practical geometryand
astronomy introduced from Egypt
by, 3, 7; geometry of lines created
by, 7, 15 ; notices regarding life and
work of, 7, 8, 9; discussion on geome-
try of, 10-17; theorems of, 8, 10,
14 ; foundations of algebra laid by,
16, 48 ; ref., 19, 45, 49, 50, 57, 72,
115, 116.

Theaetetus, 4, 5, 107, 206-214.

Themistius, 62, 77.

Theodorus of Cyrene, disclosure of
Pythagorean secrets and expulsion of,
58, 60, 61; relations with Plato, 41,
61, 124, 125, 207; with Theaetetus
206, 207 ; on geometrical conception
of numbers, 207-210; on incommen-
surables, 208, 213 ; ref., 4, 58, 215.

Theodorus of Samos, 15.

Theodosius, 3.

Theologumena Arithmetica, 28, 210.

Theomedon, 128, 131.

Theon of Alexandria, 220.

Theon of Smyrna, 21, §2, 109, 153,
160, 209. .

Theophrastus, 21.

Theudius, §.

Thucydides, 102, 105.

Oedpnua Tis voudys, 218.

Ouvpeds, 155, 156.

Thurii, 103, 105.

Tiedemann, 33.

Tiled Pavement, 12, 29, 30, 33.

Timaeus, 38.

Tufjua, 69, 159.

75 ¢¢’ od, K, 72.

Toueds, 69.

Téwoi arepeof, 119, 195, 196, 199, 200,
203.

Téwos (see Locus), &vaAvduevos, 118,
194, 195, 198, 203 ; &oTpovouoluevos
194.

Tore, 119, 121, 122, I41.

Trapezium, 70, 77.

Triangle, isosceles, 8, 10-12, 30, 38,
40, 42, 76, 164, 214; inscribed in
circle, 8, 10, 13, 77; right-
angled, 8, 10-13, 1§, 42, 114; ditto
with sides expressible by numbers
(Pythagorean), 26, 27, 29, 33-35,
42, 108, 109, 214; squares on sides
of (theorem of Pythagoras), 25, 26,
35-38, 214; determined by base
and base angles, 9, 13 ; dissection of,
10, 12, 38; sum of angles in, 10-13,
24, 164 ; equilateral, 10-12, 24, 38,
39, 76, 164, 202; scalene, II, 38,
164, 214 ; equiangular, 14, 35, 76,
143; triple interwoven, see Penta-
gram ; perfect, 28; most beautiful,
29, 38, 214; obtuse-angled, 76; of
icosahedron inscribed in sphere, 198,
201, 203, 204.

Triangles, similar, 9, 14, 15, 35, 49,
74, 114, 143.

Triangular numbers, 28.

Trisection of angle, 88-92, 191.

Tschimhausen, 188.

dyiela, 26.

Ueberweg, 19, 104.
imevavria, 27, 44.
SwepBord), 24, 166, 171,
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dxodoxh, 29. Vitruvius, 26, 79.

tmotefyvovoa, 75. Volumes, 16, 83, 134.
Usener, 222.

Wilkinson, 12, 29, 3I.
‘Valckenaer, 85.

Valerius Maximus, 110.

Vegetables, mathematical connection

| Xenophanes, 19.
Xenophon, 77, 124, 142, 156, 157.

_between parts of, 205. Zeller, 21, 86, 104, 153, 178, 191.
Vieta, 92 Zeno, 54, 55. 144, 145.
Villoison, 58, 61. Zeuthen, 180, 206.

THE END.
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