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PREFACE.

HIS book is the reproduction of a Paper, the

several parts of which appeared in Hermathena

during the last eleven years. The favourable recep

tion which from the first it met with on the part of

many competent authorities, as well in this country

as on the Continent, and the desire which has been

expressed in several quarters that the Articles should

be collected and published in a volume, have led to

this publication.

I have prefixed headings to the chapters, and

introduced some additional diagrams. I have also

added some notes and an index. Some changes, too,

were necessitated by the new form of the Work ; and

I have made a few corrections, which are indicated

for the most part by brackets. With these exceptions

the book is textually the same as the Paper in Her

mathena. In this Paper great pains were taken to

ensure accuracy in the references : these I have since

checked, and I trust that they will now be found

quite reliable.

 



vi Preface.

It has been, throughout, my aim to state clearly

the facts as known to us from the original sources,

and to make a distinct separation between them and

conjectures, however probable the latter might be.

The bust in the frontispiece is taken from

Gronovius, Thesaurus Graecarum Antiquitatum, Vol.

II., Tab. 49. The inscription under it in the

engraving is :—

ARCHYTAS

Pythagoricus Mechanicis Clarus

Ex Nummo aereo apud Fulvium Ursinum.

Ample references are given in the notes to the

authors whose works I have studied.

It only remains for me now to express my warmest

thanks and acknowledgments, in the first place, to

my friend Dr. John K. Ingram, Senior Fellow of

Trinity College, Dublin, to whom this Work from

its inception and during its course is much indebted.

Indeed it would scarcely have been written but for

the hospitable reception afforded to it in the pages of

Hermathena, which periodical, edited by Dr. Ingram,

enabled me to publish the results of my labours

gradually. In the midst of his many and arduous

duties, and of his own important literary work, he

has been always ready to assist me by his kind en

couragement and sound judgment.



Preface. vii

I have, in the next place, to acknowledge my great

obligations to my late friend and colleague Dr. John

F. DavIes, Professor of Latin in Queen's College,

Galway, whose recent death I deplore. In the later

Articles in Hermathena I was much aided by his

counsel and valuable suggestions : he kindly super

vised all the translations that were not purely mathe

matical ; he carefully revised the proofs, and added

some critical notes. Nor can I close this reference

to Dr. DavIes without dwelling for a moment on

his rare qualifications as a scholar, his disinterested

love of learning, and the nobleness of his personal

character.

In conclusion, I have to express my thanks to

the Provost and Senior Fellows of Trinity College,

Dublin, for including this Work in the Dublin Uni

versity Press Series.

GEORGE J. ALLMAN.

Queen's College, Galway,

January 10th, 1889.



ERRATA.

Page 49, note 77, for Dr. h. read Dr. Ch.

Page 114, note 35, „ solution ,, solutions.

Page 122, note 47, „ sj* „

Page 140, line 23, ,, discreet ,, discrete.
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GREEK GEOMETRY

FROM

THALES TO EUCLID.1

INTRODUCTION.

Object of this Work.—Authorities on the Early History of Geometry.—The

Historic Summary of Proclus.

IN studying the development of Greek Science, two

periods must be carefully distinguished.

The founders of Greek philosophy—Thales and Pytha

goras—were also the founders of Greek Science, and from

the time of Thales to that of Euclid and the foundation of

the Museum ofAlexandria, the development of science was,

for the most part, the work of the Greek philosophers.

With the foundation of the School of Alexandria, a second

period commences ; and henceforth,- until the end of the

scientific evolution of Greece, the cultivation of science

1 It has been frequently observed, and is indeed generally admitted, that the

present century is characterised by the importance which is attached to historical

researches, and by a widely diffused taste for the philosophy of history.

In Mathematics, we have evidence of these prevailing views and tastes in two

distinct ways :—

i°. The publication of many recent works on the history of Mathematics, e.g.—

Arneth, A., die Geschichte der reinen Mathematik, Stuttgart, 1852 ;

*Bretschneider, C. A., die Geometrie und die Geometer vor Euklides, Leipzig,

B



2 Greek Geometryfrom Thales to Euclid.

was separated from that of philosophy, and pursued for

its own sake.

In this work I propose to give some account of the pro

gress of geometry during the first of these periods, and also

to notice briefly the chief organs of its development.

For authorities on the early history of geometry we are

dependent on scattered notices in ancient writers, many of

which have been taken from a work which has unfortu

nately been lost—the History of Geometry by Eudemus of

Rhodes, one of the principal pupils of Aristotle. A sum

mary of the history of geometry during the whole period

of which I am about to treat has been preserved by Pro-

clus, who most probably derived it from the work of

Eudemus. I give it here at length, because I shall fre

quently have occasion to refer to it in the following

pages.

After attributing the origin of geometry to the Egyp

tians, who, according to the old story, were obliged to in

vent it in order to restore the landmarks which had been

destroyed by the inundation of the Nile, and observing

that it is by no means strange that the invention of the

sciences should have originated in practical needs, and that,

1870; Suter, H., Geschichte der mathematischen Wissenschaften (1st Part),

Zurich, 1873 , *Hankel, H., zur Geschichte der Mathematik in AUerthum und

Mittel-alter, Leipzig, 1874 (a posthumous work) ; *Hoefer, F., Histoire des Mathi-

matiques, Paris, 1874. (This forms the fifth volume by M. Hoefer on the

history of the sciences, all being parts of the Histoire Universelle, published

under the direction of M. Duruy.) In studying this subject, I have made use of

the works marked thus*. Though the work of M. Hoefer is too metaphysi

cal and is not free from inadvertencies and even errors, yet I have derived

advantage from the part which concerns Pythagoras and his ideas. Hankel's

book contains some fragments of a great work on the History of Mathematics,

which was interrupted by the death of the author. The part treating of the

mathematics of the Greeks during the first period—from Thales to the founda

tion of the School of Alexandria—is fortunately complete. This is an excellent

work, and is in many parts distinguished by its depth and originality.

The monograph of M. Bretschneider is most valuable, and is greatly in

advance of all that preceded it on the origin of geometry amongst the Greeks.

He has collected with great care, and has set out in the original, the fragments
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further, the transition from sensual perception to reflection,

and from that to knowledge, is to be expected, Proclus goes

on to say that—

Thales, having visited Egypt, first brought this know

ledge into Greece; that he discovered many things himself,

and communicated the beginnings of many to his suc

cessors, some of which he attempted in a more abstract

manner (Kado\iK<iiripov), and some in a more intuitional or

sensible manner {al<rdririKwripov).

After him, Ameristus [or Mamercus], brother of the

poet Stesichorus, is mentioned as celebrated for his zeal

in the study of geometry; and Hippias of Elis has recorded

that he gained some reputation for his geometry.

After them Pythagoras changed it into the form of a

liberal science, regarding its principles in a purely abstract

manner, and investigated its theorems from the immaterial

and intellectual point of view (auAwc Kai votpdo) ; he also

discovered the theory of incommensurable quantities (tG>v

aXoywv Trpayfiartiav), and the construction of the mundane

figures [the regular solids].

After him, Anaxagoras of Clazomenae contributed

much to geometry, as also did Oenopides of Chios, who

was somewhat junior to Anaxagoras ; and Plato has

relating to it, which are scattered in ancient writers : I have derived much aid

from these citations.

2°. New editions of ancient Mathematical works, some of which had become

extremely scarce, e. g.—

Theodosii, Sphaericorum libritres, Nizze, Berolini, 1852 ; Nicomachi Geraseni,

Introductions Arithmeticae, lib. II., Hoche, Lipsiae, 1866 (Teubner) ; Boetii de

Inst. Arithm., &*c, ed. G. Friedlein, Lipsiae, 1867 (Teubner) ; Procli Diadochi

in primum Euclidis Elementorum librum commentarii, ex recog. G. Friedlein,

Lipsiae, 1873 (Teubner) ; Heronis Alexandrini Geometricorum et Stereometri-

corum Reliquiae e libris manuscriptis, edidit F. Hultsch, Berolini, 1864 ; Pappi

Alexandrini Collectiones quae supersunt e libris manuscriptis Latina interpreta

tion et commentariis instruxit F. Hultsch, vol. I., Berolini, 1876: vol. II., ib.,

1877.

Occasional portions only of the Greek text of Pappus had been published at

various times (see De Morgan in Dr. W. Smith's Dictionary of Biography). An

Oxford edition, uniform with the great editions of Euclid, Apollonius, and

Archimedes, published in the last century, has been long looked for.

B 2



4 Greek Geometryfrom Thales to Euclid.

mentioned them in his " Rivals " as having won fame by

their mathematics.

After these, Hippocrates of Chios, who found the

quadrature of the lune, and Theodorus of Cyrene became

famous in geometry. Of those whose names have come

down to us, Hippocrates is the first writer of Elements.

Plato, who lived after them, contributed to the pro

gress of geometry, and of the other mathematical sciences,

through his study of these subjects, and through the

mathematical matter introduced in his writings. Amongst

his contemporaries were Leodamas of Thasos, Archytas of

Tarentum, and Theaetetus of Athens, by all of whom

theorems were added or placed on a more scientific

basis.

To Leodamas succeeded Neocleides, and his pupil was

Leon, who added much to what had been done before.

Leon also composed Elements, which, both in regard to the

number and the value of the propositions proved, are put

together more carefully ; he also invented that part of the

solution of a problem called its determination (Siopiafiog)—

a test for determining when the problem is possible and

when impossible.

Eudoxus of Cnidus, a little younger than Leon and a

companion of Plato's pupils, in the first place increased

the number of general theorems, added three proportions

to the three already existing, and also developed further

the things begun by Plato concerning the section,2 making

use, for the purpose, of the analytical method (rate ava-

Amyclas of Heraclea, one of Plato's companions, and

Menaechmus, a pupil of Eudoxus and also an associate

8 Does this mean the cutting of a straight line in extreme and mean ratio,

" sectio aurea " ? or is the reference to the invention of the conic sections ? Most

probably the former. In Euclid's Elements, lib. XIII., the terms analysis and

synthesis are first used and defined by him in connection with theorems relating

to the cutting of a line in extreme and mean ratio. See Bretschneider, die

Geometrie vor Euklides, p. 1 68.
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of Plato, and his brother, Deinostratus, made the whole

of geometry more perfect. Theudius of Magnesia appears

to have been distinguished in mathematics, as well as

in other branches of philosophy, for he made an excellent

arrangement of the Elements, and generalized many parti-

cular propositions. Athenaeus of Cyzicus [or Cyzicinus of

Athens] about the same time became famous in other

mathematical studies, but especially in geometry. All

these frequented the Academy, and made their researches

in common.

Hermotimus of Colophon developed further what had

been done by Eudoxus and Theaetetus, discovered much

of the Elements, and wrote something on Loci. Philip-

pus Mendaeus [Medmaeus], a pupil of Plato, and drawn by

him to mathematical studies, made researches under Plato's

direction, and occupied himself with whatever he thought

would advance the Platonic philosophy. Thus far those

who have written on the history of geometry bring the

development of the science.3

Proclus goes on to say, Euclid was not much younger

than these ; he collected the Elements, arranged much of

what Eudoxus had discovered, and completed much that

had been commenced by Theaetetus; further, he substi

tuted incontrovertible proofs for the lax demonstrations

of his predecessors. He lived in the times of the first

Ptolemy, by whom, it is said, he was asked whether there

was a shorter 'way to the knowledge of geometry than by

his Elements, to which he replied that there was no royal

road to geometry. Euclid then was younger than the

disciples of Plato, but elder than Eratosthenes and Archi

medes—who were contemporaries—the latter of whom

mentions him. He was of the Platonic sect, and familiar

5 From these words we infer that the History of Geometry by Eudemus is most

probably referred to, inasmuch as he lived at the time here indicated, and his

history is elsewhere mentioned by Proclus.—Proclus, ed. G. Friedlein, pp. 299,

333, 352, 379-
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with its philosophy, whence also he proposed to himself

the construction of the so-called Platonic bodies [the

regular solids] as the final aim of his systematisation

of the Elements.4

4 Procli Diadochi in primum Euclidis Elementorum librum commentarii. Ex

recognitione G. Friedlein. Lipsiae, 1873, pp. 64-68.
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CHAPTER I.

THALES.

The founder of Greek Geometry.—Characteristic feature of his work.—Distinction

between Greek Science and the Science of the Orientals.—Notices of the

geometrical work of Thales. — Inferences from these notices as to his

geometrical knowledge.—Importance of his work.—The further progress of

Geometry was not due to his successors in the Ionic School.

The first name, then, which meets us in the history of

Greek mathematics is that of Thales of Miletus (640-

546 B.C.). He lived at the time when his native city, and

Ionia in general, were in a flourishing condition, and when

an active trade was carried on with Egypt. Thales himself

was engaged in trade, is said to have resided in Egypt,

and, on his return to Miletus in his old age, to have brought

with him from that country the knowledge ofgeometry and

astronomy.

To the knowledge thus introduced he added the capital

creation of the geometry of lines, which was essentially

abstract in its character. The only geometry known to the

Egyptian priests was that of surfaces, together with a

sketch of that of solids, a geometry consisting of some

simple quadratures and elementary cubatures, which they

had obtained empirically ; Thales, on the other hand, intro

duced abstract geometry, the object of which is to establish

precise relations between the different parts of a figure, so

that some of them could be found by means of others in a

manner strictly rigorous. This was a phenomenon quite

new in the world, and due, in fact, to the abstract spirit of

the Greeks. In connection with the new impulse given to

geometry, there arose with Thales, moreover, scientific

astronomy, also an abstract science, and undoubtedly a

Greek creation. The astronomy of the Greeks differs from

that of the Orientals in this respect, that the astronomy of
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the latter, which is altogether concrete and empirical, con

sisted merely in determining the duration of some periods,

or in indicating, by means of a mechanical process, the

motions of the sun and planets, whilst the astronomy of the

Greeks aimed at the discovery of the geometric laws of the

motions of the heavenly bodies.1

The following notices of the geometrical work of Thales

have been preserved :—

[a). " He is reported to have first demonstrated that the

circle was bisected by its diameter";*

(b). He is said first to have stated the theorem that the

angles at the base ofevery isosceles triangle are equal, "or,

as in archaic fashion he phrased it, like {ofioiai)"

(c) . Eudemus attributes to him the theorem that when

two straight lines cut each other, the vertically opposite

angles are equal ; 4

(d) . " Pamphila5 relates that he, having learned geo

metry from the Egyptians, was the first person to describe

a right-angled triangle in a circle ; others, however, of

whom Apollodorus, the calculator (6 XoytariKog), is one, say

the same of Pythagoras " ; '

(e) . " He never had any teacher except during the time

when he went to Egypt and associated with the priests.

Hieronymus also says that he measured the pyramids,

making an observation on our shadows when they are of

1 The importance, for the present research, of bearing in mind this abstract

character of Greek science consists in this, that it furnishes a clue by means of

which we can, in many cases, recognise theorems of purely Greek growth, and

distinguish them from those of eastern extraction. The neglect of this considera

tion has led some recent writers on the early history of geometry greatly to

exaggerate the obligations of the Greeks to the Orientals; whilst others have

attributed to the Greeks the discovery of truths which were known to the

Egyptians. See, in relation to the distinction between abstract and concrete

science, and its bearing on the history of Greek Mathematics, amongst many

passages in the works of Auguste Comte, Systeme de Politique Positive, vol. HI.,

ch. iv., p. 297, sg., and vol. I., ch. i., pp. 424-437; and see, also, les Grands

Types de VHumaniti, par P. Laffitte, vol. II., Lecon isieme, p. 280, sg.—Appre

ciation de la Science Antique.
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the same length as ourselves, and applying it to the pyra

mids."' To the same effect Pliny—" Mensuram altitudinis

earum omnemque similem deprehendere invenit Thales

Milesius, umbram metiendo, quia, hora par esse corpori

solet ;"8

(This is told in a different manner by Plutarch. Niloxe-

nus is introduced as conversing with Thales concerning

Amasis, King of Egypt.—" Although he [Amasis] admired

you [Thales] for other things, ygt he particularly liked the

manner by which you measured the height of the pyramid

without any trouble or instrument ; for, by merely placing

a staff at the extremity of the shadow which the pyramid

casts, you formed two triangles by the contact of the sun

beams, and showed that the height of the pyramid was to

the length of the staff in the same ratio as their respective

shadows ").9

(_/). Proclus tells us that Thales measured the distance

of vessels from the shore by a geometrical process, and that

Eudemus, in his history of geometry, refers the theorem

Eucl. I. 26 to Thales, for he says that it is necessary to use

this theorem in determining the distance of ships at sea

according to the method employed by Thales in this inves

tigation ;10

{g). Proclus, or rather Eudemus, tells us in the passage

quoted above in extenso that Thales brought the know

ledge of geometry to Greece, and added many things,

1 Proclus, ed. Friedlein, p. 157.

s Hid, p. 250.

* Ibid, p. 299.

s Pamphila was a female historian who lived at the time of Nero ; an Epi-

daurian according to Suidas ; an Egyptian according to Photius.

6 Diogenes Laertius, I., c. i., n. 3, ed. C. G. Cobet, p. 6.

7 6 'lepdvvfios Kal iKfierprjeai <pijffiv avrbv rhs irvpafiiSas 4K rrjs aKias

iraparripJiaavra ote ijfiiv iaofieyedeis eiffi. Diog. Laert., I., c. i., n. 6, ed. Cobet,

p. 6.

8 Plin. Nat. Hist- xxxvi., 17.

» Plut. Sept. Sap. Conviv. 2. vol. III., p. 174, ed. Didot.

10 Proclus, ed. Friedlein, p. 352.
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attempting some in a more abstract manner, and some

in a more intuitional or sensible manner."

Let us now examine what inferences as to the geome

trical knowledge ofThales can be drawn from the preced

ing notices.

First inference.—Thales must have known the theorem

that the sum of the three angles of a triangle is equal to

two right angles.

Pamphila, in (d), refers to the discovery of the property

of a circle that all triangles described on a diameter as

base, with their vertices on the circumference, have their

vertical angles right." ;

Assuming, then, that this theorem was known to Thales,

he must have known that the sum of the three angles of

any right-angled triangle is equal to two right angles ; for,

if the vertex of any of these right-angled triangles be con

nected with the centre of the circle, the right-angled tri

angle will be resolved into two isosceles triangles ; and

since the angles at the base of an isosceles triangle are

equal—a theorem attributed to Thales (3)—it follows that

the sum of the angles at the base of the right-angled tri

angle is equal to the vertical angle, and that therefore the

11 Proclus, ed. Friedlein, p. 65.

is This is unquestionably the discovery referred to. The manner in which it has

been stated by Diogenes Laertius shows that he did not distinguish between a

problem and a theorem ; and further that he was ignorant of geometry. To this

effect Proclus :—" When, therefore, anyone proposes to inscribe an equilateral

triangle in a circle he proposes a problem ; for it is possible to inscribe one that

is not equilateral. But when anyone asserts that the angles at the base of an

isosceles triangle are equal, he must affirm that he proposes a theorem ; for it is

not possible that the angles at the base of an isosceles triangle should be unequal

to each other. On which account if anyone, stating it as a problem, should say

that he wishes to inscribe a right angle in a semicircle, he must be considered as

ignorant of geometry, since every angle in a semicircle is necessarily a right

one."—Taylor's Proclus, vol. 1., p. no. Procl. ed. Friedlein, pp. 79, 80.

Sir G. C. Lewis has subjected himself to the same criticism when he says—

"According to Pamphila, he first solved the problem of inscribing a right-angled

triangle in a circle."—G. Cornewall Lewis, Historical Survey of the Astronomy

of the Ancients, p. 83.
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sum of the three angles ofthe right-angled triangle is equal

to two right angles. Further, since any triangle can be

resolved into two right-angled triangles, it follows imme

diately that the sum of the three angles of any triangle is

equal to two right angles. If, then, we accept the evidence

of Pamphila as satisfactory, we are forced to the conclusion

that Thales must have known this theorem. No doubt the

knowledge of this theorem (Euclid L, 32) is required in the

proofgiven in the Elements of Euclid of the property of the

circle (III., 31), the discovery of which is attributed to

Thales by Pamphila, and some writers have inferred hence

 

that Thales must have known the theorem (I., 32).13 Al

though I agree with this conclusion, for the reasons given

above, yet I consider the inference founded on the demon

stration given by Euclid to be inadmissible, for we are in

formed by Proclus, on the authority of Eudemus, that the

theorem (Euclid I., 32) was first proved in a general way by

the Pythagoreans, and their proof, which does not differ

substantially from that given by Euclid, has been preserved

by Proclus.14 Further, Geminus states that the ancient

geometers observed the equality to two right angles in

each species oftriangle separately, first in equilateral, then

in isosceles, and lastly in scalene triangles,15 and it is plain

13 See P. Laffitte, op. cit., vol. II., p. 291. Cf. F. A. Finger, de Primordiis

Geometriae apud Graecos, p. 20, Heidelbergae, 1831.

11 Proclus, ed. Friedlein, p. 379.

15 Apollonii Conica, ed. Halleius, p. 9, Oxon. 17 10.
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that the geometers older than the Pythagoreans can be no

other than Thales and his successors in the Ionic school.

If I may be permitted to offer a conjecture, in confor

mity with the notice of Geminus, as to the manner in which

the theorem was arrived at in the different species of tri

angles, I would suggest that Thales had been led by the

concrete geometry of the Egyptians to contemplate floors

covered with tiles in the form of equilateral triangles or

regular hexagons,16 and had observed that six equilateral

triangles could be placed round a common vertex; from

which he saw that six such angles made up four right

angles, and that consequently the sum of the three angles

of an equilateral triangle is equal to two right angles (c).

The observation of a floor covered with square tiles

would lead to a similiar conclusion with respect to the

isosceles right-angled triangle.17 Further, if a perpen

dicular be drawn from a vertex of an equilateral triangle

on the opposite side,18 the triangle is divided into two

right-angled triangles, which are in every respect equal

to each other, hence the sum of the three angles of each of

these right-angled triangles is easily seen to be two right

angles. If now we suppose that Thales was led to examine

whether the property, which he had observed in two dis

tinct kinds of right-angled triangles, held generally for

all right-angled triangles, it seems to me that, by com-

16 Floors or walls covered with tiles of various colours were common in Egypt.

See Wilkinson's Ancient Egyptians, vol. II., pp. 287 and 292.

11 Athough the theorem that "only three kinds of regular polygons—the

equilateral triangle, the square, and the hexagon—can be placed about a point so

as to nil a space," is attributed by Proclus to Pythagoras or his school (iari t&

dedpnpa toDto Tlvdayipaov : Proclus, ed. Friedlein, p. 305), yet it is difficult to

conceive that the Egyptians—who erected the pyramids—had not a practical

knowledge of the fact that tiles of the forms above mentioned could be placed so

as to form a continuous plane surface.

18 Though we are informed by Proclus (ed. Friedlein, p. 283), that Oenopides

of Chios first investigated (itfirriaev) this problem, yet Thales, and indeed the

Egyptians, who were furnished with the square, could not be ignorant of its

mechanical solution. Observe that we are expressly told by Proclus that Thales

attempted some things in an intuitional or sensible manner.
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pleting the rectangle and drawing the second diagonal, he

could easily see that the diagonals are equal, that they

bisect each other, and that the vertical angle of the right-

angled triangle is equal to the sum of the base angles.

Further, if he constructed several right-angled triangles

on the same hypotenuse he could see that their vertices

are all equally distant from the middle point of their com

mon hypotenuse, and therefore lie on the circumference

of a circle described on that line as diameter, which is the

theorem in question. It may be noticed that this remark

able property of the circle, with which, in fact, abstract

geometry was inaugurated, struck the imagination of

Dante :—

" O se del mezzo cerchio far si puote

Triangol si, ch'un retto non avesse."

Par. c. xiii. 101.

Second inference.—The conception of geometrical loci

is due to Thales.

We are informed by Eudemus (f) that Thales knew

that a triangle is determined if its base and base angles

are given ; further, we have seen that Thales knew that,

if the base is given, and the base angles not given sepa

rately, but their sum known to be a right angle, then there

could be described an unlimited number of triangles

satisfying the conditions of the question, and that their

vertices all lie on the circumference of a circle described

on the base as diameter. Hence it is manifest that the

important conception ofgeometrical loci, which is attributed

by Montucla, and after him by Chasles and other writers

on the History of Mathematics, to the school of Plato,"

had been formed by Thales.

"Montucla, Histoire des Mathhnatiques, Tome I., p. 183, Paris, 1758.

Chasles, Aperfu historique des Methodes en Geomiirie, p. 5, Bruxelles, 1837.

Chasles in the history of geometry before Euclid copies Montucla, and we have a

remarkable instance of this here, for Chasles, after Montucla, calls Plato ' ' ce chef

du Lycit."
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Third inference.—Thales discovered the theorem that

the sides of equiangular triangles are proportional.

The knowledge of this theorem is distinctly attributed

to Thales by Plutarch in a passage quoted above (e). On

the other hand, Hieronymus of Rhodes, a pupil of Aris

totle, according to the testimony of Diogenes Laertius,"

says that Thales measured the height of the pyramids by

watching when bodies cast shadows of their own length,

and to the same effect Pliny in the passage quoted above (e).

Bretschneider thinks that Plutarch has spun out the story

told by Hieronymus, attributing to Thales the knowledge

of his own times ; denies to Thales the knowledge of the

theorem in question, and says that there is no trace of any

theorems concerning similarity before Pythagoras.21 He

says, further, that the Egyptians were altogether ignorant

of the doctrine of the similarity of figures, that we do not

find amongst them any trace of the doctrine of proportion,

and that Greek writers say that this part of their mathe

matical knowledge was derived from the Babylonians or

Chaldaeans." Bretschneider also endeavours to show that

Thales could have obtained the solution of the second

practical problem—the determination of the distance of a

ship from the shore—by geometrical construction, a method

long before known to the Egyptians." Now, as Bretsch

neider denies to the Egyptians and to Thales any knowledge

of the doctrine of proportion, it was plainly necessary, on

this supposition, that Thales should find a sufficient extent

of free and level ground on which to construct a triangle

of the same dimensions as that he wished to measure ; and

even if he could have found such ground, the great length

of the sides would have rendered the operations very diffi-

20 But we have seen that the account given by. Diogenes Laertius of the

discovery of Thales mentioned by Pamphila is unintelligible, and evinces ignorance

of geometry on his part.

8i Bretsch. die Geometric und Geometer vor Euklides, pp. 45, 46.

•» Ibid, p. 18.

» Ibid, pp. 43, 44.
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cult." It is much simpler to accept the testimony of

Plutarch, and suppose that the method of superseding such

operations by using similar triangles is due to Thales.

If Thales had employed a right-angled triangle," he

could have solved this problem by the same principle which,

we are told by Plutarch, he used in measuring the height

of the pyramid, the only difference being that the right-

angled triangle is in one case in a vertical, and in the

other in a horizontal plane.

From what has been said, it is plain that there is a

natural connection between the several theorems attributed

to Thales, and that the two practical applications which

he made of his geometrical knowledge are also connected

with each other.

Let us now proceed to consider the importance of the

work of Thales :—

I. In a scientific point of view :—

(a). We see, in the first place, that by his two theorems

he founded the geometry of lines, which has ever since

remained the principal part of geometry.*6

Vainly do some recent writers refer these geometrical

discoveries of Thales to the Egyptians ; in doing so they

ignore the distinction between the geometry of lines, which

!4 In reference to this I may quote the following passage from Clairaut, Elemens

de Geome'trie, pp. 34-35. Paris, 1741.

"Lamfithode qu'on vient de donner pour mesurer les terrains, dans lesquels

on ne scauroit tirer de lignes, fait souvent naitre de grandes difficultes dans la

pratique. On trouve rarement un espace uni et libre, assez grand pour faire des

triangles egaux a ceux du terrain dont on cherche la mesure. Et meme quand on

en trouveroit, la grande longueur des cotes des triangles pourroit rendre les opera

tions tres-difficiles : abaisser une perpendiculaire sur une ligne du point qui en est

eloigne seulemeut de 500 toises, ce seroit un ouvrage extremement penible, et

peut-etre impracticable. II importe done d'avoir un moyen qui supplee & ces

grandes operations. Ce moyen s'ofFre comme de lui-meme. II vient," &c.

85 Observe that the inventions of the square and level are attributed by Pliny

(Nat. Hist., VII., 57) to Theodoras of Samos, who was a contemporary of Thales.

They were, however, known long before this period to the Egyptians ; so that to

Theodoras is due at most the honour of having introduced them into Greece.

86 Auguste Comte, Systeme de Politique Positive, vol. III., p. 297.



1 6 Greek Geometryfrom Thales to Euclid.

we owe to the genius of the Greeks, and that of areas and

volumes—the only geometry known, and that empirically,

to the ancient priesthoods. This view is confirmed by an

ancient papyrus, that of Rhind," which is now in the

British Museum. It contains a complete applied mathe

matics, in which the measurement of figures and solids

plays the principal part ; there are no theorems properly so

called; everything is stated in the form of problems, not

in general terms but in distinct numbers, e.g.—to measure

a rectangle the sides of which contain two and ten units of

length ; to find the surface of a circular area whose diame

ter is six units ; to mark out in a field a right-angled triangle

whose sides measure ten and four units ; to describe a

trapezium whose parallel sides are six and four units, and

each of the other sides twenty units. We find also in it

indications for the measurement of solids, particularly of

pyramids, whole and truncated.

It appears from the above that the Egyptians had

made great progress in practical geometry. Of their pro

ficiency and skill in geometrical constructions we have

also the direct testimony of the ancients ; for example,

Democritus says : " No one has ever excelled me in the

construction of lines according to certain indications—not

even the so-called Egyptian Harpedonaptae." 23

(6). Thales may, in the second place, be fairly con

sidered to have laid the foundation of Algebra, for his first

theorem establishes an equation in the true sense of the

word, while the second institutes a proportion.29

27 Birch, in Lepsius' Zeitschrift fur Aegyptische Sprache und Alterthums-

kunde (1868, p. 108). Bretschneider, Geometrie vor Euklides, p. 16. F. Hoefer,

Histoire des Mathimatiques, p. 69. Since this Paper was sent to the press, Dr.

August Eisenlohr, of Heidelberg, has published this papyrus with a transla

tion and commentary under the title " ein mathematisches Handbuck der alten

jEgypter, Leipzig, 1877."

28 Mullach, Fragmenta Pkilosopkorum Graecorum, p. 371, Democritus ap.

Clem. Alex. Strom. I., p. 357, ed. Potter.

39 Auguste Comte, Systeme de Politique Positive, vol. III., p. 300.
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II. In a philosophic point of view :—

We see that in these two theorems of Thales the first

type of a natural law—i. e. the expression of a fixed de

pendence between different quantities, or, in another form,

the disentanglement of constancy in the midst of variety—

has decisively arisen.30

III. Lastly, in a practical point of view :—

Thales furnished the first example of an application of

theoretical geometry to practice,31 and laid the foundation

of an important branch of the same—the measurement of

heights and distances.

I have now pointed out the importance of the geome

trical discoveries of Thales, and attempted to appreciate

his work. His successors of the Ionic School followed

him in other lines of thought, and were, for the most part,

occupied with physical theories on the nature of the

universe—speculations which have their representatives at

the present time—and added little or nothing to the de

velopment of science, except in astronomy. The further

progress of geometry was certainly not due to them.

Without doubt Anaxagoras of Clazomenae, one of the

latest representatives of this School, is said to have been

occupied during his exile with the problem of the qua

drature of the circle ; but this was in his old age, and after

the works of another School—to which the early progress

of geometry was really due—had become the common

property of the Hellenic race. I refer to the immortal

School of Pythagoras.

30 P. Laffitte, Us Grands Types de VHumaniti, vol. II., p. 292.

51 Ibid., p. 294.

C
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CHAPTER II.

PYTHAGORAS AND HIS SCHOOL.

State of Hellas about the middle of the sixth century, B.C.—Pythagoras, probable

date of his birth and death.—Difficulties in treating of Pythagoras and the

early Pythagoreans.—Pythagoras first raised mathematics to the rank of a

science, and added two new branches, Arithmetic and Music.—Notices of

the geometrical work of this School.—It is much concerned with the Geo

metry of Areas, and is Egyptian in its character.—Generation of Squares,

Gnomon, Gnomonic Numbers.—Pythagorean Triangles.—The Theorem of

the Three Squares.—Construction of Regular Polygons and of the Regular

Solids.—Discovery of Incommensurable Quantities.—The Application of

Areas.—The Doctrine of Proportion and of the Similarity of Figures.—

Theorems erroneously attributed to Pythagoras and his School.—Conclu

sions from the foregoing examination.—Estimate of the state of Geometry

circ. 480 B.C.—The Theory of Proportion.—The Ancients regarded Propor

tion not merely as a branch of Arithmetic but as the bond of Mathematics.—

Estimate of the services of Pythagoras.

About the middle of the sixth century before the Chris

tian era a great change had taken place : Ionia, no longer

free and prosperous, had fallen under the yoke, first of Lydia,

then of Persia, and the very name Ionian—the name by

which the Greeks were known in the whole East—had

become a reproach, and was shunned by their kinsmen on

the other side of the Aegean.1 On the other hand, Athens

and Sparta had not become pre-eminent ; the days of Ma

rathon and Salamis were yet to come. Meanwhile the

glory of the Hellenic name was maintained chiefly by the

Italic Greeks, who were then in the height of their pros

perity, and had recently obtained for their territory the

well-earned appellation of 17 fitydX>i 'EXXdg.1 It should be

noted, too, that at this period there was great commercial

intercourse between the Hellenic cities of Italy and Asia ;

and further, that some of them, as Sybaris and Miletus on

1 Herodotus, I., 143. 2 Polybius, II., 39.
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the one hand, and Tarentum and Cnidus on the other, were

bound by ties of the most intimate character.8 It is not

surprising, then, that after the Persian conquest of Ionia,

Pythagoras, Xenophanes, and others, left their native

country, and, following the current of civilisation, removed

to Magna Graecia.

As the introduction of geometry into Greece is by com

mon consent attributed to Thales, so all 4 are agreed that

to Pythagoras of Samos, the second of the great philoso

phers of Greece, and founder of the Italic School, is due

the honour of having raised mathematics to the rank of a

science.

The statements of ancient writers concerning this great

man are most conflicting, and all that relates to him per

sonally is involved in obscurity : for example, the dates

given for his birth vary within the limits of eighty-four

years—43rd to 64th Olympiad.5 It seems desirable, how

ever, if for no other reason than to fix our ideas, that we

should adopt some definite date for the birth of Pythagoras ;

and there is an additional reason for doing so, inasmuch as

some writers, by neglecting this, have become confused,

and fallen into inconsistencies in the notices which they

have given of his life. Of the various dates which have

been assigned for the birth of Pythagoras, the one which

seems to me to harmonise best with the records of the most

trustworthy writers is that given by Ritter, and adopted by

Grote, Brandis, Ueberweg, and Hankel, namely, about

580 B. c. (49th Olymp.) This date would accord with the

following statements : —

That Pythagoras had personal relations with Thales,

then old, of whom he was regarded by all antiquity as the

3 Herod., VI., 21, and m., 138.

* Aristotle, Diogenes Laertius, Proclus, amongst others.

5 See G. H. Lewes, Biographical History of Philosophy, Book II., c. ii., where

the various dates given by scholars are cited.

C 2
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successor, and by whom he was incited to visit Egypt,6—

mother of all the civilisation of the West ;

That he left his country being still a young man, and,

on this supposition as to the date of his birth, in the early

years of the reign of Croesus (560-546 B. c), when Ionia

was still free ;

That he resided in Egypt many years, so that he learned

the Egyptian language, and became imbued with the philo

sophy of the priests of the country ; 7

That he probably visited Crete and Tyre, and may have

even extended his journeys to Babylon, at that time Chal-

daean and free ;

That on his return to Samos, finding his country under

the tyranny of Polycrates,8 and Ionia under the dominion

of the Persians, he migrated to Italy in the early years of

Tarquinius Superbus ; '

And that he founded his Brotherhood at Crotona, where

for the space of twenty years or more he lived and taught,

being held in the highest estimation, and even looked on

almost as divine by the population—native as well as Hel

lenic ; and then, soon after the destruction of Sybaris

(510 B. c), being banished by a democratic party under

Cylon, he removed to Metapontum, where he died soon

afterwards.

All who have treated of Pythagoras and the Pythago

reans have experienced great difficulties. These difficulties

are due partly to the circumstance that the reports of the

earlier and most reliable authorities have for the most part

been lost, while those which have come down to us are not

always consistent with each other. On the other hand, we

have pretty full accounts from later writers, especially those

of the Neo-Pythagorean School ; but these notices, which

* Iamblichus, Vit. Pyth., c. ii., 12.

1 1socrates is the oldest authority for this, Busiris, c. ii.

8 Diog. Laert., VIII., c. i., 3 ; Aristoxenus, ap. Porphyr., Vit. Pyth., 9.

• Cicero, de Rep. II., 15 ; Tusc. Disp., I., xvi., 38.
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are mixed up with fables, were written with a particular

object in view, and are in general highly coloured ; they

are particularly to be suspected, as Zeller has remarked,

because the notices are fuller and more circumstantial the

greater the interval from Pythagoras. Some recent authors,

therefore, even go to the length of omitting from their ac

count of the Pythagoreans everything which depends solely

on the evidence of the Neo-Pythagoreans. In doing so,

these authors no doubt effect a simplification, but it seems

to me that they are not justified in this proceeding, as the

Neo-Pythagoreans had access to ancient and reliable au

thorities which have unfortunately been lost since.10

Though the difficulties to which I refer have been felt

chiefly by those who have treated of the Pythagorean phi

losophy, yet we cannot, in the present inquiry, altogether

escape from them ; for, in the first place, there was, in the

whole period of which we treat, an intimate connection

between the growth of philosophy and that of science, each

re-acting on the other ; and, further, this was particularly

the case in the School of Pythagoras, owing to the fact,

that whilst on the one hand he united the study of geo

metry with that of arithmetic, on the other he made num

bers the base of his philosophical system, as well physical

as metaphysical.

It is to be observed, too, that the early Pythagoreans

published nothing, and that, moreover, with a noble self-

denial, they referred back to their master all their dis

coveries. Hence, it is not possible to separate what was

done by him from what was done by his early disciples,

and we are under the necessity, therefore, of treating the

work of the early Pythagorean School as a whole.11

10 For example, the History of Geometry, by Eudemus of Rhodes, one of the

principal pupils of Aristotle, is quoted by Theon of Smyrna, Proclus, Simplicius,

and Eutocius, the last two of whom lived in the reign of Justinian. Eudemus

also wrote a History of Astronomy. Theophrastus, too, Aristotle's successor,

wrote Histories of Arithmetic, Geometry, and Astronomy.

11 <i Pythagoras and his earliest successors do not appear to have committed any
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All agree, as was stated above, that Pythagoras first

raised mathematics to the rank of a science, and that we

owe to him two new branches—arithmetic and music.

We have the following statements on the subject :—

(1) "In the age of these Philosophers [the Eleats and

Atomists], and even before them, lived those called Pytha

goreans, who first applied themselves to mathematics, a

science they improved : and, penetrated with it, they fancied

that the principles of mathematics were the principles of all

things";18

(2) Eudemus informs us, in the passage quoted above in

extenso, that "Pythagoras changed geometry into the form

of a liberal science, regarding its principles in a purely

abstract manner, and investigated his theorems from the

immaterial and intellectual point of view"; and that "he

also discovered the theory of irrational quantities, and

the construction of the mundane figures [the five regular

solids]";13

(3) "It was Pythagoras, also, who carried geometry to

perfection, after Moeris11 had first found out the principles

of the elements of that science, as Anticleides tells us in

the second book of his History ofA lexander ; and the part

of the science to which Pythagoras applied himself above

all others was arithmetic";15

(4) Pythagoras seems to have esteemed arithmetic above

of their doctrines to writing. According to Porphyrius (Vit. Pyth. p. 40j Lysis

and Archippus collected in a written form some of the principal Pythagorean

doctrines, which were handed down as heir-looms in their families, under strict

injunctions that they should not be made public. But amid the different and

inconsistent accounts of the matter, the first publication of the Pythagorean

doctrines is pretty uniformly attributed to Philolaus."—Smith's Dictionary, in

v. Philolaus. Philolaus was born at Crotona, or at Tarentum, and was a con

temporary of Socrates and Democritus. See Diog. Laert., Vit. Pyth., Tax.,

c. i., 15 ; Vit. Empedoclis, via., c. ii., 2 ; and Vit. Democriti, IX., c. vii., 6. See

also Iamblichus, Vit. Pyth., c. xviii., 88.

12 Aristot. Met., I., v., gS^,, 23, ed. Bekker.

is Proclus, ed. Friedlein, p. 65.

14 An ancient king of Egypt, who lived 900 years before Herodotus.

15 Diog. Laert., vin., c. i., 11, ed. Cobet, p. 207.
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everything, and to have advanced it by diverting it

from the service of commerce, and likening all things

to numbers;16

(5) He was the first person who introduced measures

and weights among the Greeks, as Aristoxenus the musi

cian informs us ; "

(6) He discovered the numerical relations of the musical

scale ; 18

(7) The word mathematics originated with the Pytha

goreans ; 18

(8) The Pythagoreans made a four-fold division of

mathematical science, attributing one of its parts to the

how many, to iroaov, and the other to the how much, ri»

irrik'iKov ; and they assigned to each of these parts a two

fold division. For they said that discrete quantity, or

the how many, either subsists by itself, or must be con

sidered with relation to some other ; but that continued

quantity, or the how much, is either stable or in motion.

Hence they affirmed that arithmetic contemplates that

discrete quantity which subsists by itself, but music that

which is related to another ; and that geometry considers

continued quantity so far as it is immovable ; but astro

nomy (tjjv {r^tHpticrjv) contemplates continued quantity so

far as it is of a self-motive nature;20

(9) Favorinus says that he employed definitions on

account of [t. e. arising out of] the mathematical subjects

to which he applied himself (optxe xjoriaaaOai Sid rije fiaO>ifia-

16 Aristoxenus, Fragm.2cp. Stob. Eclog. Phys., I., ii., 6; ed. Heeren, vol. I.,

p. 17.

17 Diog. Laert., VIII., c. i., 13, ed. Cobet, p. 208.

18 t6v te navova rbv iK fiias x0p$ris evpetv. Diog. Laert., VIII., c. i., I1, ed.

Cobet, p. 207.

19 Proclus, ed. Friedlein, p. 45.

20 Ibid., p. 35. As to the distinction between ri irii\IKov, continuous, and rb

ir6aov, discrete, quantity, see Iambi., in Nicomachi Geraseni Arithmeticam intro-

ductionem, ed. Tennulius, p. 148.

21 Diog. Laert., VIII., c. i., 25, ed. Cobet, p. 215.
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As to the particular work done by this school in geo

metry, the following statements have been handed down

to us :—

(a) The Pythagoreans define a point as "unity having

position (fiovaSa irpoaXaftovaav Otatv)";"

(£) They considered a point as analogous to the monad,

a line to the duad, a superficies to the triad, and a body to

the tetrad;"

(c) The plane around a point is completely filled by six

equilateral triangles, four squares, or three regular hexa

gons : this is a Pythagorean theorem ;M

(d) The Peripatetic Eudemus ascribes to the Pythago

reans the discovery of the theorem that the interior angles

of a triangle are equal to two right angles (Eucl. I. 32), and

states their method of proving it, which was substantially

the same as that of Euclid ;M

(e) Proclus informs us in his commentary on Euclid

I., 44, that Eudemus says that the problems concerning the

application of areas—in which the term " application " is

not to be taken in its restricted sense (irapaftoXri), in which

it is used in this proposition, but also in its wider significa

tion, embracing {nrepftoXii and iXXti\pig, in which it is used in

the 28th and 29th propositions of the Sixth Book—are old,

and inventions of the Pythagoreans ;26

{/) This is to some extent confirmed by Plutarch, who

22 Proclus, ed. Friedlein, p. 95.

» Ibid., p. 97.

24 Ibid., p. 305.

26 Ibid., p. 379.

26 Ibid., p. 419. The words of Proclus are interesting :—

"According to Eudemus, the inventions respecting the application, excess,

and defect of areas are ancient (apxaia), and are due to the Pythagoreans.

Moderns borrowing these names transferred them to the so-called conic lines—

the parabola, the hyperbola, the ellipse ; as the older school in their nomenclature

concerning the description of areas in piano on a finite right line regarded the

terms thus :—

" An area is said to be applied (irapa&a\\euj) to a given right line when an area

equal in content to some given one is described thereon ; but when the base of the

area is greater than the given line, then the area is said to be in excess ({nrep$d\\av) ;
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says that Pythagoras sacrificed an ox on account of the

geometrical diagram, as Apollodotus [-rus] says :—

rjViKa IlvOayoprjs to irepiKXeis evpero ypdp.p.a,

Keiv i<fi oral Aa/Mrpi/v rjyero ftovOvo-Crjv,

either the one relating to the hypotenuse—namely, that the

square on it is equal to the sum of the squares on the

sides—or that relating to the problem concerning the ap

plication of areas (ihi 7rpo/3Ajj/ua irtp\ row \wpiov rijc irapa-

/3oXijc)

[g) "One of the most essentially geometrical (ytuifur(n-

Kwrarotc) theorems, or rather problems, is to construct a

figure equal to one and similiar to another given figure, for

the solution of which also they say that Pythagoras offered

a sacrifice : and indeed it is finer and more elegant than

the theorem which shows that the square on the hypotenuse

is equal to the sum of the squares on the sides " ;8S

[h) Eudemus, in the passage already quoted from Pro-

clus, says : Pythagoras discovered the construction of the

regular solids ; 89

[i) "But particularly as to Hippasus, who was a Pytha

gorean, they say that he perished in the sea on account of

his impiety, inasmuch as he boasted that he first divulged

the knowledge of the sphere with the twelve pentagons

but when the base is less, so that some part of the given line lies without the

described area, then the area is said to be in defect (iwdrew). Euclid uses in

this way, in his Sixth Book, the terms excess and defect. . . . The term applica

tion (irapafidWew), which we owe to the Pythagoreans, has this signification."

27 Plutarch, non posse suaviter vivi sec. Epicurum. c. xi. ; Plut., Opera, ed.

Didot, vol. rv., p. 1338. Some authors, rendering irepl toS x«pfov ti)s irapafio\rjs

"concerning the area of the parabola," have ascribed to Pythagoras the quadra

ture of the parabola—which was in fact one of the great discoveries of

Archimedes ; and this, though Archimedes himself tells us that no one before

him had considered the question ; and though further he gives in his letter to

Dositheus the history of his discovery, which, as is well known, was first obtained

from mechanical considerations, and then by geometrical reasonings.

28 Plutarch, Symp., vui., Quaestio 2, c. iv. Plut. Opera, ed. Didot, vol. iv., p.

877.

29 Proclus, ed. Friedlein, p. 65. r
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[the ordinate dodecahedron inscribed in the sphere] :

Hippasus assumed the glory of the discovery to himself,

whereas everything belonged to Him—for thus they

designate Pythagoras, and do not call him by name" ;30

(/) The triple interwoven triangle or Pentagram—star-

shaped regular pentagon—was used as a symbol or sign of

v 

recognition by the Pythagoreans, and was called by them

Health (vynta) ; 31

(k) The discovery of the law of the three squares (Eucl.

I. , 47), commonly called the Theorem of Pythagoras, is

attributed to him by—amongst others—Vitruvius,32 Dio

genes Laertius,33 Proclus,34 and Plutarch (f). Plutarch,

however, attributes to the Egyptians the knowledge of this

theorem in the particular case where the sides are 3, 4,

and 5 ;36

(/) One of the methods of finding right-angled tri-

30 Iambi., Vit. Pyth., c. xviii., 88.

31 Scholiast on Aristophanes, Nub. 609 ; also Lucian, pro Lapsu in Salut.,

s. 5, vol. I., pp. 447, 8 ; ed. C. Jacobitz. That the Pythagoreans used such symbols

we learn from Iamblichus (Vit. Pyth., c. xxxiii., 237 and 238). This figure is

referred to Pythagoras himself, and in the middle ages was called Pythagorae

figura. It is said to have obtained its special name from his having written the

letters v, 7, 1, 9 (=ei), 0, at i's prominent vertices. We learn from Kepler (Opera

Omnia, ed. Frisch, vol. v., p. 122) that even so late as Paracelsus it was re

garded by him as the symbol of health. See Chasles, Histoire de Giomitrie,

PP- 477, *g-

32 De Arch., IX., cap. ii.

33 Where the same couplet from Apollodorus as that in (f) is found, except

that K\ekv^v Ijyaye occurs in place of \afiirpiii, ifyero. Diog. Laert., VIII., c. i.,

I1, p. 207, ed. Cobet.

£ 34 Proclus, p. 426, ed. Friedlein.

« de Is. et Osir., c. 56. Plut. Op., vol. III., p. 457, Didot.
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angles whose sides can be expressed in numbers—that

setting out from the odd numbers—is attributed to Pytha

goras ; 38

(m) The discovery of irrational quantities is ascribed

to Pythagoras by Eudemus in the passage quoted above

from Proclus ; 37

(n) The three proportions—arithmetical, geometrical,

and harmonical—were known to Pythagoras ; 39

(0) " Formerly, in the time of Pythagoras and the mathe

maticians under him, there were three means only—the

arithmetical, the geometrical, and the third in order which

was known by the name iirtvavria, but which Archytas and

Hippasus designated the harmonical, since it appeared

to include the ratios concerning harmony and melody

(niraKXriQiiaa on tovq Kara to apfioufiivov kui ififitXig i<jiaivtro

\6yovg irtpit-xpvaa)" ;39

(/) With reference to the means corresponding to these

proportions, Iamblichus says :40—" We must now speak of

the most perfect proportion, consisting of four terms, and

properly called the musical, for it clearly contains the

musical ratios of harmonical symphonies. It is said to

be an invention of the Babylonians, and to have been first

brought into Greece by Pythagoras";41

38 Proclus, ed. Friedlein, p. 428 ; Heronis Alex., Geom. et Ster. Rel., ed. F.

Hultsch, pp. 56, 146.

37 Proclus, ed. Friedlein, p. 65.

38 Nicom. G. Introd. Ar., c. xxii., ed. R. Hoche, p. 122.

39 Iamblichus, in Nicom. Arithm., ed. Ten., p. 141.

40 Ibid., p. 167.

41 As an example of this proportion, Nicomachus gives the numbers 6, 8, 9, 12,

the harmonical and arithmetical means between two numbers forming a geo

metrical proportion with the numbers themselves. (Nicom. Instit. Arithm., ed.

Ast., p. 153, and Animad., p. 329 : see also Iambi., in Nicom. Arithm., ed.

Ten., p. 172, sq.)

Hankel, commenting on this passage of Iamblichus, says : " What we are to

do with the report, that this proportion was known to the Babylonians, and only

brought into Greece by Pythagoras, must be left to the judgment of the reader."—

Geschichte der Mathematik, p. 105. In another part of his book, however, after

referring to two authentic documents of the Babylonians which have come down

to us, he says: "We cannot, therefore, doubt that the Babylonians occupied
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(g) The doctrine of arithmetical progressions is attri

buted to [the School of] Pythagoras ;"

(r) It would appear that he had considered the special

case of triangular numbers. Thus Lucian :—I1Y0. EiV ini

rovrtuimv apidfihiv. AT. OiSa Kai vvv apidfietv. I1Y0. Ilwe

apidfilttg; AT. "Ev, Svo, rpla, Ttrrapa. I1Y9. 'Opag ; a aii

SoicEftc rtrrapa, ravra StKa tari Ko.1 rpiywvov ivreXig Kai rifitrtpov

9 la
opK(OV.

(s) Another of his doctrines was, that of all solid figures

the sphere was the most beautiful ; and of all plane figures,

the circle."

(t) "Also Iamblichus, in his commentary on the Catego

ries of Aristotle, says that Aristotle may perhaps not have

squared the circle; but that the Pythagoreans had done so,

as is evident, he adds, from the demonstrations of the

Pythagorean Sextus, who had got by tradition the manner

of proof.""

On examining the purely geometrical work of Pytha

goras and his early disciples, we observe that it is much

concerned with the geometry of areas, and we are indeed

struck with its Egyptian character. This appears in the

theorem (c) concerning the filling up a plane by regular

polygons, as already noted; in the construction of the

regular solids {h), for some of them are found in the Egyp

tian architecture; in the problems concerning the appli

cation of areas (e) ; and, lastly, in the law of the three

themselves with such progressions [arithmetrical and geometrical] ; and a Greek

notice that they knew proportions, nay, even invented the so-called perfect or

musical proportion, gains thereby in value."—Ibid., p. 67.

42 Theologumena Arithmetica, p. 61, ed. F. Ast, Lipsiae, 1817.

43 Pyth. Then I will teach you to count. Buyer. I know how to count

already. Pyth. How do you count ? Buyer. One, two, three, four. Pyth.

Do you see ? "What you take to be four, that is ten and a perfect triangle and our

oath. Lucian, Bfoiv irpaais, 4, vol. I., p. 317, ed. Jacobitz.

44 Kai tuv ffxrifiaruv rb Ka\\uTrov inpaipav e?coi t&v iTtepecSi', tuv 5' eiriire'Saiv

KdK\ov, Diog. Laert., Vit. Pyth., Tin., c. i., 19, ed. Cobet, p. 212.

45 Simplicius, Comment., Sec, ap. Bretsch., Geom. vorEukl., p. 108. [Simplicii,

in Aristotelis Physicorum libros quattuor prions Commentaria, p. 60, ed. Her-

mannus Diels, Berolini, 1882.]
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squares (k), coupled with the rule given by Pythagoras

for the construction of right-angled triangles in num

bers (/).

According to Plutarch, the Egyptians knew that a tri

angle whose sides consist of 3, 4, and 5 parts, must be

right-angled. "The Egyptians may perhaps have ima

gined the nature of the universe like the most beautiful

triangle, as also Plato appears to have made use of it in

his work on the State, where he sketches the picture of

matrimony. That triangle contains one of the perpendicu

lars of 3, the base of 4, and the hypotenuse of 5 parts, the

square of which is equal to those of the containing sides.

The perpendicular may be regarded as the male, the base

as the female, the hypotenuse as the offspring of both, and

thus Osiris as the originating principle (apxh), Isis as the

receptive principle (iiroSoxvi)f and Horus as the product

(airoriXtafia)." 46

 

This passage is remarkable, and seems to indicate the

way in which the knowledge of the useful geometrical

fact enunciated in it may have been arrived at by the

Egyptians. The contemplation of a draught-board, or of

a floor covered with square tiles, or of a wall ruled with

squares,47 would at once show that the square constructed

*• Plutarch, de Is. et Osir., c. 56, vol. III., p. 457, ed. Didot.

47 It was the custom of the Egyptians, where a subject was to be drawn, to rule

the walls of the building accurately with squares before the figures were intro

duced. See Wilkinson's Ancient Egyptians, vol. 11., pp. 265, 267.
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on the diagonal of a square is equal to the sum of the

squares constructed on the sides—each containing four of

the right-angled isosceles triangles into which one of the

squares is divided by its diagonal.

Although this observation would not serve them for

practical uses, on account of the impossibility of presenting

it arithmetically, yet it must have shown the possibility of

constructing a square which would be the sum of two

squares, and encouraged them to attempt the solution of

the problem numerically. Now, the Egyptians, with whom

speculations concerning generation were in vogue, could

scarcely fail to have perceived, from the observation of a

chequered board, that the element in the successive for

mation of squares is the gnomon (yvu,mov)iS, or common

41 rV^/uuv means that by which anything is known, or criterion ; its oldest

concrete signification seems to be the carpenter's square (norma), by which a

right angle is known. Hence, it came to denote a perpendicular, of which,

indeed, it was the archaic name, as we learn from Proclus on Euclid, I., 12 :—

Tovto rb irp6fi\rina irpurov Oivoiri$-qs iftniaev xp-fiainov avrb irpbs affrpohoyiav

oi6nevos' ovofidfei 5e t))V Kdderov apxaiKus Kara yvdfiova, Si6ri Kal 6 yvunuv

irpbs ip9as iari r$ Spifavri (Proclus, ed. Friedlein, p. 283). Gnomon is also

an instrument for measuring altitudes, by means of which the meridian can be

found ; it denotes, further, the index or style of a sundial, the shadow of which

points out the hours.

In geometry it means the square or rectangle about the diagonal of a square

or rectangle, together with the two complements, on account of the resemblance

of the figure to a carpenter's square ; and then, more generally, the similar figure
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carpenter's square, which was known to them." It re

mained for them only to examine whether some particular

gnomon might not be metamorphosed into a square, and,

therefore, vice versa. The solutiofl would then be easy,

being furnished at once from the contemplation of a floor

or board composed of squares.

Each gnomon consists of an odd number of squares,

and the successive gnomons correspond to the successive

odd numbers,50 and include, therefore, all odd squares.

Suppose, now, two squares are given, one consisting of 16

and the other of o unit squares, and that it is proposed to

form another square out of them. It is plain that the square

with regard to any parallelogram, as defined by Euclid, II., Def. 2. Again, in a

still more general signification, it means the figure which, being added to any

figure, preserves the original form. See Hero, Definitiones (59).

When gnomons are added successively in this manner to a square monad, the

first gnomon may be regarded as that consisting of three square monads, and is

indeed the constituent of a simple Greek fret ; the second, of five square monads,

&c. ; hence we have the gnomonic numbers, which were also looked on as male,

or generating.

*» Wilkinson's Ancient Egyptians, vol. 11., p. ill.

60 It may be observed here that we first count with counters, as is indicated by

the Greek tyrifylCeiv and the Latin calculare. The counters might be equal

squares, as well as any other like objects. There is an indication that the odd

numbers were first regarded in this manner in the name gnomonic numbers
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consisting of 9 unit squares can take the form of the fourth

gnomon, which, being placed round the former square, will

generate a new square containing 25 unit squares. Simi

larly, it may have been observed that the 12th gnomon,

consisting of 25 unit squares, could be transformed into a

square, each of whose sides contains 5 units, and thus it

may have been seen conversely that the latter square, by

taking the gnomonic, or generating, form with respect to

the square on 12 units as base, would produce the square of

13 units, and so on.

This, then, is my attempt to interpret what Plutarch

has told us concerning Isis, Osiris, and Horus, bearing in

mind that the odd, or gnomonic, numbers were regarded

by Pythagoras as male, or generating. 61

which the Pythagoreans applied to them, and that term was used in the same

signification by Aristotle, and by subsequent writers, even up to Kepler. See

Arist., Phys., lib. m., ed. Bekker, vol. I., p. 203 ; Stob., Eclog., ab Heeren, vol.

I., p. 24, and note ; Kepleri, Opera Omnia, ed. Ch. Frisch, vol. Tin-, Mathe

matica, pp. 164, sq.

61 This seems to me to throw light on some of the oppositions which are found

in the table of principles attributed by Aristotle to certain Pythagoreans (Mttaph.,

I., v., 986", ed. Bekker).

The odd—or gnomonic—numbers are finite ; the even, infinite. Odd numbers

were regarded also as male, or generating. Further, by the addition of successive

gnonoms—consisting, as we have seen, each of an odd number of units—to the

original unit square or monad, the square form is preserved. On the other hand,

if we start from the simplest oblong (erep^ijicej), consisting of two unit squares,

or monads, in juxtaposition, and place about it, after the manner of a gnomon—

m ujj rrm

and gnomon, as we have seen, was used in this more extended sense also at a

later period—4 unit squares, and then in succession in like manner 6, 8, . . .

unit squares, the oblong form erepifnqices will be preserved. The elements, then,

which generate a square are odd, while those of which the oblong is made up are

even. The limited, the odd, the male, and the square, occur on one side of the

table : while the unlimited, the even, the female, and the oblong, are met with on

the other side.

The correctness of this view is confirmed by the following passage preserved
by Stobaeus :—vEti 5£ ti} fiovd$i ruv i<pe^rjs mpiaauv yvufi6voiv irepiridefi4vuv, d

yiv6fievos 4el rerpdyuv6s iari. rS>v S\ apriuv Sfioius irepiriOefievuv, erepon-ljKeis Kail

i.viffoi irdvres airofiafoovaiv' laov 5e iadKis ovSefs.
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It is another matter to see that the triangle formed by

3, 4, and 5 units is right-angled, and this I think the

Egyptians may have first arrived at by an induction

founded on direct measurement, the opportunity for which

was furnished to them by their pavements, or chequered

plane surfaces.

The method given above for the formation of the

square constructed on 5 units as the sum of those con

structed on 4 units and on 3 units, and of that constructed

on 13 units, as the sum of those constructed on 12 units

and 5 units, required only to be generalized in order to

"Explicanda haec sunt ex antiqua Pythagoricorum terminologia. Tv&fioves

nempe de quibus hic loquitur auctor, vocabantur apud eos omnes numeri impares,

Jo. Philop. ad Arisiot. Phys., 1. iii., p. 131 : Kal 01 dpi0/iijri/col Si yviifiovas

Ka\ovai irdvras robs irepirrobs api9fiovs. Causam adjicit Simplicius ad eundem

locum, Tv&fiovas 5e eKd\ovv robs irepirrobs ol Tlvday6peioi Si6ri irpoaridefLievoi rois

rerpaywvois, rb avrb axrjfm ipu\drrovai, ftairep Kal ol Iv yeaficrpla yvwnoves.

Quae nostra loco leguntur jam satis clara erunt. Vult nempe auctor, monade

addita ad primum gnomonem, ad sequentes autem summam, quam proxime ante-

cedentes numeri efficiunt, semper prodire numeros quadratos, v. c. positis gnomo-

nibus 3, S, 7, 9, primum I + 3 = 22, tunc porro 1 + 3 (». e. 4) + 5 *= 3=, 9 + 7 =42,

16 + 9 = 52, et sic porro, cf. Tiedem. Geist der Speculat. Philos., pp. 107, 108.

Reliqua expedita sunt." Stob. Eclog. ab. Heeren, lib. 1., p. 24, and note.

The passage of Aristotle referred to is—aimeiov b" ehai toutou rb avfiPcuvov

iirl twv apidfiwv. irepiriQefievwv yap twv yvwfx6vwv irepl rb tv Kal xaP^s 0ri f^v

&K\o oel ylyijeaeai r& elSos iri Sk tv. Phys., III., iv., p. 203% 12.

Compare aW' t-ari two. av%av6fieva a owe aWoiovrai, oXov rb rerpdywvov

yv&fiovos irepiredevros ylS^rjrai /liv, aWoi6repov 5e ovSiv yeyevyrai. Cat., XIV.,

15», 30, Arist., ed. Bekker.

Hankel gives a different explanation of the opposition between the square and

oblong :—

' ' When the Pythagoreans discovered the theory of the Irrational, and recog

nised its importance, it must, as will be at once admitted, appear most striking

that the oppositions, which present themselves so naturally, of Rational and Irra

tional have no place in their table. Should they not be contained under the image

of square and rectangle, which, in the extraction of the square root, have led pre

cisely to those ideas?" Geschichte der Mathematik, p. no, note.

Hankel also says—"Upon what the comparison of the odd with the limited

may have been based, and whether upon the theory of the gnomons, can scarcely

be made out now." Ibid. p. 109; note.

May not the gnomon be looked on as framing, as it were, or limiting the

squares?

D
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enable Pythagoras to arrive at his rule for finding right-

angled triangles, which we are told sets out from the

odd numbers.

The two rules of Pythagoras and of Plato are given by

Proclus :—" But there are delivered certain methods of

finding triangles of this kind [sc. right-angled triangles

whose sides can be expressed by numbers], one of which

they refer to Plato, but the other to Pythagoras, as origi

nating from odd numbers. For Pythagoras places a given

odd number as the lesser of the sides about the right angle,

and when he has taken the square constructed on it, and

diminished it by unity, he places half the remainder as

the greater of the sides about the right angle ; and when

he has added unity to this, he gets the hypotenuse. Thus,

for example, when he has taken 3, and has formed from it

a square number, and from this number 9 has taken unity,

he takes the half of 8, that is 4, and to this again he adds

unity, and makes 5 ; and thus obtains a right-angled tri

angle, having one of its sides of 3, the other of 4, and the

hypotenuse of 5 units. But the Platonic method originates

from even numbers. For when he has taken a given even

number, he places it as one of the sides about the right

angle, and when he has divided this into half, and squared

the half, by adding unity to this square he gets the hypo

tenuse, but by subtracting unity from the square he forms

the remaining side about the right angle. Thus, for ex

ample, taking 4, and squaring its half, 2, and thus getting

4, then subtracting i, he gets 3, and by adding 1 he gets

5 ; and he obtains the same triangle as by the former

method." 52 It should be observed, however, that this is not

necessarily the case ; for example, we may obtain by the

method of Plato a triangle whose sides are 8, 15, and 17

units, which cannot be got by the Pythagorean method.

The nth square together with the ntA gnomon is the

" Proclus, ed. Friedlein, p. 428. Hero, Geom. et iter- rel., ed. Hultsch,

PP- 56, 57-
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[n + 1 )th square; if the nth gnomon contains m2 unit squares,

m being an odd number, we have

, m1 - 1
2« + 1 = m , ... n = ;

2

hence the rule of Pythagoras. Similarly the sum of two

successive gnomons contains an even number of unit

squares and may therefore consist of /«* unit squares,

where m is an even number ; we have then

{zn - 1) + [in + 1) = m1, or n -

hence the rule ascribed to Plato by Proclus.53 This

passage of Proclus, which is correctly interpreted by

Hoefer,54 was understood by Kepler," who, indeed, was

familiar with this work of Proclus, and often quotes it

in his Harmonia Mundi.

Let us now examine how Pythagoras proved the the

orem of the three squares. Though he could have disco

vered it as a consequence of the theorem concerning the

proportionality of the sides of equiangular triangles, attri

buted above to Thales, yet there is no indication whatever of

his having arrived at it in that deductive manner. On the

other hand, the proof given in the Elements of Euclid clearly

points to such an origin, for it depends on the theorem that

the square on a side of a right-angled triangle is equal to

the rectangle under the hypotenuse and its adjacent seg

ment made by the perpendicular on it from the right angle

—a theorem which follows at once from the similarity

63 This rule is ascribed to Architas [no doubt, Archytas of Tarentum] by

Boetius, Geom., ed. Friedlein, p. 408.

64 Hoefer, Histoire des Math., p. 112.

55 Kepleri, Opera Omnia, ed. Frisch, vol. VIII., p. 163 et seq. It may be

observed that this method is capable of further extension, e.g. : the sum of 9 (an

odd square number) successive gnomons may contain an odd number (say 49 x 9)

of square units ; hence we obtain a right-angled triangle in numbers, whose

hypotenuse exceeds one side by 9 units—the three sides being 20, 21, and 29.

Plato's method may be extended in like manner.

 

D 2
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of each of the partial triangles into which the original

right-angled triangle is broken up by the perpendicular,

with the whole. That the proof in the Elements is not the

way in which the theorem was discovered is indeed stated

directly by Proclus, who says:—

" If we attend to those who wish to investigate antiquity,

we shall find them referring the present theorem to Pytha

goras, . . . For my own part, I admire those who first

investigated the truth of this theorem : but I admire still

more the author of the Elements, because he has not only

secured it by evident demonstration, but because he re

duced it into a more general theorem in his sixth book by

strict reasoning [Euclid, VI., 31]." 56

The simplest and most natural way of arriving at

the theorem is the following, as suggested by Bret-

schneider " :—

A square can be dissected into the sum of two squares

and two equal rectangles, as in Euclid, II., 4; these two rect

angles can, by drawing their diagonals, be decomposed

into four equal right-angled triangles, the sum of the sides

 

of each being the side of the square : again, these four

right-angled triangles can be placed so that a vertex of

each shall be in one of the corners of the square in such a

way that a greater and less side are in continuation. The

original square is thus dissected into the four triangles as

60 Proclus, ed. Friedlein, p. 426.

" Bretsch., Geom. vor Eukl., p. 82. This proof is old : see Camerer, Euclidis

Element., vol. I., p. 444, and references given there.
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before and the figure within, which is the square on the hy

potenuse. This square then must be equal to the sum of the

squares on the sides of the right-angled triangle.

Hankel, in quoting this proof from Bretschneider, says

that it rftay be objected that it bears by no means a speci

fically Greek colouring, but reminds us of the Indian

method. This hypothesis as to the oriental origin of the

theorem seems to me to be well founded. I would, how

ever, attribute the discovery to the Egyptians, inasmuch

as the theorem concerns the geometry of areas, and as the

method used is that of the dissection of figures, for which

the Egyptians were famous, as we have already seen.

Moreover, the theorem concerning the areas connected

with two lines and their sum (Euclid, II., 4), which admits

also of arithmetical interpretation, was certainly within

their reach. The gnomon by which any square exceeds

another breaks up naturally into a square and two equal

rectangles. I think also that the Egyptians knew that the

difference between the squares on two lines is equal to the

rectangle under their sum and difference—though they

would not have stated it in that abstract manner. The

two squares may be placed with a common vertex and

adjacent sides coinciding in direction, so that their diffe

rence is a gnomon. This gnomon can, on account of the

equality of the two complements,58 be transformed into a

rectangle which can be constructed by producing the side

of the greater square so that it shall be equal to itself, and

then we have the figure of Euclid, II., 5, or to the side of

the lesser square, in which case we have the figure of

Euclid, II., 6. Indeed I have little hesitation in attributing

to the Egyptians the contents of the first ten propositions

of the second book of Euclid. In the demonstrations of

68 This theorem (Euclid, I., 43) Bretschneider says was called the " theorem of

the gnomon." I do not know of any authority for this statement. If the theorem

were so called, the word gnomon was not used in it either as defined by Euclid

(II. Def. 2), or in the more general signification in Hero (Vef. 58).
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propositions 5, 6, 7, and 8, use is made of the gnomon, and

propositions 9 and 10 also can be proved similarly without

the aid of Euclid, I., 47.

It is well known that the Pythagoreans were much oc

cupied with the construction of regular polygons and solids,

which in their cosmology played an essential part as the

fundamental forms of the elements of the universe.59

We can trace the origin of these mathematical specula

tions in the theorem [c] that " the plane around a point

is completely filled by six equilateral triangles or four

squares, or three regular hexagons," a theorem attributed

to the Pythagoreans, but which must have been known as

a fact to the Egyptians. Plato also makes the Pythago

rean Timaeus explain—" Each straight-lined figure consists

of triangles, but all triangles can be dissected into rectan

gular ones, which are either isosceles or scalene. Among

the latter the most beautiful is that out of the doubling of

which an equilateral arises, or in which the square of the

greater perpendicular is three times that of the smaller, or

in which the smaller perpendicular is half the hypotenuse.

 

But two or four right-angled isosceles triangles, properly

put together, form the square ; two or six of the most

beautiful scalene right-angled triangles form the equilateral

triangle ; and out of these two figures arise the solids which

correspond with the four elements of the real world, the

tetrahedron, octahedron, icosahedron, and the cube." 60

69 Hankel says it cannot be ascertained with precision how far the Pythagoreans

had penetrated into this theory, namely, whether the construction of the regular

pentagon and ordinate dodecahedron was known to them. Hankel, Geschichte

der Mathematik, p. 95, note.

80 Plato, Tim., c. xx., 53, D., sg., vol. VII., ed. Stallbaum, p. 224, ja.
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This dissection of figures into right-angled triangles

may be fairly referred to Pythagoras, and indeed may have

been derived by him from the Egyptians.

The construction of the regular solids is distinctly

ascribed to Pythagoras himself by Eudemus, in the passage

in which he briefly states the principal services of Pytha

goras to geometry. Of the five regular solids, three—the

tetrahedron, the cube, and the octahedron—were certainly

known to the Egyptians, and are to be found in their archi

tecture. There remain, then, the icosahedron and the

dodecahedron. Let us now examine what is required for

the construction of these two solids.

 

In the formation of the tetrahedron, three, and in that

of the octahedron, four, equal equilateral triangles had

been placed with a common vertex and adjacent sides co

incident, and it was known, too, that if six such triangles

were placed round a common vertex with their adjacent

sides coincident, they would lie in a plane, and that, there

fore, no solid could be formed in that manner from them.

It remained, then, to try whether five such equilateral tri

angles could be placed at a common vertex in like man

ner: on trial it would be found that they could be so

placed, and that their bases would form a regular penta

gon. The existence of a regular pentagon would thus be
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known. It was also known from the formation of the cube

that three squares could be placed in a similar way with a

common vertex ; and that, further, if three equal and regu

lar hexagons were placed round a point as common vertex

with adjacent sides coincident, they would form a plane.

It remained, then, only to try whether three equal regular

pentagons could be placed with a common vertex, and in

a similar way ; this on trial would be found possible, and

would lead to the construction of the regular dodecahedron,

which was the regular solid last arrived at.61

We see, then, that the construction of the regular penta

gon is required for the formation of each of these two

regular solids, and that therefore it must have been a dis

covery of Pythagoras. We have now to examine what

knowledge of geometry was required for the solution of

this problem.

If any vertex of a regular pentagon be connected with

the two remote ones, an isosceles triangle will be formed

having each of the base angles double the vertical angle.

The construction of the regular pentagon depends, there

fore, on the description of such a triangle (Euclid, IV., 10).

Now, if either base angle of such a triangle be bisected,

the isosceles triangle will be decomposed into two trian

gles, which are evidently also both isosceles. It is also

evident that the one of which the base of the proposed is a

side is equiangular with it. From a comparison of the

sides of these two triangles it will appear at once by the

second theorem, attributed above to Thales, that the prob

lem is reduced to cutting a straight line so that one seg

ment shall be a mean proportional between the whole line

and the other segment (Euclid, VI., 30), or so that the rect

angle under the whole line and one part shall be equal to

the square on the other part (Euclid, II., 1 1). To effect this,

let us suppose the square on the greater segment to be

81 The four elements had been represented by the four other regular solids ; the

dodecahedron was then taken symbolically for the universe.
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constructed on one side of the line, and the rectangle under

the whole line and the lesser segment on the other side.

It is evident that by adding to both the rectangle under

the whole line and the greater segment, the problem is

reduced to the following:—To produce a given straight

line so that the rectangle under the whole line thus pro

duced and the part produced shall be equal to the square

on the given line, or, in the language of the ancients, to

apply to a given straight line a rectangle which shall be

equal to a given area—in this case the square on the given

line—and which shall be excessive by a square. Now it is

to be observed that the problem is solved in this manner

by Euclid (VI., 30, 1st method), and that we learn from

Eudemus that the problems concerning the application of

areas and their excess and defect are old, and inventions of

the Pythagoreans (e).ei

62 It may be objected that this reasoning presupposes a knowledge, on the part

of Pythagoras, of the method of geometrical analysis, which was invented by Plato

more than a century later.

While admitting that it contains the germ of that method, I reply, in the first

place, that this manner of reasoning was not only natural and spontaneous, but

that in fact in the solution of problems there was no other way of proceeding.

And, to anticipate a little, we shall see, secondly, that the oldest fragment of

Greek geometry extant—that namely by Hippocrates of Chios—contains traces

of an analytical method, and that, moreover, Proclus ascribes to Hippocrates,

who, it will appear, was taught by the Pythagoreans, the method of reduction

(airayay-fi), a systematisation, as it seems to me, of the manner of reasoning that

was spontaneous with Pythagoras. Proclus defines iiraywyli to be "a transi

tion from one problem or theorem to another, which being known or determined,

the thing proposed is also plain. For example : when the duplication of the cube

is investigated, geometers reduce the question to another to which this is

consequent, i.e. the finding of two mean proportionals, and afterwards they inquire

how between two given straight lines two mean proportionals may be found.

But Hippocrates of Chios is reported to have been the first inventor of geome

trical reduction (airaywyti) : who also squared the lune, and made many other

discoveries in geometry, and who was excelled by no geometer in his powers of

construction."—Proclus, ed. Friedlein, p. 212, sq. Lastly, we shall find that the

passages in Diogenes Laertius and Proclus, which are relied on in support of the

statement that Plato invented this method, prove nothing more than that Plato

communicated it to Leodamas of Thasos. For my part, I am convinced that the

gradual elaboration of this famous method—by which mathematics rose above the

Elements—is due to the Pythagorean philosophers from the founder to Theodoras

of Cyrene and Archytas of Tarentum, who were Plato's masters in mathematics.
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The statements, then, of Iamblichus concerning Hip-

pasus (»)—that he divulged the sphere with the twelve

pentagons ; and of Lucian and the scholiast on Aristo

phanes (/)—that the pentagram was used as a symbol of

recognition amongst the Pythagoreans, become of greater

importance. We learn, too, from Iamblichus that the Py

thagoreans made use of signs for that purpose.63

Further, the discovery of irrational magnitudes is

ascribed to Pythagoras in the same passage of Eude-

mus (m), and this discovery has been ever regarded as one

of the greatest of antiquity. It is commonly assumed that

Pythagoras was led to this theory from the consideration

of the isosceles right-angled triangle. It seems to me,

however, more probable that the discovery of incommen

surable magnitudes was rather owing to the problem—To

cut a line in extreme and mean ratio. From the solution

of this problem it follows at once that, if on the greater

segment of a line, so cut, a part be taken equal to the less,

the greater segment, regarded as a new line, will be cut in

a similar manner; and this process can be continued with

out end. On the other hand, if a similar method be adopted

in the case of any two lines which are capable of numerical

representation, the process would end. Hence would arise

the distinction between commensurable and incommensu

rable quantities.

A reference to Euclid, X., 2, will show that the above

method is the one used to prove that two magnitudes are

incommensurable. And in Euclid, X., 3, it will be seen that

the greatest common measure of two commensurable mag

nitudes is found by this process of continued subtraction.

It seems probable that Pythagoras, to whom is attri

buted one of the rules for representing the sides of right-

angled triangles in numbers, tried to find the sides of an

isosceles right-angled triangle numerically, and that, fail-

63 Iambi., Vit. Pyth., c. cxxxiii., p. 77, ed. Didot.
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ing in the attempt, he suspected that the hypotenuse and a

side had no common measure. He may have demonstrated

the incommensurability of the side of a square and its dia

gonal. The nature of the old proof—which consisted of a

redudio ad absurdum, showing that if the diagonal be com

mensurable with the side, it would follow that the same

number would be odd and even64—makes it more probable,

however, that this was accomplished by his successors.

The existence of the irrational, as well as that of the

regular dodecahedron, appears to have been regarded also

by the school as one of their chief discoveries, and to have

been preserved as a secret. It is remarkable, too, that a

story similar to that told by Iamblichus of Hippasus is

narrated of the person who first published the idea of the

irrational, namely, that he suffered shipwreck, &c.85

Eudemus ascribes the problems concerning the appli

cation of figures to the Pythagoreans. The simplest cases

of the problems (Euclid, VI., 28, 29)—those, namely, in

which the given parallelogram is a square—correspond to

the problem : To cut a straight line internally or externally

so that the rectangle under the segments shall be equal to

a given rectilineal figure. On examination it will be found

that the solution of these problems depends on the problem

Euclid, II., 14, and the theorems Euclid, II., 5 and 6, which

we have seen were probably known to the Egyptians, to

gether with the law of the three squares (Euclid, I., 47).

The finding of a mean proportional between two given

lines, or the construction of a square which shall be equal

61 Aristoteles, Analyt. Prior., I., c. xxiii., 41', 26, and c. xliv., 50s, 37, ed.

Bekker.

Euclid has preserved this proof, X., 117. Hankel thinks he did so probably

for its historical interest only, since the irrationality follows self-evidently from

X., 9; and X., 117, is merely an appendix.—Hankel, Gesch. der Math., p. 102,

note.

65 Untersuchungen iiber die neu aufgefundenen Scholien des Proklus Diadochus

zu Euclid 's Elementen, von Dr. Joachim Heinrich Knoche, Herford, 1865, pp.

20 and 23.
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to a given rectangle, must be referred, I have no doubt, to

Pythagoras. The rectangle can be easily thrown into the

form of a gnomon, and then exhibited as the difference

between two squares, and therefore as a square by means

of the law of the three squares.

Lastly, the solution of the problem to construct a

rectilineal figure which shall be equal to one and similar

to another given rectilineal figure is attributed by Plutarch

to Pythagoras. The solution of this problem depends on

the application of areas, and requires a knowledge of the

theorems :—that similar rectilineal figures are to each other

as the squares on their homologous sides ; that if three

lines be in geometrical proportion, the first is to the third

as the square on the first is to the square on the second ;

and also on the solution of the problem, to find a mean

proportional between two given straight lines. Now, we

shall see later that Hippocrates of Chios—who was in

structed in geometry by the Pythagoreans—must have

known these theorems and the solution of this problem.

We are justified, therefore, in ascribing this theorem also,

if not (with Plutarch) to Pythagoras, at least to his early

successors.

The theorem that similar polygons are to each other in

the duplicate ratio of their homologous sides involves a

first sketch, at least, of the doctrine of proportion.

That we owe the foundation and development of the

doctrine of proportion to Pythagoras and his disciples is

confirmed by the testimony of Nicomachus (n) and Iambli-

chus (o) and (p).

From these passages it appears that the early Pythago

reans were acquainted not only with the arithmetical and

geometrical means between two magnitudes, but also with

their harmonical mean, which was then called vwivavrla.

When two quantities are compared, it may be con

sidered how much the one is greater than the other, what is
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their difference; or it may be considered haw many times

the one is contained in the other, what is their quotient.

The former relation of the two quantities is called their

arithmetical ratio ; the latter their geometrical ratio.

Let now three magnitudes, lines or numbers, a, b, c, be

taken. \ia-b = b-c, the three magnitudes are in arithmeti

cal proportion ; but if a : b : : b : c, they are in geometrical

proportion.66 In the latter case, it follows at once, from the

second theorem of Thales (Euclid, VI., 4), that

a - b : b - c : : a : b;

whereas in the former case we have plainly

a — b : b — c : : a : a.

This might have suggested the consideration of three

magnitudes, so taken that

a - b : b - c : : a : c :

three such magnitudes are in harmonical proportion.

The probability of the correctness of this view is indi

cated by the consideration of the three later proportions—

a: c:\b-c-. a -b . . . the contrary of the harmonical ;

b .c . . b c .a ^ j ^ _ tne contrary 0f the geometrical.

a:b::b-c:a-b) 0

The discovery of these proportions is attributed to Hip-

pasus, Archytas, and Eudoxus."

66 In lines we may have c = a — b, or a : b : a — b. This particular case, in which

the geometrical and arithmetical ratios both occur in the same proportion, is

worth noticing. The line a is then the sum of the other two lines, and is said to

be cut in extreme and mean ratio. This section, as we have seen, has arisen out

of the construction of the regular pentagon, and we learn from Kepler that it was

called by the modems, on account of its many wonderful properties, sectio divina,

etproportio divina. He sees in it a fine image of generation, since the addition to

the line of its greater part produces a new line cut similarly, and so on. See

Kepleri, Opera Omnia, ed. Frisch, vol. v., pp. 90 and 187 (Harmonia Mundi) ;

also vol. I., p. 377 [Literae de Rebus Astrologicis). The pentagram might be

taken as the image of all this, as each of its sides and part of a side are cut in this

divine proportion.

87 Iambi, in Nic. Arith., pp. 142, 159, 163. See above, p. 4,
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We have seen also (/) that a knowledge of the so-called

most perfect or musical proportion, which comprehends in

it all the former ratios, is attributed by Iamblichus to Py

thagoras—

We have also seen [q] that a knowledge of the doctrine

of arithmetical progressions is attributed to Pythagoras.

This much at least seems certain, that he was acquainted

with the summation of the natural numbers, the odd num

bers, and the even numbers, all of which are capable of

geometrical representation.

Montucla says that Pythagoras laid the foundation of

the doctrine of Isoperimetry by proving that of all figures

having the same perimeter the circle is the greatest, and

that of all solids having the same surface the sphere is the

greatest.'8

There is no evidence to support this assertion, though it

is repeated by Chasles, Arneth, and others ; it rests merely

on an erroneous interpretation of the passage (s) in Dioge

nes Laertius, which says only that " of all solid figures the

sphere is the most beautiful ; and of all plane figures, the

circle." Pythagoras attributes perfection and beauty to

the sphere and circle on account of their regularity and

uniformity. That this is the true signification of the pas

sage is confirmed by Plato in the Timaeus,69 when speaking

of the Pythagorean cosmogony.70.

We must also deny to Pythagoras and his school a

knowledge of the conic sections, and, in particular, of the

quadrature of the parabola, attributed to him by some

88 " Suivant Diogene, dont le texte est ici fort corrumpu, et probablement trans

pose, il ebaucha aussi la doctrine des Isoperimetres, en demontrant que de toutes

les figures de meme contour, parmi les figures planes, c'est le cercle qui est la plus

grande, et parmi les solides, la sphere."—Montucla, Histoire des Mathematiques,

torn. I., p. 113.

69 Timaeus, 33, B., vol. VII., ed. Stallbaum, p. 129.

W See Bretschneider, Geont. vor Eukl., pp. 89, 90.

a + b 20b

:b.a :
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authors, and we have already noticed the misconception

which gave rise to this erroneous conclusion."

Let us now see what conclusions can be drawn from the

foregoing examination of the mathematical work of Pytha

goras and his school, and thus form an estimate of the state

of geometry about 480 B. c.

First, then, as to matter :—

It forms the bulk of the first two books of Euclid, and

includes, further, a sketch of the doctrine of proportion—

which was probably limited to commensurable magni

tudes—together with some of the contents of the sixth

book. It contains, too, the discovery of the irrational

(aXoyov), and the construction of the regular solids ; the

latter requiring the description of certain regular polygons

—the foundation, in fact, of the fourth book of Euclid.

The properties of the circle were not much known at

this period, as may be inferred from the fact that not one

remarkable theorem on this subject is mentioned ; and we

shall see later that Hippocrates of Chios did not know

the theorem—that the angles in the same segment of a

circle are equal to each other. Though this be so, there is,

as we have seen, a tradition (/) that the problem of the

quadrature of the circle also engaged the attention of the

Pythagorean school—a problem which they probably de

rived from the Egyptians."

Secondly, as toform :—

The Pythagoreans first severed geometry from the needs

of practical life, and treated it as a liberal science, giving

71 See above, p. 25, note 27.

72 This problem is considered in the Papyrus Rhind, pp, 97, 98, 117. The

point of view from which it was regarded by the Egyptians was different from

that of Archimedes. Whilst he made it to depend on the determination of the

ratio of the circumference to the diameter, they sought to find from the diameter

the side of a square whose area should be equal to that of the circle. Their

approximation was as follows :—The diameter being divided into nine equal parts,

the side of the equivalent square was taken by them to consist of eight of those

parts.
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definitions, and introducing the manner of proof which

has ever since been in use. Further, they distinguished

between discrete and continuous quantities, and regarded

geometry as a branch of mathematics, of which they made

the fourfold division that lasted to the Middle Ages—the

quadrivium (fourfold way to knowledge) of Boetius and the

scholastic philosophy. And it may be observed, too, that

the name of mathematics, as well as that of philosophy, is

ascribed to them.

Thirdly, as to method :—

One chief characteristic of the mathematical work of

Pythagoras was the combination of arithmetic with geo

metry. The notions of an equation and a proportion—which

are common to both, and contain the first germ of algebra

—were, as we have seen, introduced amongst the Greeks

by Thales. These notions, especially the latter, were ela

borated by Pythagoras and his school, so that they reached

the rank of a true scientific method in their Theory of Pro

portion. To Pythagoras, then, is due the honour of having

supplied a method which is common to all branches of

mathematics, and in this respect he is fully comparable to

Descartes, to whom we owe the decisive combination of

algebra with geometry.

It is necessary to dwell on this at some length, as

modern writers are in the habit of looking on proportion

as a branch of arithmetic"—no doubt on account of the

arithmetical point of view having finally prevailed in it—

whereas for a long period it bore much more the marks of

its geometrical origin.74

That proportion was not thus regarded by the ancients,

merely as a branch of arithmetic, is perfectly plain. We

73 Bretschneider [Geom. .vorEukl., p. 74) and Hankel (Gesch. derMath., p. 104)

do so, although they are treating of the history of Greek geometry, which is

clearly a mistake.

74 On this see A. Comte, Politique Positive, vol. III., ch. iv., p. 300.
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learn from Proclus that " Eratosthenes looked on propor

tion as the bond (avvStaiLtov) of mathematics.""

We are told, too, in an anonymous scholium on the

Elements of Euclid, which Knoche attributes to Proclus,

that the fifth book, which treats of proportion, is common

to geometry, arithmetic, music, and, in a word, to all

mathematical science.76

And Kepler, who lived near enough to the ancients to

reflect the spirit of their methods, says that one part of

geometry is concerned with the comparison of figures

and quantities, whence proportion arises (" unde proportio

existit"). He also adds that arithmetic and geometry

afford mutual aid to each other, and that they cannot be

separated."

And since Pythagoras they have never been separated.

On the contrary, the union between them, and indeed, be

tween the various branches of mathematics, first instituted

by Pythagoras and his school, has ever since become more

intimate and profound. We are plainly in presence of not

merely a great mathematician, but of a great philosopher.

It has been ever so—the greatest steps in the development

of mathematics have been made by philosophers.

Modern writers are surprised that Thales, and indeed

all the principal Greek philosophers prior to Pythagoras,

are named as his masters. They are suprised, too, at the

extent of the travels attributed to him. Yet there is no

75 Proclus, ed. Friedlein, p. 43.

76 Euclidis Elem. Graece ed. ab E. F. August, pars ii., p. 328, Berolini, 1829.

Dr. J. H. Knoche, op. cit., p. 10.

" " Et quidem geometriae theoreticae initio hujus tractatus duas fecimus partes,

unam de magnitudinibus, quatenus fiunt figurae, alteram de comparatione figura-

rum et quantitatum, unde proportio existit.

"Hae duae scientiae, arithmetica et geometria speculativa, mutuas tradunt

operas nec ab invicem separari possunt, quamvis et arithmetica sit principium

cognitionis."—Kepleri Opera Omnia, ed. Dr. h. Frisch, vol. VIII., p. 160,

Francofurti, 1870.

E
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cause to wonder that he was believed by the ancients to

have had these philosophers as his teachers, and to have

extended his travels so widely in Greece, Egypt, and the

East, in search of knowledge, for—like the geometrical

figures on whose properties he loved to meditate—his

philosophy was many-sided, and had points of contact

with all these :—

He introduced the knowledge of arithmetic from the

Phoenicians, and the doctrine of proportion from the

Babylonians.

Like Moses, he was learned in all the wisdom of the

Egyptians, and carried their geometry and philosophy

into Greece.

He continued the work commenced by Thales in ab

stract science, and invested geometry with the form which

it has preserved to the present day.

In establishing the existence of the regular solids he

showed his deductive power ; in investigating the elemen

tary laws of sound he proved his capacity for induction ;

and in combining arithmetic with geometry, and thereby

instituting the theory of proportion, he gave an instance of

his philosophic power.

These services, though great, do not form, however, the

chief title of this Sage to the gratitude of mankind. He

resolved that the knowledge which he had acquired with

so great labour, and the doctrine which he had taken such

pains to elaborate, should not be lost ; and, as a husband

man selects good ground, and is careful to prepare it for

the reception of the seed, which he trusts will produce fruit

in due season, so Pythagoras devoted himself to the forma

tion of a society d'dlite, which would be fit for the reception

and transmission of his science and philosophy ; and thus

became one of the chief benefactors of humanity, and

earned the gratitude of countless generations.

His disciples proved themselves worthy of their high

mission. We have had already occasion to notice their
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noble self-renunciation, which they inherited from their

master.

The moral dignity of these men is further shown by

their admirable maxim—a maxim conceived in the spirit

of true social philosophers—a figure and a step ; but not a

figure and three oboh (ayafia koi (iafia, aXA' ov a\afia koi rpiw-

(3o\ov):°

Such, then, were the men by whom the first steps in

mathematics—the first steps ever the most difficult—were

made.

In the next chapter we shall notice the events which

led to the publication, through Hellas, of the results

arrived at by this immortal School.

18 Proclus, ed. Friedlein, p. 84. Taylor's Commentaries of Proclus, vol. I.,

p. 113. Taylor, in a note on this passage, says:—"I do not find tins aenigma

among the Pythagoric symbols which are extant, so that it is probably nowhere

mentioned but in the present work."

Taylor is not correct in this statement. This symbol occurs in Iamblichus.

See Iambi., Adhortatio ad Philosophiam, ed. Kiessling, Symb. xxxvi., cap. xxi.,

p. 317; also Expl. p. 374: irporlfitt t6 "al firjfia rov axrifia "al rpidi-

$o\ov.

E 2
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CHAPTER III*

THE GEOMETERS OF THE FIFTH CENTURY B.C.—

HIPPOCRATES OF CHIOS : DEMOCRITUS.

State of Hellas during the PersianWars.—Pre-eminence ofAthens.—The Eleatic

School and the Atomic Philosophy.—Hippocrates of Chios.—Notices of him

and of his work.—Was the first writer of the " Elements," and first squared

the Lune. — His probable date. — The Quadrature of the Circle and of

the Lune.—Extract from the Commentary of Simplicius on the Physics of

Aristotle ; derived by him partly from Alexander of Aphrodisias and partly

from the History of Geometry of Eudemus.—Notices of the work done by

other Geometers of this period.—Democritus.—His mathematical writings.—

Problem of the Duplication of the Cube.—Reduced by Hippocrates to :

the finding of two Mean Proportionals between two Given Straight Lines.—

Probable relation of this problem to the Pythagorean Cosmology.—Its

influence on the development of Geometry.—The Trisection of an Angle.—

The Quadratrix. — Hippias of Elis.— Method of Exhaustions erroneously

attributed to Hippocrates.—Probable origin of his discovery concerning the

Quadrature of the Lune.—Though the principal Geometer of this period,

the judgment of the ancients on him was not altogether favourable.—

Suggested explanation of this.

The first twenty years of the fifth century before the

Christian era was a period of deep gloom and despondency

throughout the Hellenic world. The Ionians had revolted,

and were conquered for the third time ; this time, how-

* In the Introduction, note 1, I acknowledged my obligations to the works

of Bretschneider and Hankel : I have again made use of them in the preparation

of this chapter. Since it was written, I have received from Dr. Moritz Cantor,

of Heidelberg, the portion of his History of Mathematics which treats of the

Greeks ( Vorlesungen iiber Geschichte der Mathematik, von Moritz Cantor, Erster

Band. Von den altesten Zeiten bis zum Jahre 1200 n. Chr. Leipzig, 1880

(Teubner)). To the list of new editions of ancient mathematical works given

in the note referred to above, I have to add : Theonis Smyrnaei Expositio rerum

Mathematicarum ad legendum Platonem utilium. Recensuit Eduardus Hiller,

Lipsiae, 1878 (Teubner) ; Pappi Alexandrini Collectionis quae supersunt, Sec,

instruxit F. Hultsch, vol. III., Berolini, 1878 (to the latter the editor has appen

ded an Index Graecitatis, a valuable addition ; for, as he remarks, " Mathematicam

Graecorum dictionem nemo adhuc in lexici formam redegit." Praef., vol. III.,
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ever, the conquest was complete and final : they were

overcome by sea as well as by land. Miletus, till then

the chief city of Hellas, and rival of Tyre and Carthage,

was taken and destroyed ; the Phoenician fleet ruled the

sea, and the islands of the ^Egean became subject to

Persia. The fall of Ionia, and the maritime supremacy of

the Phoenicians, involving the interruption of Greek com

merce, must have exercised a disastrous influence on the

cities of Magna Graecia.1 The events which occurred

there after the destruction of Sybaris are involved in great

obscurity. We are told that some years after this event

there was an uprising of the democracy—which had been

repressed under the influence of the Pythagoreans—not

only in Crotona, but also in the other cities of Magna

Graecia. The Pythagoreans were attacked, and their

Senate-houses (auv&pia) were burned ; the whole country

was thrown into a state of confusion and anarchy ; the

Pythagorean Brotherhood was suppressed, and the chief

men in each city perished.

The Italic Greeks, as well as the Ionians, ceased to

prosper.

Towards the end of this period Athens was in the

hands of the Persians, and Sicily was threatened by the

Carthaginians. Then followed the glorious struggle ; the

gloom was dispelled, the war which had been at first

torn. 11.) ; Archimedis Opera omnia cum commentariis Eutocii. E codice Floren

tine) recensuit, Latine vertit notisque illustravit J. L. Heiberg, Dr. Phil. Vol. I.,

Lipsiae, 1880 (Teubner). Since the above was in type, the following work has

been published : An Introduction to the Ancientand Modern Geometry of Conics :

being a Geometrical Treatise on the Conic Sections, with a collection ofProblems

and Historical Notes and Prolegomena. By Charles Taylor, M.A., Fellow of St.

John's College, Cambridge. Cambridge, 1881. The matter of the Prolegomena,

pp. xvii-lxxxviii, is historical.

1 The names Ionian Sea, and Ionian Isles still bear testimony to the inter

course between these cities and Ionia. The writer of the article in Smith's

Dictionary of Geography thinks that the name Ionian Sea was derived from

Ionians residing, in very early times, on the west coast of the Peloponnesus. Is

it not more probable that it was so called from being the highway of the Ionian

ships, just as, now-a-days, in a provincial town we have the London road ?
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defensive became offensive, and the ^Egean sea was

cleared of Phoenicians and pirates. A solid basis was thus

laid for the development of Greek commerce and for the

interchange of Greek thought, and a brilliant period

followed—one of the most memorable in the history of

the world.

Athens now exercised a powerful attraction on all that

was eminent in Hellas, and became the centre of the

intellectual movement. Anaxagoras settled there, and

brought with him the Ionic philosophy, numbering Pericles

and Euripides amongst his pupils. Many of the dispersed

Pythagoreans no doubt found a refuge in that city, always

hospitable to strangers : subsequently the Eleatic philoso

phy was taught there by Parmenides and Zeno. Eminent

teachers flocked from all parts of Hellas to the Athens of

Pericles. All were welcome ; but the spirit of Athenian

life required that there should be no secrets, whether

confined to priestly families* or to philosophic sects :

everything should be made public.

In this city, then, geometry was f1rst published ; and

with that publication, as we have seen, the name of Hip

pocrates of Chios is connected.

Before proceeding, however, to give an account of the

work of Hippocrates of Chios, and the geometers of the

fifth century before the Christian era, we must take a

cursory glance at the contemporaneous philosophical

movement. Proclus makes no mention of any of the

philosophers of the Eleatic School in the summary of the

history of geometry which he has handed down—they

seem, indeed, not to have made any addition to geometry

or astronomy, but rather to have affected a contempt for

both these sciences—and most writers* on the history of

2 E.g. the Asclepiadae. SeeCurtius, History of Greece, Engl, transl., vol. II.

p. 510.

5 Not so Hankel, whose views as to the influence of the Eleatic philosophy
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<

mathematics either take no notice whatever of that School,

or merely refer to it as outside their province. Yet the

visit of Parmenides and Zeno to Athens (arc. 450 B.C.),

the invention of dialectics by Zeno, and his famous polemic

against multiplicity and motion, not only exercised an

important influence on the development of geometry at

that time, but, further, had a lasting effect on its sub

sequent progress in respect of method.1

Zeno argued that neither multiplicity nor motion is

possible, because these notions lead to contradictory con

sequences. In order to prove a contradiction in the idea of

motion, Zeno argues : " Before a moving body can arrive at

its destination it must have arrived at the middle of its

path ; before getting there it must have accomplished the

half of that distance, and so on ad infinitum: in short,

every body, in order to move from one place to another,

must pass through an infinite number of spaces, which is

impossible." Similarly he argued that " Achilles cannot

overtake the tortoise, if the latter has got any start,

because in order to overtake it he would be obliged first

to reach every one of the infinitely many places which the

tortoise had previously occupied." In like manner, " The

flying arrow is always at rest ; for it is at each moment

only in one place."

Zeno applied a similar argument to show that the

notion of multiplicity involves a contradiction. ' If the

manifold exists, it must be at the same time infinitely

small and infinitely great—the former, because its last

I have adopted. See a fine chapter of his Gesch. der Math., pp. 115 ig.,

from which much of what follows is taken.

4 This influence is noticed by Clairaut, EUmens de Giomitrie, Pref. p. x,

Paris, 1741 : " Qu' Euclide se donne la peine de demontrer, que deux cercles

qui se coupent n'ont pas le meme centre, qu'un triangle renferme dans un autre

a la somme de ses cotes plus petite que celle des cotes du triangle dans lequel il

est renferme ; on n'en sera pas surpris. Ce Geometre avoit a convaincre des

Sophistes obstines, qui se faisoient gloire de se refuser aux verites les plus eviden-

tes : il falloit donc qu'alors la Geometrie eut, comme la Logique, le secours des

raisonnemens en forme, pour fermer la bouche a la chicanne."
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divisions are without magnitude ; the latter, on account of

the infinite number of these divisions.' Zeno seems to

have been unable to see that if xy=>a, x and y may both

vary, and that the number of parts taken may make up for

their minuteness.

Subsequently the Atomists endeavoured to reconcile

the notions of unity and multiplicity; stability and mo

tion ; permanence and change ; being and becoming—in

short, the Eleatic and Ionic philosophy. The atomic

philosophy was founded by Leucippus and Democritus ;

and we are told by Diogenes Laertius that Leucippus was

a pupil of Zeno : the filiation of this philosophy to the

Eleatic can, however, be seen independently of this state

ment. In accordance with the atomic philosophy mag

nitudes were considered to be composed of indivisible

elements (arofjiot) in finite numbers ; and indeed Aristotle—

who, a century later, wrote a treatise on Indivisible Lines

(irtpl oro/iwv ypafinuv), in order to show their mathematical

and logical impossibility—tell us that Zeno's disputation

was taken as compelling such a view.5 We shall see, too,

that, in Antiphon's attempt to square the circle, it is

assumed that straight and curved lines are ultimately

reducible to the same indivisible elements.6

Insuperable difficulties were found, however, in this

conception ; for no matter how far we proceed with the

division, the distinction between the straight and curved

still exists. A like difficulty had been already met ^with

in the case of straight lines themselves, for the incommen

surability of certain lines had been established by the

Pythagoreans. The diagonal of a square, for example,

cannot be made up of submultiples of the side, no matter

how minute these submultiples may be. It is possible

that Democritus may have attempted to get over this diffi-

» Arist., De insecab. lineis, p. 968*, ed. Bekker.

6 Vid. Bretsch., Geom. vor EuM., p. 101, et infra, p. 66.



The Geometers of the Fifth Century B.C. 57

culty, and reconcile incommensurability with his atomic

theory ; for we are told by Diogenes Laertius that he

wrote on incommensurable lines and solids (irtpl aXoywv

The early Greek mathematicians, troubled no doubt by

these paradoxes of Zeno, and finding the progress of

mathematics impeded by their being made a subject of

dialectics, seem to have avoided all these difficulties by

banishing from their science the idea of the Infinite—the

infinitely small as well as the infinitely great (vid. Euclid,

Book V., Def. 4). They laid down as axioms that any

quantity may be divided ad libitum ; and that, if two spaces

are unequal, it is possible to add their difference to itself so

often that every finite space can be surpassed.8 Accord

ing to this view, there can be no infinitely small difference

which being multiplied would never exceed a finite space.

Hippocrates of Chios, who must be distinguished from

his contemporary and namesake, the great physician of

Cos, was originally a merchant. All that we know of him

is contained in the following brief notices :—

(a) . Plutarch tell us that Thales, and Hippocrates the

mathematician, are said to have applied themselves to

commerce.9

(b) . Aristotle reports of him : " It is well known that

persons, stupid in one respect, are by no means so in

others (there is nothing strange in this : so Hippocrates,

though skilled in geometry, appears to have been in other

respects weak and stupid ; and he lost, as they say,

through his simplicity, a large sum of money by the fraud

of the collectors of customs at Byzantium (virb tuiv iv Bv^av-

TtCf) TTtVrtlKOOrokoyWv))." 10

' Diog. Laert., IX. vii., 47, ed. Cobet, p. 239.

8 Archim., de quadr. parab., p. 18, ed. Torelli.

' Vit. Solonis, II.

10 Arist., Eth. ad Eud., vii., c. xiv., p. 1247*, 15, ed. Bekker.
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(c) . Johannes Philoponus, on the other hand, relates that

Hippocrates of Chios, a merchant, having fallen in with a

pirate vessel, and having lost everything, went to Athens

to prosecute the pirates, and staying there a long time on

account of the prosecution, frequented the schools of the

philosophers, and arrived at such a degree of skill in

geometry, that he endeavoured to find the quadrature of

the circle."

(d) . We learn from Eudemus that CEnopides of Chios

was somewhat junior to Anaxagoras, and that after these

Hippocrates of Chios, who first found the quadrature of the

lune, and Theodorus of Cyrene, became famous in geometry ;

and that Hippocrates was the first writer of Elements.12

(e) . He also taught, for Aristotle says that his pupils,

and those of his disciple ^Eschylus, expressed them

selves concerning comets in a similar way to the Pytha

goreans.13

{f). He is also mentioned by Iamblichus, along with

Theodorus of Cyrene, as having divulged the geometrical

arcana of the Pythagoreans, and thereby having caused

mathematics to advance (eitISwice Se ra paOiipara, lirti l%itvrivi-

\driaav Suraoi irpoayovrt, paXiara QtoSwpoe re 6 KujOjjvaToe, ical

'iniroKp arris 6 XToe).14

{g). Iamblichus goes on to say that the Pythagoreans

allege that geometry was made public thus : one of the

Pythagoreans lost his property ; and he was, on account

of his misfortune, allowed to make money by teaching

geometry.15

{h). Proclus, in a passage quoted supra (p. 41, note

62), ascribes to Hippocrates the method of reduction

{airaywyr)). Proclus defines airaywyri to be " a transi-

11 Philoponus, Comm. in Arist. phys. ausc, f. 13. Brand., Schol. in Arist.,

P- 327b. 44-

12 Proclus, ed. Friedlein, p. 66.

13 Arist., Meteor., 1., vi., p. 342b, 35, ed. Bekker.

14 Iambi- de philos. Pythag. lib. III. ; Villoison, Anecdota Graeca, II., p. 216.

ls Ibid. ; also Iambi., Vit. Pyth., Cap. XVIII., 89.
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tion from one problem or theorem to another, which

being known or determined, the thing proposed is also

plain. For example : when the duplication of the cube

is investigated, geometers reduce the question to another

to which this is consequent, i. e., the finding of two

mean proportionals, and afterwards they inquire how

between two given straight lines two mean proportionals

may be found. But Hippocrates of Chios is reported to

have been the first inventor of geometrical reduction

(a-rrayu>yri) ; who also squared the lune, and made many

other discoveries in geometry, and who was excelled by

no other geometer in his powers of construction.""

[i). Eratosthenes, too, in his letter to King Ptolemy III.,

Euergetes, which has been handed down to us by Eutocius,

after relating the legendary origin of the celebrated problem

of the duplication of the cube, tells us that after geometers

had for a long time been quite at a loss how to solve the

question, it first occurred to Hippocrates of Chios that

if between two given lines, of which the greater is twice

the less, he could find two mean proportionals, then the

problem of the duplication of the cube would be solved.

But thus, Eratosthenes adds, the problem is reduced to

another which is no less difficult.11

(k). Eutocius, in his commentary on Archimedes (Circ.

Dimens. Prop. 1), tells us that Archimedes " wished to show

that a circle is equal to a certain rectilineal area, a thing

which had been of old investigated by illustrious philo

sophers.18 For it is evident that this is the problem con

cerning which Hippocrates of Chios and Antiphon, who

carefully searched after it, invented the false reasonings

which, I think, are well known to those who have looked

into the History of Geometry of Eudemus and the Keria

(Knplwv) of Aristotle." 19

16 Proclus, ed. Friedlein, pp. 212, 213.

11 Archim., ex recens. Torelli, p. 144 : Oxon. 1792.

18 Anaxagoras, for example.

" Archim., ex recens. Torelli, p. 204.
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On the passage {/) quoted above, from Iamblichus, is

based the statement of Montucla, which has been repeated

since by recent writers on the history of mathematics,20

that Hippocrates was expelled from a school of Pytha

goreans for having taught geometry for money.21

There is no evidence whatever for this statement, which

is, indeed, inconsistent with the passage [g) of Iamblichus

which follows. Further, it is even possible that the person

alluded to in (g) as having been allowed to make money

by teaching geometry may have been Hippocrates him

self; for—

1. He learned from the Pythagoreans;

2. He lost his property through misfortune ;

3. He made geometry public, not only by teaching,

but also by being the first writer of the Elements.

This misapprehension originated, I think, with Fabri-

cius, who says : " De Hippaso Metapontino adscribam adhuc

locum Iamblichi e libro tertio de Philosophia Pythagorica

Graece necdum edito, p. 64, ex versione Nic. Scutellii : Hip-

pasus (videtur legendum Hipparchus) ejicitur e Pythagorae

schola eo, quodprimus sphaeram duodecim angulorum (Dode-

caedron) edidisset (adeoque arcanum hoc evulgasset), Theo-

dorus etiam Cyrenaeus et Hippocrates Chius Geometra ejiciun-

tur qui ex geometria quaestumfactitabant. Confer Vit. Pyth.,

cap. 34 & 35." 22

In this passage Fabricius, who, however, had access to

20 Bretsch., Geom. vor Eukl., p. 93 ; Hoefer, Histoire des Math., p. 135.

Since the above was written, this statement has been reiterated by Cantor, Gesch.

der Math., p. 172; and by C. Taylor, Geometry of Conics, Prolegomena, p. xxviii.

21 Montucla, Histoire des Math., tom. I., p. 144, lre ed. 1758 ; torn. I., p.

152, nouv. ed. an vii. ; the statement is repeated in p. 155 of this edition, and

Simplicius is given as the authority for it. Iamblichus is, however, referred to

by later writers as the authority for it.

22 Jo. Alberti Fabricii Bibliotheca Graeca, ed. Harles, 1. p. 848, Hamburgi,

1790.
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a manuscript only, falls into several mistakes, as will be

seen by comparing it with the original, which I give

here :—

ETepi 8 ITtttoxtov Xeyov<riv, is rjv p.iv tSiv HvOayopeiu>v, Sia Se to

e$€vtyKeiv, Koi ypdij/ao-Oai irpaiTOS atpaipav, rrjv iK ru>v SojSexa €(aywvwv

[irevrayu>vii>v\, airokoiro Kara OdXarrav, <us ao-€fifoas, S6(av Se Aa/?ot,

ais elvai Se irai'Ta ineivov tov avBpos' irpoo-ayopevovcri yap ovtio tov

UvOayopav, Kal 06 KaXoSo"tv cVop-aTt. iireSo>Ke Se Ta p-aOyfiara, iirei

i£evr]vi)(Orj<Tav Si<raol irpoayovre, p-dkiirra ®e68mp6s t€ 6 K.vprjvaiof, koi

'lmroKparrjs 6 XIos. Xeyoucri St oi Tlv6a.y6peioi i£evrjve)(6ai. yvopwrpiav

ovtW o.iro/3a\.eiv riva rrjv ovo-iav riav TlvOayopeiu>V <Ls Se tovt' rjrV-

Xilo"el Oodfjvai avriS xpr]p.ari<rao-6ai oiito ■yeajp.eTpias" eKaXurO St ^

ye<i>fj.erpCa wp6s Ilu^a7opou urropia.83

Observe that Fabricius, mistaking the sense, says that

Hippasus, too, was expelled. Hippocrates may have been

expelled by a School of Pythagoreans with whom he had

been associated; but, if so, it was not for teaching geo

metry for money, but for taking to himself the credit of

Pythagorean discoveries—a thing of which we have seen

the Pythagoreans were most jealous, and which they even

looked on as impious (ao-tfirio-ae).™

As Anaxagoras was born 499 B. C, and as Plato, after

the death of Socrates 399 B.C., went to Cyrene to hear

Theodorus (d), the lifetime of Hippocrates falls within the

fifth century before Christ. As, moreover, there could not

have been much commerce in the ^Egean during the first

quarter of the f1fth century, and, further, as the statements

of Aristotle and Philoponus [(b) and (c)] fall in better with

the state of affairs during the Athenian supremacy—even

though we do not accept the suggestion of Bretschneider,

m Iambi., de philos. Pyth., lib. m. ; Villoison, Anecdota Graeca, II., p. 216.

With the exception of the sentence concerning Hippocrates, the passage, with

some modifications, occurs also in Iamb]., Vit. Pyth., Cap. xvm., 88, 89.

24 See p. 43.
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made with the view of reconciling these inconsistent

statements, that the ship of Hippocrates was taken by

Athenian pirates" during the Samian war (440 B.C.), in

which Byzantium took part—we may conclude with cer

tainty that Hippocrates did not take up geometry until

after 450 B.C. We have good reason to believe that at

that time there were Pythagoreans settled at Athens.

Hippocrates, then, was probably somewhat senior to

Socrates, who was a contemporary of Philolaus and De-

mocritus.

The paralogisms of Hippocrates, Antiphon, and Bryson,

in their attempts to square the circle, are referred to and

contrasted with one another in several passages of Aris

totle*5 and of his commentators—Themistius," Jo. Phi-

loponus,28 and Simplicius. Simplicius has preserved in

his Commentary on the Physics of Aristotle a pretty full and

partly literal extract from the History of Geometry of

Eudemus, which contains an account of the work of Hip

pocrates and others in relation to this problem. The

greater part of this extract had been almost entirely over

looked by writers on the history of Mathematics, until

Bretschneider29 republished the Greek text, having care

fully revised and emended it. He also supplied the neces

sary diagrams, some of which were wanting, and added

explanatory and critical notes. This extract is interesting

and important, and Bretschneider is entitled to much

credit for the pains he has taken to make it intelligible

and better known.

26 Bretsch., Geom. vor Eukl., p. 98.

26 De Sophist. Elench., n, pp. I7ib, and 172, ed. Bekker; Phys. Ausc, I., ii.,

p. 185% 14, ed. Bekker.

27 Themist., f. 16, Schol. in Arist., Brand., p. 327b, 33. Ibid.,i. 5, Schol.,

p. 2iib, 19.

28 Jo. Philop. f. 25 b, Schol., Brand- p. 2ilb, 30. Ibid., f. 118, Schol.,

p. 2lib, 41. Ibid., f. 26b, Schol., p. 2I2«, 16.

29 Bretsch., Geom. vor Eukl., pp. 100-121. [Simplicii in Aristoielis Physico-

rum libros quattuorpriores Commentaria, ed. Hermannus Diels, pp. 54-69.]
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It is much to be regretted, however, that Simplicius

did not merely transmit verbatim what Eudemus related,

and thus faithfully preserve this oldest fragment of Greek

geometry, but added demonstrations of his own, giving

references to the Elements of Euclid, who lived a century

and a-half later than Hippocrates. Simplicius says : " I

shall now put down literally what Eudemus relates, adding

only a short explanation by referring to Euclid's Elements,

on account of the summary manner of Eudemus, who,

according to archaic custom, gives only concise proofs." "

And in another place he tells us that Eudemus passed over

the squaring of a certain lune as evident—indeed, Eudemus

was right in doing so—and supplies a lengthy demonstra

tion himself."

Bretschneider and Hankel, overlooking these passages,

and disregarding the frequent references to the Elements

of Euclid which occur in this extract, have drawn con

clusions as to the state of geometry at the time of Hip

pocrates which, in my judgment, cannot be sustained.

Bretschneider notices the great circumstantiality of the

construction, and the long-windedness and the over-ela

boration of the proofs.32 Hankel expresses surprise at the

fact that this oldest fragment of Greek geometry— 150

years older than Euclid's Elements—already bears that

character, typically fixed by the latter, which is so peculiar

to the geometry of the Greeks.33

Fancy a naturalist finding a fragment of the skeleton

of some animal which had become extinct, but of which

there were living representatives in a higher state of

development ; and fancy him improving the portion of

the skeleton in his hands by making additions to it, so

30 Bretsch., Geom. vor Eukl., p. 109.

31 Ibid., p. 113.

»» Ibid., pp. 130, 131.

33 Hankel, Gesch. der Math., p. 112.
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that it might be more like the skeleton of the living

animal; then fancy other naturalists examining the im

proved fragment with so little attention as to exclaim :

" Dear me ! how strange it is that the two should be so

perfectly alike! "

There is, moreover, much clumsiness, and a want of

perspicuity, in the arrangement of the demonstrations—

the construction not being clearly stated, but being mixed

up with the proof : the proofs, too, which in several

instances are plainly supplied by Simplicius—inasmuch

as propositions of Euclid's Elements are quoted—are

unskilful and wearisome on account of the laboured de

monstrations of evident theorems, which are repeated

several times under different forms : while, on the other

hand, some statements and constructions which stand

more in need of explanation are passed over without

remark. The conclusion is thus forced on us that Simpli

cius was but a poor geometer ; and we have greater reason,

therefore, to regret that he was not content with transmit

ting the work of Eudemus unaltered.

I shall attempt now to restore this fragment by remov

ing from it everything that seems to me not to be the work

of Eudemus, and all reference to Euclid's Elements ; and

by stating briefly, but at the same time clearly and in

order, the several steps of each demonstration. I shall

also notice the theorems which are made use of, and the

problems whose solution is assumed in it :—

" The difference between false conclusions that can be

proved to be such, and others which cannot, he [Aristotle]

shows by some false reasonings in geometry.31 Amongst

the many persons who have sought the squaring of the

circle (that is, to find a square which shall be equal to a

circle), both Antiphon and Hippocrates believed that they

34 ifievBoypd<piina, literally a misdelineation, a false reasoning founded on a

faulty diagram.
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had found it, and were equally mistaken. Antiphon's

mistake, on account of his not having started from geo

metrical principles, as we shall see, cannot be disproved

geometrically. That of Hippocrates, on the other hand,

since he was deceived although he clung to geometrical

principles, can be disproved geometrically. For we must

analyse and examine those reasonings only which, pre

serving the acknowledged principles of the science, lead

thus to further conclusions ; but there is no use in

examining those in which these principles are set aside.'

'Antiphon, having drawn a circle, inscribed in it one

of those polygons35 that can be inscribed : let it be a

square. Then he bisected each side of this square, and

 

through the points of section drew straight lines at right

angles to them, producing them to meet the circumference;

these lines evidently bisect the corresponding segments of

the circle. He then joined the new points of section to the

ends of the sides of the square, so that four triangles were

formed, and the whole inscribed figure became an octagon.

And again, in the same way, he bisected each of the sides

of the octagon, and drew from the points of bisection

35 In Greek mathematical writers, rerpayuvov, as far as I know, always means

a square. In this oldest geometrical writing, e^dyuvov, buriyuvov, and iro\iyu-

vov denote regular hexagon, octagon, and polygon. This is not the case in the

Elements of Euclid, who writes, e. g., irevrdyuvov ia6ir\evp6i, re nal \aoyiiviov, &c.

In Pappus, however, these words, though sometimes used generally, for the

most part denote regular figures. The Greeks could do this, for they had the

words rerpdir\evpov, irevr&ir\evpov, &c., for quadrilateral, pentagon, &c.

F
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perpendiculars ; he then joined the points where these

perpendiculars met the circumference with the extremities

of the octagon, and thus formed an inscribed figure of

sixteen sides. Again, in the same manner, bisecting the

sides of the inscribed polygon of sixteen ' sides, and

drawing straight lines, he formed a polygon of twice as

many sides ; and doing the same again and again, until

he had exhausted the surface, he concluded that in this

manner a polygon would be inscribed in the circle, the

sides of which, on account of their minuteness, would

coincide with the circumference of the circle. But we can

substitute for each polygon a square of equal surface ;

therefore we can, since the surface coincides with the

circle, construct a square equal to a circle.'

On this Simplicius observes : ' the conclusion here is

manifestly contrary to geometrical principles, not, as

Alexander maintains, because the geometer supposes as a

principle that a circle can touch a straight line in one

point only, and Antiphon sets this aside ; for the geometer

does not suppose this, but proves it. It would be better to

say that it is a principle that a straight line cannot coin

cide with a circumference, for one without meets the circle

in one point only, one within in two points, and not more,

and the meeting takes place in single points. Yet, by

continually bisecting the space between the chord and the

arc, it will never be exhausted, nor shall we ever reach the

circumference of the circle, even though the cutting should

be continued ad infinitum : if we did, a geometrical prin

ciple would be set aside, which lays down that magnitudes

are divisible ad infinitum. And Eudemus, too, says that

this principle has been set aside by Antiphon."

' But the squaring of the circle by means of segments,

he [Aristotle31] says, may be disproved geometrically ; he

31 But Eudemus was a pupil of Aristotle, and Antiphon was a contemporary

of Democritus.

S1 Phys. Ausc. I., ii., p. 185", 16, ed. Bekker.
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would rather call the squaring by means of lunes, which

Hippocrates found out, one by segments, inasmuch as the

lune is a segment of the circle. The demonstration is as

follows :—

' Let a semicircle a/3y be described on the straight line

a/3 ; bisect aft in S ; from the point $ draw a perpendicular

Sy to a/3, and join ay ; this will be the side of the square

inscribed in the circle of which a/3y is the semicircle. On

ay describe the semicircle aty. Now since the square on

a/3 is equal to double the square on ay (and since the squares

on the diameters are to each other as the respective circles

 

or semicircles), the semicircle n-y/3 is double the semicircle

aty. The quadrant ayS is, therefore, equal to the semicircle

aty. Take away the common segment lying between the

circumference ay and the side of the square ; then the

remaining lune aty will be equal to the triangle ayS; but

this triangle is equal to a square. Having thus shown

that the lune can be squared, Hippocrates next tries, by

means of the preceding demonstration, to square the circle

thus :—

'Let there be a straight line a/3, and let a semicircle be

described on it ; take yS double of a/3, and on it also

describe a semicircle ; and let the sides of a hexagon, ye,

tr, and £S be inscribed in it. On these sides describe the

semicircles y^t, t6X,, £kS. Then each of these semicircles

described on the sides of the hexagon is equal to the semi

circle on a/3, for a/3 is equal to each side of the hexagon. The

four semicircles are equal to each other, and together are

then fou1? times the semicircle on a/3. But the semicircle

on yS is also four times that on a/3. The semicircle on yS

F 2
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is, therefore, equal to the four semicircles—that on a/3,

together with the three semicircles on the sides of the

hexagon. Take away from the semicircles on the sides of

the hexagon, and from that on -yc, the common segments

contained by the sides of the hexagon and the periphery of

the semicircle yS ; the remaining lunes yrie, s0£, and £kS,

together with the semicircle on a/3, will be equal to the

trapezium ye, t£, £d\ If we now take away from the

trapezium the excess, that is a surface equal to the lunes

(for it has been shown that there exists a rectilineal figure

equal to a lune), we shall obtain a remainder equal to

the semicircle a/3 ; we double this rectilineal figure which

remains, and construct a square equal to it. That square

will be equal to the circle of which a/3 is the diameter, and

thus the circle has been squared.

' The treatment of the problem is indeed ingenious ; but

the wrong conclusion arises from assuming that as demon

strated generally which is not so ; for not every lune has

been shown to be squared, but only that which stands over

the side of the square inscribed in the circle ; but the lunes

in question stand over the sides of the inscribed hexagon.

The above proof, therefore, which pretends to have squared

the circle by means of lunes, is defective, and not conclu

sive, on account of the false-drawn figure (\ptvSoypa<fjrifia)

which occurs in it.3R

' 38 I attribute the above observation on the proof to Eudemus. What follows

in Simplicius seems to me not to be his. I have, therefore, omitted the re

mainder of § 83, and §§ 84, 85, pp. 105-109, Bretsch., Geom. vor Eukl-

 

K
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' Eudemus,39 however, tells us in his History of Geometry,

that Hippocrates demonstrated the quadrature of the lune,

not merely the lune on the side of the square, but gene

rally, if one might say so : if, namely, the exterior arc of

the lune be equal to a semicircle, or greater or less than it.

I shall now put down literally {Kara Aa'Siu)10 what Eudemus

relates, adding only a short explanation by referring to

Euclid's Elements, on account of the summary manner of

Eudemus, who, according to archaic custo/n, gives concise

proofs.

' In the second book of his History of Geometry,

Eudemus says :—

" The squaring of lunes seeming to relate to an uncom

mon class of figures was, on account of their relation

to the circle, first treated of by Hippocrates, and was

rightly viewed in that connection. We may, therefore,

more fully touch upon and discuss them. He started

with and laid down as the first thing useful for them, that

similar segments of circles have the same ratio as the

squares on their bases. This he proved by showing that

circles have the same ratio as the squares on their dia

meters. Now, as circles are to each other, so are also

similar segments; but similar segments are those which

contain the same part of their respective circles, as a semi

circle to a semicircle, the third part of a circle to the third

part of another circle." For which reason, also, similar

segments contain equal angles. The latter are in all semi

circles right, in larger segments less than right angles,

and so much less as the segments are larger than semi

circles ; and in smaller segments they are larger than

39 Bretsch., Geom. Dor. Eukl., p. 109.

10 Simplicius did not adhere to his intention, or else some transcriber has

added to the text.

41 Here rpij/ia seems to be used for sector : indeed, we have seen above that

a lune was also called r/i^/ia. The word rofictis, sector, may have been of later

origin. The poverty of the Greek language in respect of geometrical terms has

been frequently noticed. For example, they had no word for radius, and instead
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right angles, and so much larger as the segments are

smaller than semicircles. Having first shown this, he

described a lune which had a semicircle for boundary,

by circumscribing a semicircle about a right-angled isos

celes triangle, and describing on the hypotenuse a seg

ment of a circle similar to those cut off by the sides. The

segment over the hypotenuse then being equal to the sum

of those on the two other sides, if the common part of the

triangle which lies over the segment on the base be added

 

to both, the lune will be equal to the triangle. Since the

lune, then, has been shown to be equal to a triangle, it can

be squared. Thus, then, Hippocrates, by taking for the

exterior arc of the lune that of a semicircle, readily squares

the lune.

"Hippocrates next proceeds to square a lune whose

exterior arc is greater than a semicircle. In order to do

so, he constructs a trapezium" having three sides equal to

each other, and the fourth—the greater of the two parallel

sides—such that the square on it is equal to three times

used the periphrasis rj IK rod nivrpov. Again, Archimedes nowhere uses the

word parabola ; and as to the imperfect terminology of the geometers of this

period, we have the direct statement of Aristotle, who says ; ical ri i.va\oyov Sti

eVaAAa|, rj apidfiol Kal 77 ypafifial Kal $ arepea Kal $ xP6voii &aircP iSeiKvvr6 irore

Xwpfj, ivScx6flev6v *yc Kara iravrwv fiia oiroSe/^ci b"eix®rivai' a\\a 5ia to fii] elvai

SivofUUffiAvov ti irdvra ravra eV, apidfiol fiiiKy xPov0s ffrcpea, Kal elSei SuKp4peiP

oAX^Aujv, xwP^s i\afi$dvero. vvv Kad6\ov SeUvvrai' ov yap rj ypafifial ti $

apidfiol virrjpxevl aAA' fi roSl, S Kad6\ov vnoridevrai virapxuv.—Aristot., Anal.,

post., I., v., p. 74», 17, ed. Bekker. This passage is interesting in another respect

also, as it contains the germ of Algebra.

12 Trapezia, like this, cut off from an isosceles triangle by a line parallel to

the base, occur in the Papyrus Rhind.
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that on any other side; he circumscribes a circle about the

trapezium, and on its greatest side describes a segment of

a circle similar to those cut off from the circle by the three

equal sides.43 By drawing a diagonal of the trapezium, it

will be manifest that the section in question is greater

than a semicircle, for the square on this straight line sub

tending two equal sides of the trapezium must be greater

 

than twice the square on either of them, or than double

the square on the third equal side : the square on the

greatest side of the trapezium, which is equal to three

times the square on any one of the other sides, is therefore

less than the square on the diagonal and the square on the

third equal side. Consequently, the angle subtended by

the greatest side of the trapezium is acute, and the seg

ment which contains it is, therefore, greater than a semi

circle : but this is the exterior boundary of the lune.

Simplicius tells us that Eudemus passed over the squaring

43 Then follows a proof, which I have omitted, that the circle can be circum

scribed about the trapezium. This proof is obviously supplied by Simplicius, as

is indicated by the change of person from uirorWerai to Seffeis, as well as by the

reference to Euclid, I. 9. A few lines lower there is a gap in the text, as

Bretschneider has observed ; but the gap occurs in the work of Simplicius, and

not of Eudemus as Bretschneider has erroneously supposed.—Geom. vor Eukl.,

p. Hi, and note.
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of this lune, he supposes, because it was evident, and he

supplies it himself.44

"Further, Hippocrates shows that a lune with an ex

terior arc less than a semicircle can be squared, and gives

the following construction for the description of such a

lune : 45—

" Let a/3 be the diameter of a circle whose centre is K ; let

78 cut (3K in the point of bisection 7, and at right angles ;

through /3 draw the straight line /3£t, so that the part of it,

£t, intercepted between the line 7S and the circle shall be

such that two squares on it shall be equal to three squares

on the radius /3k ; 46 join k£, and produce it to meet the

straight line drawn through e parallel to /3k, and let them

meet at rj ; join «, /3ri (these lines will be equal) ; describe

then a circle round the trapezium /3k«i ; also, circumscribe

a circle about the triangle e£ij. Let the centres of these

circles be X and p respectively.

" Now, the segments of the latter circle on e£ and £n are

similar to each other, and to each of the segments of the

44 Bretsch., Geom. vor Eukl., p. 113, § 88. I have omitted it, as not being

the work of Eudemus.

45 The whole construction, as Bretschneider has remarked, is quite obscure

and defective. The main point on which the construction turns is the determina

tion of the straight line j8f«, and this is nowhere given in the text. The determi

nation of this line, however, can be inferred from the statement in p. 114, Geom.

vor Eukl., that 'it is assumed that the line e( inclines towards fl' ; and the

further statement, in p. 117, that ' it is assumed that the square on ef is once and

a-half the square on the radius.' In order to make the investigation intelligible,

I have commenced by stating how this line $(e is to be drawn. I have, as usual,

omitted the proofs of Simplicius.

Bretschneider, p. 114, notices the archaic manner in which lines and points

are denoted in this investigation—jj [eufleia] i<j>' § AB, ri [arniuov] if oZ K—and

infers from it that Eudemus is quoting the very words of Hippocrates. I have

found this observation useful in aiding me to separate the additions of Simplicius

from the work of Eudemus. The inference of Bretschneider, however, cannot I

think be sustained, for the same manner of expression is to be found in Aristotle.

16 The length of the line ef can be determined by means of the theorem of

Pythagoras (Euclid, 1. 47), coupled with the theorem of Thales (Euclid, in.,

31). Then, produce the line e( thus determined so that the rectangle under the

whole line thus produced and the part produced shall be equal to the square on

the radius ; or, in archaic language, apply to the line e( a rectangle which shall be

equal to the square on the radius, and which shall be excessive by a square—a

Pythagorean problem, as Eudemus tells us. (See pp. 24, 41). If the calculation
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former circle on the equal straight lines tic, k/3, /3»i ; 47 and,

since twice the square on tX, is equal to three times the

square on k|3, the sum of the two segments on t£, and £»j is

equal to the sum of the three segments on «c, /3ij ; to

each of these equals add the figure bounded by the

straight lines tic, k0, /3»j, and the arc >j£t, and we shall

have the lune whose exterior arc is ek|3»j equal to the

be made by this method, or by the solution of a quadratic equation, we find

Geom. vor Eukl., p. 115, note.

47 Draw lines from the points e, K, 0, and n to \, the centre of the circle

described about the trapezium ; and from e and rj to /i, the centre of the circle

circumscribed about the triangle efij ; it will be easy to see, then, that the angles

subtended by e/c, K0, ijjS at \ are equal to each other, and to each of the angles

subtended by e£ and (n at p. The similarity of the segments is then inferred ;

but observe, that in order to bring this under the definition of similar segments

given above, the word segment must be used in a large signification ; and that

further, it requires rather the converse of the definition, and thus raises the

difficulty of incommensurability.

The similarity of the segments might also be inferred from the equality of the

alternate angles (erjf and 7jK/5, for example). In p. 47, I stated, following

Bretschneider and Hankel, that Hippocrates of Chios did not know the theorem

that the angles in the same segment of a circle are equal. But if the latter

method of proving the similarity of the segments in the construction to which the

present note refers was that used by Hippocrates, the statement in question

would have to be retracted.

 

 

Bretschneider makes some slip, and gives
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rectilineal figure composed of the three triangles £/3ij,

" That the exterior arc of this lune is smaller than a

semicircle, Hippocrates proves, by showing that the angle

iKt) lying within the exterior arc of the segment is obtuse,

which he does thus : Since the square on t£ is once and

a-half the square on the radius /3k or «, and since, on

account of the similarity of the triangles /3ice and (3Zk, the

square on k£ is greater than twice the square on k£,49 it

follows that the square on & is greater than the squares on

ik and k£ together. The angle £kij is therefore obtuse, and

consequently the segment in which it lies is less than a

semicircle.

" Lastly, Hippocrates squared a lune and a circle to

gether, thus : Let two circles be described about the centre

k, and let the square on the diameter of the exterior be six

times that of the interior. Inscribe a hexagon afiyStZ in

the inner circle, and draw the radii ica, k/3, ky, and produce

them to the periphery of the exterior circle ; let them meet

it at the points ij, 0, i, respectively, and join r\0, di, ijt. It

is evident that »}0, 0i are sides of the hexagon inscribed

in the larger circle. Now, on ijt let there be described a

segment similar to that cut off by r\d. Since, then, the

square on jjt is necessarily three times greater than that on

the side of the hexagon,50 and the square on nO six

times that on aj3, it is evident that the segment described

over tjt must be equal to the sum of the segments of the

outer circle over i)0 and Oi, together with those cut off in

the inner circle by all the sides of the hexagon. If we now

add, on both sides, the part of the triangle tj0i lying over

48 A pentagon with a re-entrant angle is considered here : but observe—i",

that it is not called a pentagon, that term being then restricted to the regular

pentagon ; and, 2°, that it is described as a rectilineal figure composed of three

triangles.

49 It is assumed here that the angle fiKe is obtuse, which it evidently is.

Bretschneider points out that in this paragraph the Greek text in the Aldine

is corrupt, and consequently obscure : he corrects it by means of some transposi

tions and a few trifling additions. (See Geom. vor Eukl., p. 118, note 2.)

50 Then follows the proof of thi6 statement, which I have omitted, as I think
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the segment rji, we arrive at the result that the triangle

is equal to the lune >iOi, together with the segments of the

inner circle cut off by the sides of the hexagon ; and if we

add on both sides the hexagon itself, we have the triangle,

 

together with the hexagon, equal to the said lune together

with the interior circle. Since, then, these rectilineal

figures can be squared, the circle, together with the lune,

can also be squared."

' Simplicius adds, in conclusion, that it must be admitted -

that Eudemus knows better all about Hippocrates of Chios,

being nearer to him in point of time, and being also a

pupil of Aristotle.'

If we examine this oldest fragment of Greek geometry,

we see, in the first place, that there is in it a defini

tion of similar segments of circles ; they are defined to be

those which contain the same quotum of their respective

circles, as for instance, a semicircle is similar to a semi-

it was added by Simplicius : the word ij xmareivovaa could scarcely have been used

by Eudemus in the sense of sub-tense, as it is in this passage. Plato (Timaeus,

54, D, ed. Stallbaum, vol. vii., p. 228) and Aristotle use it, as we do, for the hy

potenuse. It was sometimes used by later writers, Pappus for example, more

generally, as it is here.
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circle, the third part of one circle is similar to the third part

of another circle.

Next we find the following theorems :—

(a). Similar segments contain equal angles ; 51

(b) . These in all semicircles are right ; segments which

are larger or smaller than semicircles contain, respectively,

acute or obtuse angles ;

(c) . The side of a hexagon inscribed in a circle is equal

to the radius ;

(d) . In any triangle the square on a side opposite to an

acute angle is less than the sum of the squares on the sides

which contain the acute angle ;

(e) . In an obtuse-angled triangle the square on the side

subtending the obtuse angle is greater than the sum of the

squares on the sides containing it ;

(/). In an isosceles triangle whose vertical angle is

double the angle of an equilateral triangle, the square on

the base is equal to three times the square on one of the

equal sides ;

[g) . In equiangular triangles the sides about the equal

angles are proportional ;

[h) . Circles are to each other as the squares on their

diameters ;

[i) . Similar segments of circles are to each other as the

squares on their bases.

Lastly, we observe that the solution of the following

problems is required :—

(a) . Construct a square which shall be equal to a given

rectilineal figure ;

(b) . Find a line the square on which shall be equal to

three times the square on a given line; M

(c) . Find a line such that twice the square on it shall be

equal to three times the square on a given line ;

51 For this, or rather its converse, is assumed in the demonstration, p. 73.

Also, see p. 69.

bi See theorem (_/), supra.
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{d). Being given two straight lines, construct a tra

pezium such that one of the parallel sides shall be equal

to the greater of the two given lines, and each of the three

remaining sides equal to the less ;

(e) . About the trapezium so constructed describe a

circle ;

(f) . Describe a circle about a given triangle ;

(g) . From the extremity of the diameter of a semicircle

draw a chord such that the part of it intercepted between

the circle and a straight line drawn at right angles to the

diameter at the distance of one half the radius shall be

equal to a given straight line;

(k). Describe on a given straight line a segment of a

circle which shall be similar to a given one.

There remain to us but few more notices of the work

done by the geometers of this period :—

Antiphon, whose attempt to square the circle is given by

Simplicius in the above extract, and who is also mentioned

by Aristotle and some of his other commentators, is most

probably the Sophist of that name who, we are told, often

disputed with Socrates.53 It appears from a notice of

Themistius, that Antiphon started not only from the

square, but also from the equilateral triangle, inscribed

in a circle, and pursued the method and train of reasoning

above described."

Aristotle and his commentators mention another So

phist who attempted to square the circle—Bryson, of

whom we have no certain knowledge, but who was pro

bably a Pythagorean, and may have been the Bryson who

is mentioned by Iamblichus amongst the disciples of Py

thagoras.55 Bryson inscribed a square,56 or more generally

45 Xenophon, Memorab. I., vi., § I ; Diog. Laert. II., 46, ed. Cobet, p. 44.

M Themist., f. 16 ; Brandis, Schol. in Arist., p. 327b, 33.

" Iambi., Vit. Pyth., Cap. xxiii., 104.

56 Alex. Aphrod., f. 30 ; Brandis, Schol., p. 3o6b.
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any polygon," in a circle, and circumscribed another of the

same number of sides about the circle ; he then argued

that the circle is larger than the inscribed and less than

the circumscribed polygon, and erroneously assumed that

the excess in one case is equal to the defect in the other ;

he concluded thence that the circle is the mean between

the two.

It seems, too, that some persons who had no know

ledge of geometry took up the question, and fancied, as

Alexander Aphrodisius tells us, that they should find the

square of the circle in surface measure if they could find

a square number which is also a cyclical number58—

numbers as 5 or 6, whose square ends with the same

number, are called by arithmeticians cyclical numbers.59

On this Hankel observes that ' unfortunately we cannot

assume that this solution of the squaring of the circle was

only a joke ' ; and he adds, in a note, that ' perhaps it was

of later origin, although it strongly reminds us of the

Sophists who proved also that Homer's poetry was a

geometrical figure because it is a circle of myths.'60

That the problem was one of public interest at that

time, and that, further, owing to the false solutions of

pretended geometers, an element of ridicule had become

attached to it, is plain from the reference which Aristo

phanes makes to it in one of his comedies.61

In the last chapter^ p. 28 (t), we saw that there

was a tradition that the problem of the quadrature of

the circle engaged the attention of the Pythagoreans.

We saw, too (p. 47), that they probably derived the

problem from the Egyptians, who sought to find from the.

diameter the side of a square whose area should be equal

57 Themist., f. 5; Brandis, Schol., p. 211 ; Johan. Philop., f. 18; Brandis,

Schol., pp. 211, 212.

»> Simplicius, in Bretsch., Geom. vor Eutl., p. 106.

" Ibid.

60 Hankel, Geschich. der Math., p. 116, and note.

51 Birds, 1005.
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to that of the circle. From their approximate solution, it

follows that the Egyptians must have assumed as evident

that the area of a circle is proportional to the square on

its diameter, though they would not have expressed them

selves in this abstract manner. Anaxagoras (499-428 B.C.)

is recorded to have investigated this problem during his

imprisonment.62

Vitruvius tells us that Agatharchus invented scene-

painting, and that he painted a scene for a tragedy which

^Sschylus brought out at Athens, and that he left notes

on the subject. Vitruvius goes on to say that Democritus

and Anaxagoras, profiting by these instructions, wrote on

perspective.63

We have named Democritus more than once : it is

remarkable that the name of this great philosopher, who

was no less eminent as a mathematician,61 and whose

fame stood so high in antiquity, does not occur in the

summary of the history of geometry preserved by Proclus.

In connection with this, we should note that Aristoxenus,

in his Historic Commentaries, says that Plato wished to

burn all the writings of Democritus that he was able to

collect; but that the Pythagoreans, Amyclas and Cleinias,

prevented him, as they said it would do no good, inasmuch

as copies of his books were already in many hands.

Diogenes Laertius goes on to say that it is plain that this

was the case ; for Plato, who mentions nearly all the

ancient philosophers, nowhere speaks of Democritus.65

We are also told by Diogenes Laertius that Democritus

was a pupil of Leucippus and of Anaxagoras, who was

forty years his senior;66 and further, that he went to

62 'AAA' ' Ava£ay6pas fiiv Iv rip Seafiarriplip rhv tov KvK\ov rerpaywvurfibv

%ypa<pe. —Plut., de Exit., c. xvir.,.vol. in., p. 734, ed. Didot.

63 De Arch., Vii., Praef.

64 Cicero, de finibus bonorum et malorum, I., c. vi. ; Diog. Laert., IX., vii.,

ed. Cobet, p. 236.

65 Diog. Laert., ibid., ed. Cobet, p. 237.

m Ibid., p. 235.
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Egypt to see the priests there, and to learn geometry from

them."

This report is confirmed by what Democritus himself

tells us : ' I have wandered over a larger portion of the

earth than any man of my time, inquiring about things

most remote ; I have observed very many climates and

lands, and have listened to very many learned men ; but

no one has ever yet surpassed me in the construction of

lines with demonstration ; no, not even the Egyptian

Harpedonaptae, as they are called (k<u ypafiptwv owdioioq

fitra airoSiKiog ovBilg kui fit irapyWa^t, oiiS* ol Alyvirriuiv

icaAeo/ifvot 'ApiriSovairrac), with whom I lived five years in

all, in a foreign land.' 69

We learn further, from Diogenes Laertius, that Demo

critus was an admirer of the Pythagoreans ; that he seems

to have derived all his doctrines from Pythagoras, to such

a degree, that one would have thought that he had been

his pupil, if the difference of time did not prevent it ; that

at all events he was a pupil of some of the Pythagorean

schools, and that he was intimate with (ovyyiyovtvat)

Philolaus.69

Diogenes Laertius gives a list of his writings : amongst

those on mathematics we observe the following :—

ritpl Siafoprig yvil>fiovog jj lftp\ \pavaiog kvk\ov koi cr^aipqc

(lit., On the difference of the gnomon, or on the contact of

the circle and the sphere. Can what he has in view be

the following idea : that, the gnomon, or carpenter's

rule, being placed with its vertex on the circumference of

a circle, in the limiting position, when one leg passes

through the centre, the other will determine the tangent ?) ;

one on geometry ; one on numbers ; one on incommen-

67 Diog. Laert., IX., vii., ed. Cobet, p. 236.

88 Democrit., ap. Clem. Alex., Strom., I., p. 304, ed. Sylburg; Mullach,

Fragm. Phil. Grace, p. 370.

os Diog. Laert., IX., vii., ed. Cobet, p. 236.
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surable lines and solids, in two books; 'AKrivoypaft>i (a

description of rays, probably perspective).70

We also learn, from a notice of Plutarch, that Demo-

critus raised the following question : ' If a cone were cut

by a plane parallel to its base [obviously meaning, what

we should now call one infinitely near to that plane], what

must we think of the surfaces of the sections, that they are

equal or unequal ? For if they are unequal, they will show

the cone to be irregular, as having many indentations

like steps, and unevennesses; and if they are equal, the

sections will be equal, and the cone will appear to have

the property of a cylinder, viz., to be composed of equal,

and not unequal, circles, which is very absurd.'"

If we examine the contents of the foregoing extracts,

and compare the state of geometry as presented to us in

them with its condition about half a century earlier, we

observe that the chief progress made in the interval

concerns the circle. The early Pythagoreans seem not to

have given much consideration to the properties of the

circle; but the attention of the geometers of this period

was naturally directed to them in connection with the

problem of its quadrature.

We have already set down, seriatim, the theorems and

problems relating to the circle which are contained in the

extract from Eudemus.

Although the attempts of Antiphon and Bryson to

square the circle did not meet with much favour from the

ancient geometers, and were condemned on account of the

paralogisms in them, yet their conceptions contain the

first germ of the infinitesimal method : to Antiphon is due

the merit of having first got into the right track by intro

ducing for the solution of this problem—in accordance

with the atomic theory then nascent—the fundamental

* ,0 Diog. Laert., IX., vii., ed. Cobet, pp. 238, 239.

71 Plut., de Comm. Not., vol. IV., p. 1321, ed. Didot.

G
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idea of infinitesimals, and by trying- to exhaust the circle

by means of inscribed polygons of continually increasing

number of sides ; Bryson is entitled to praise for having

seen the necessity of taking into consideration the circum

scribed as well as the inscribed polygon, and thereby

obtaining a superior as well as an inferior limit to the

area of the circle. Bryson's idea is just, and should be

regarded as complementary to the idea of Antiphon, which

it limits and renders precise. Later, after the method of

exhaustions had been invented, in order to supply demon

strations which were perfectly rigorous, the two limits,

inferior and superior, were always considered together,

as we see in Euclid and Archimedes.

We see, too, that the question which Plutarch tells us

that Democritus himself raised involves the idea of infini

tesimals ; and it is evident that this question, taken in

connection with the axiom in p. 57, must have presented

real difficulties to the ancient geometers. The general

question which underlies it was, as is well known, con

sidered and answered by Leibnitz : ' Caeterum aequalia

esse puto, non tantum quorum differentia est omnino

nulla, sed et quorum differentia est incomparabiliter

parva; et licet ea Nihil omnino dici non debeat, non

tamen est quantitas comparabilis cum ipsis, quorum est

differentia. Quemadmodum si lineae punctum alterius

lineae addas, vel superficiei lineam, quantitatem non

auges. Idem est, si lineam quidem lineae addas, sed

incomparabiliter minorem. Nec ulla constructione tale

augmentum exhiberi potest. Scilicet eas tantum homo-

geneas quantitates comparabiles esse, cum Euclide, lib.

V., defin. 5, censeo, quarum una numero, sed finito, multi-

plicata, alteram superare potest. Et quae tali quantitate

non differunt, aequalia esse statuo, quod etiam Archimedes

sumsit, aliique post ipsum omnes. Et hoc ipsum est,

quod dicitur differentiam esse data quavis minorem. Et

Archimedeo quidem processu res semper deductione ad
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absurdum confirm ari potest. ':J Further, we have seen that

Democritus wrote on the contact of the circle and of the

sphere. The employment of the gnomon for the solution

of this problem seems to show that Democritus, in its

treatment, made use of the infinitesimal method ; he might

have employed the gnomon either in the manner indicated

above, or, by making one leg of'the gnomon pass through

the centre of the circle, and moving the other parallel to

itself, he could have found the middle points of a system of

parallel chords, and thus ultimately the tangents parallel

to them. At any rate this problem was a natural subject of

inquiry for the chief founder of the atomic theory, just as

Leibnitz—the author of the doctrine of monads and the

founder of the infinitesimal calculus—was occupied with

this same subject of tangency.

We observe, further, that the conception of the irra

tional (aXoyov), which had been a secret of the Pythagorean

school, became generally known, and that Democritus

wrote a treatise on the subject.

We have seen that Anaxagoras and Democritus wrote

on perspective, and that this is not the only instance in

which the consideration of problems in geometry of three

dimensions occupied the attention of Democritus.

On the whole, then, we find that considerable progress

had been made in elementary geometry ; and indeed the

appearance of a treatise on the elements is in itself an

indication of the same thing. We have further evidence

of this, too, in the endeavours of the geometers of this

period to extend to the circle and to volumes the results

which had been arrived at concerning rectilineal figures

and their comparison with each other. The Pythagoreans,

as we have seen, had shown how to determine a square

whose area was any multiple of a given square. The

question now was to extend this to the cube, and, in

7» Leibnitii, Opera Omnia, ed. L. Dutens, tom. III., p. 328.

G 2
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particular, to solve the problem of the duplication of the

cube.

Proclus (after Eudemus) and Eratosthenes tell us (h and

i, p. 59) that Hippocrates reduced this question to one of

plane geometry, namely, the finding of two mean propor

tionals between two given straight lines, the greater of

which is double the less. Hippocrates, therefore, must

have known that if four straight lines are in continued

proportion, the first has the same ratio to the fourth that

the cube described on the first, as side, has to the cube

described in like manner on the second. He must then

have pursued the following train of reasoning :—Suppose

the problem solved, and that a cube is found which is

double the given cube ; find a third proportional to the

sides of the two cubes, and then find a fourth proportional

to these three lines ; the fourth proportional must be double

the side of the given cube ; if, then, two mean propor

tionals can be found between the side of the given cube

and a line whose length is double of that side, the problem

will be solved. As the Pythagoreans had already solved

the problem of finding a mean proportional between two

given lines—or, which comes to the same, to construct a

square which shall be equal to a given rectangle—it was

not unreasonable for Hippocrates to suppose that he had

put the problem of the duplication of the cube in a fair

way of solution. Thus arose the famous problem of finding

two mean proportionals between two given lines—a problem

which occupied the attention of geometers for many cen

turies. Although, as Eratosthenes observed, the difficulty

is not in this way got over ; and although the new

problem cannot be solved by means of the straight line

and circle, or, in the language of the ancients, cannot

be referred to plane problems, yet Hippocrates is entitled

to much credit for this reduction of a problem in stereo

metry to one in plane geometry. The tragedy to which

Eratosthenes refers in this account of the legendary origin
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of the problem is, according to Valckenaer, a lost play of

Euripides, named HoXvuSog :" if this be so, it follows that

this problem of the duplication of the cube, as well as that

of the quadrature of the circle, was famous at Athens at

this period.

Eratosthenes, in his letter to Ptolemy III., relates that

one of the old tragic poets introduced Minos on the stage

erecting a tomb for his son Glaucus ; and then, deeming

the structure too mean for a royal tomb, he said * double

it, but preserve the cubical form ' : fiucpav y t\t£ag (iatriXtiKov

attKov ra<jiov, SiirXatnog tarw. tov Se tov Kvjiov fir) a<j>a\dg.11

Eratosthenes then relates the part taken by Hippocrates

of Chios towards the solution of this problem as given

above (p. 59), and continues : ' Later [in the time of Plato],

so the story goes, the Delians, who were suffering from a

pestilence, being ordered by the oracle to double one of

their altars, were thus placed in the same difficulty. They

sent therefore to the geometers of the Academy, entreating

them to solve the question.' This problem of the duplica

tion of the cube—henceforth known as the Deiian Problem—

may have been originally suggested by the practical needs

of architecture, as indicated in the legend, and have arisen

in Theocratic times; it may subsequently have engaged

the attention of the Pythagoreans as an object of theoretic

interest and scientific inquiry, as suggested above.

These two ways of looking at the question seem suited

for presenting it to the public on the one hand and to

mathematical pupils on the other. From the consideration

of a passage in Plutarch,75 however, I am led to believe

that the new problem—to find two mean proportionals

73 See Reimer, Historia problematis de cubi duplications, p. 20, Gottingae,

1798; and Biering, Historia problematis cubi duplicandi, p. 6, Hauniae, 1844.

74 Archim., ed. Torelli, p. 144. Valckenaer shows that these words of

Eratosthenes contain two verses, which he thus restores :—

flmpbv y' eAe£as f3aai\iKov aiiKbv rd<pou*

Si7rAoirios tarw, tov K{i0ov Sh jii?) atya\fis.

See Reimer, I. c.

75 Symp., vni., Quaestio 2, c. iv. ; Plut. Opera, ed. Didot, vol. IV., p. 277.
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between two given lines—which arose out of it, had a

deeper significance, and that it must have been regarded

by the Pythagorean philosophers of this time as one of

great importance, on account of its relation to their

cosmology.

In the last chapter (p. 38) we saw that the Pytha

goreans believed that the tetrahedron, octahedron, ico-

sahedron, and cube corresponded to the four elements of

the real world. This doctrine is ascribed by Plutarch to

Pythagoras himself :70 Philolaus, who lived at this time,

also held that the elementary nature of bodies depended

on their form. The tetrahedron was assigned to fire, the

octahedron to air, the icosahedron to water, and the cube

to earth ; that is to say, it was held that the smallest

constituent parts of these substances had each the form

assigned to it." This being so, what took place, accord

ing to this theory, when, under the action of heat, snow

and ice melted, or water became vapour ? In the former

case, the elements which 'had been cubical took the icosa-

hedral form, and in the latter the icosahedral elements

became octahedral. Hence would naturally arise the

following geometrical problems :—

Construct an icosahedron which shall be equal to a

given cube;

Construct an octahedron which shall be equal to a

given icosahedron.

NowPlutarch, in his Symp.,v\ll., Quaestio ii.—Il^e nXarwv

tXtye tov Btbv an yt*yfurptiv, 3 & 4™—accepts this theory of

76 Uvdayipas, irivre axrifiaruv Svrmi ffrepe&v, Hirep Ka\elrai Kal nadrifiaruci,

(K fiiv tov Kv&ov <pijal yeyovivai r^v yrjv, 4K 5« tijs irvpaniSos to irvp, 4K tow

oKraeSpov rbv aepa> iic 8c tov eiKoiTawpov rb vSup, 4K 5e tov SmSeKo«S/mv t^v tov

irUvrbs a<paipav.

IWdruv 5e Kal h tovtois irv8o.yopi£ei. Plut., Plac., II., vi., 5 & 6; Optra, ed.

Didot, vol. IV., p. 108 1.

" Stob. Eclog. ab Heeren, lib. I., p. 10. See also Zeller, die Philos. der

Griechen, Erster Theil, p. 376, Leipzig, 1876, History of Greek Philosophy, vol.

I., p. 437, E.T.

>8 Plut. Opera, ed. Didot, vol. IV., pp. 876, 7.
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Pythagoras and Philolaus, and in connection with it points

out the importance of the problem : ' Given two figures, to

construct a third which shall be equal to one of the two

and similar to the other ' — which he characterises as

essentially geometrical, and attributes to Pythagoras (see

Chapter II., p. 25). It is evident that Plutarch had in view

solid and not plane figures; for, having previously referred

to the forms of the constituent elements of bodies, viz. air,

earth, fire, and water, as being those of the regular solids,

omitting the dodecahedron, he goes on as follows : 'What,'

said Diogenianus, ' has this [the problem — given two

figures, to describe a third equal to one and similar to

the other] to do with the subject V 'You will easily know,'

I said, 'if you call to mind the division in the Timaeus,

which divided into three the things first existing, from

which the Universe had its birth ; the first of which three

we call God [8eoe, the arranger], a name most justly

deserved ; the second we call matter, and the third ideal

form. . . . God was minded, then, to leave nothing, so far

as it could be accomplished, undefined by limits, if it was

capable of being defined by limits ; but [rather] to adorn

nature with proportion, measurement, and number: making

some one thing [that is, the universe] out of the material

taken all together ; something that would be like the ideal

form, and as big as the matter. So having given himself

this problem, when the two were there, he made, and makes,

and for ever maintains, a third, viz. the universe, which

is equal to the matter and like the model.'

Let us now consider one of these problems — the

former—and, applying to it the method of reduction, see

what is required for its solution. Suppose the problem

solved, and that an icosahedron has been constructed

which shall be equal to a given cube. Take now another

icosahedron, whose edge and volume are supposed to be

known, and, pursuing the same method which was followed

above in p. 84, we shall find that, in order to solve the.

problem, it would be necessary—
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1. To find the volume of a polyhedron ;

2. To find a line which shall have the same ratio to a

given line that the volumes of two given polyhedra have

to each other ;

3. To find two mean proportionals between two given

lines ; and

4. To construct on a given line as edge a polyhedron

which shall be similar to a given one.

Now we shall see that the problem of finding two mean

proportionals between two given lines was first solved by

Archytas of Tarentum—ultimus Pythagoreorum—then by

his pupil Eudoxus of Cnidus, and thirdly by Menaechmus,

who was a pupil of Eudoxus, and who used for its solution

the conic sections which he had discovered : we shall see

further that Eudoxus founded stereometry by showing

that a triangular pyramid is one-third of a prism on the

same base and between the same parallel planes ; lastly,

we shall find that these great discoveries were made with

the aid of the method of geometrical analysis which either

had meanwhile grown out of the method of reduction or

was invented by Archytas.

It is probable that a third celebrated problem—the

trisection of an angle—also occupied the attention of the

geometers of this period. No doubt the Egyptians knew

how to divide an angle, or an arc of a circle, into two

equal parts ; they may therefore have also known how to

divide a right angle into three equal parts. We have seen,

moreover, that the construction of the regular pentagon

was known to Pythagoras, and we infer that he could have

divided a right angle into five equal parts. In this way,

then, the problem of the trisection of any angle—or the

more general one of dividing an angle into any number

of equal parts—would naturally arise. Further, if we

examine the two reductions of the problem of the tri

section of an angle which have been handed down to

us from ancient times, we shall see that they are such
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as might naturally occur to the early geometers, and that

they were quite within the reach of a Pythagorean—one

who had worthily gone through his noviciate of at least

two years of mathematical study and silent meditation.

For this reason, and because, moreover, they furnish good

examples of the method called anaywyri, I give them here.

Let us examine what is required for the trisection of

an angle according to the method handed down to us by

Pappus."

Since we can trisect a right angle, it follows that the

trisection of any angle can be effected if we can trisect an

acute angle.

Let now a[5y be the given acute angle which it is

required to trisect.

From any point a on the line a/3, which forms one leg

of the given angle, let fall a perpendicular ay on the other

 

leg, and complete the rectangle ayfiS. Suppose now that

the problem is solved, and that a line is drawn making

with fiy an angle which is the third part of the given

angle afiy ; let this line cut ay in £, and be produced until

it meet 8a produced at the point t. Let now the straight

line X,t be bisected in ij, and uij be joined ; then the lines

jje, ati, and /3a are all evidently equal to each other,

and, therefore, the line t,i is double of the line a/3, which is

known.

The problem of the trisection of an angle is thus re

duced to another :—

79 Pappi Alex., Collect., ed. Hultsch, vol. I., p. 274.
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From any vertex (5 of a rectangle fiSay draw a line

/3&, so that the part & of it intercepted between the two

opposite sides, one of which is produced, shall be equal to

a given line.

This reduction of the problem must, I think, be referred

to an early period : for Pappus80 tells us that when the

ancient geometers wished to cut a given rectilineal angle

into three equal parts they were at a loss, inasmuch as

the problem which they endeavoured to solve as a plane

problem could not be solved thus, but belonged to the

class called solid ; 91 and, as they were not yet acquainted

with the conic sections, they could not see their way:

but, later, they trisected an angle by means of the conic

sections. He then states the problem concerning a

rectangle, to which the trisection of an angle has

been just now reduced, and solves it by means of a

hyperbola.

The conic sections, we know, were discovered by

Menaechmus, a pupil of Eudoxus (400-356 B.C.), and the

discovery may, therefore, be referred to the middle of the

fourth century.

Another method of trisecting an angle is preserved

in the works of Archimedes, being indicated in Prop. 8

of the Lemmata8*—a book which is a translation into

Latin from the Arabic. The Lemmata are referred to

Archimedes by some writers, but they certainly could not

have come from him in their present form, as his name

80 Pappi Alex., Collect., ed. Hultsch, vol. I., p, 270 et seq.

81 The ancients distinguished three kinds of problems—plane, solid, and

linear. Those which could be solved by means of straight lines and circles

were called plane ; and were justly so called, as the lines by which the problems

of this kind could be solved have their origin in piano. Those problems whose

solution is obtained by means of one or more conic sections were called solid,

inasmuch as for their construction we must use the superficies of solid figures—

to wit, the sections of a cone. A third kind, called linear, remains, which

required for their solution curves of a higher order, such as spirals, quadratrices,

conchoids, and cissoids. See Pappi, Collect., ed. Hultsch, vol. I., pp. 54 and

270.

8- Archim. ex recens. Torelli, p. 358.
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is quoted in two of the Propositions. They may have been

contained in a note-book compiled from various sources by

some later Greek mathematician,83 and this Proposition

may have been handed down from ancient times.

 

Prop. 8 of the Lemmata is : 'If a chord AB of a

circle be produced until the part produced, BC, is equal

to the radius ; if then the point C be joined to the centre

of the circle, which is the point D, and if CD, which cuts

the circle in F, be produced until it cut it again in E, the

arc AE will be three times the arc BF.' This theorem

suggests the following reduction of the problem :—

G

f
(\ A J

With the vertex A of the given angle BAC as centre,

and any lines AC or AB as radius, let a circle be de

scribed. Suppose now that the problem is solved, and

83 See Archim. ed. Torelli, Praefatio, pp. xviii and xix. See also Heiberg,

Quaestiones Archimedeae, p. 24, who says : ' Itaque puto haec lemmata e

plurium mathematicorum operibus esse excerpta, neque definiri jam potest,

quantum ex iis Archimedi tribuendum sit.'
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that the angle EAC is the third part of the angle BAC ;

through B let a straight line be drawn parallel to AE, and

let it cut the circle again in G and the radius CA produced

in F. Then, on account of the parallel lines AE and FGB,

the angle ABG or the angle BGA, which is equal to it,

will be double of the angle GFA ; but the angle BGA

is equal to the sum of the angles GFA and GAF; the

angles GFA and GAF are, therefore, equal to each other,

and consequently the lines GF and GA are also equal. The

problem is, therefore, reduced to the following : From B

draw the straight line BGF, so that the part of it, GF,

intercepted between the circle and the diameter CAD

produced shall be equal to the radius.84

For the reasons stated above, then, I think that the

problem of the trisection of an angle was one of those

which occupied the attention of the geometers of this

period. Montucla, however, and after him many writers

on the history of mathematics, attribute to Hippias of

Elis, a contemporary of Socrates, the invention of a

transcendental curve, known later as the Quadratrix of

Deinostratus, by means of which an angle may be divided

into any number of equal parts. This statement is made

on the authority of the two following passages of

Proclus :—

' Nicomedes trisected every rectilineal angle by means

of the conchoidal lines, the inventor of whose particular

nature he is, and the origin, construction, and properties

of which he has explained. Others have solved the same

problem by means of the quadratrices of Hippias and

Nicomedes, making use of the mixed lines which are

called quadratrices ; others, again, starting from the spirals

84 See F. Vietae, Opera Mathematica, studio F. a Schooten, p. 245, Lugd.

Bat. 1646. These two reductions of the trisection of an angle were given by

Montucla, but he did not give any references. See Hist- des Math., torn. I.,

p. 194, iUre ed.
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of Archimedes, divided a rectilineal angle in a given

ratio.85.

' In the same manner other mathematicians are accus

tomed to treat of curved lines, explaining the properties

of each form. Thus, Apollonius shows the properties of

each of the conic sections ; Nicomedes those of the con

choids; Hippias those of the quadratrix, and Perseus

those of the spirics' (airtipiKwv).M

Now the question arises whether the Hippias referred

to in these two passages is Hippias of Elis. Montucla

believes that there is some ground for this statement, for

he says : ' Je ne crois pas que l'antiquite nous fournisse

aucun autre geometre de ce nom, que celui dont je parle.'87

Chasles, too, gives only a qualif1ed assent to the statement.

Arneth, Bretschneider, and Suter, however, attribute the

invention of the quadratrix to Hippias of Elis without any

qualification.88 Hankel on the other hand, says that surely

the Sophist Hippias of Elis cannot be the one referred to,

but does not give any reason for his dissent.89 I agree

with Hankel for the following reasons :—

1. Hippias of Elis is not one of those to whom the

progress of geometry is attributed in the summary of the

history of geometry preserved by Proclus, although he is

mentioned in it as an authority for the statement con

cerning Ameristus [or Mamercus].90 The omission of his

name would be strange if he were the inventor of the qua

dratrix.

88 Proclus, ed. Friedlein, p. 272.

86 Ibid., p. 356.

87 Montucla, Hist, des Math., torn. I., p. 18 r, nouvle. ed.

88 Chasles, Hist, de la Giom., p. 8; Arneth, Gesch. der Math., p. 95;

Bretsch., Geo?n. vor Eukl., p. 94 ; Suter, Gesch. der Math. Wissenschaft., p. 32.

89 Hankel, Gesch. der Math., p. 151, note. Hankel, also, in a review of

Suter, Geschichte der Mathematischen Wissenschaftcn, published in the

Bullettino di Bibliografia e di Storia delle Scienze Matematiche e Fisiche, says :

' A pag. 31 (lin. 3-6), Hippias, l'inventore della quadratrice, e identificato col

Sofista Hippias, il che veramente avea gia fatto il Bretschneider (pag. 94, lin.

39-42), ma senza darne la minima prova.' Bullet., &c. , torn, v., p. 297.

90 Proclus, ed. Friedlein, p. 65.
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2. Diogenes Laertius tells us that Archytas was the

first to apply an organic motion to a geometrical dia

gram ;91 and the description of the quadratrix requires such

a motion.

3. Pappus tells us that : ' For the quadrature of a circle

a certain line was assumed by Deinostratus, Nicomedes,

and some other more recent geometers, which received its

name from this property ; it is called by them the qua

dratrix.' "

4. With respect to the observation of Montucla, I may

mention that there was a skilful mechanician and geometer

named Hippias contemporary with Lucian, who describes

a bath constructed by him.93

I agree, then, with Hankel, that the invention of the

quadratrix is erroneously attributed to Hippias of Elis.

But Hankel himself, on the other hand, is guilty of a still

91 Diog. Laert., VIII., c. iv., ed. Cobet, p. 224.

92 Pappi, Collect., ed. Hultsch, vol. I., pp. 250 and 252.

93 Hippias, sen Balneum. Since the above was written I find that Cantor,

Vorles. ilber Gesch. der Math., p. 165, sq., agrees with Montucla in this.

He says : ' It has indeed been sometimes doubted whether the Hippias referred

to by Proclus is really Hippias of Elis, but certainly without good grounds.'

In support of his view Cantor advances the following reasons :—

1 . Proclus in his commentary follows a custom from which he never deviates—

he introduces an author whom he quotes with distinct names and surnames,

but afterwards omits the latter when it can be done without an injury to

distinctness. Cantor gives instances of this practice, and adds : ' If, then,

Proclus mentions a Hippias, it must be Hippias of Elis, who had been already

once distinctly so named in his Commentary.'1

2. Waiving, however, this custom of Proclus, it is plain that with any author,

especially with one who had devoted such earnest study to the works of Plato,

Hippias without any further name could be only Hippias of Elis.

3. Cantor, having quoted passages from the dialogues of Plato, says : ' We

think we may assume that Hippias of Elis must have enjoyed reputation as a

teacher of mathematics at least equal to that which he had as a Sophist proper,

and that he possessed all the knowledge of his time in natural sciences, astronomy,

and mathematics.'

4. Lastly, Cantor tries to reconcile the passage quoted from Pappus with

the two passages from Proclus : ' Hippias of Elis discovered about 420 B.C.

a curve which could serve a double purpose—trisecting an angle and squaring

the circle. From the latter application it got its name, Quadratrix (the Latin

translation), but this name does not seem to reach further back than Deinostratus.'
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greater anachronism in referring back the Method of Ex

haustions to Hippocrates of Chios. He does so on grounds

which in my judgment are quite insufficient. Hankel,

after quoting from Archimedes the axiom—1 If two spaces

are unequal, it is possible to add their difference to itself

so often that every finite space can be surpassed,' see p. 57

—quotes further : ' Also, former geometers have made use

of this lemma ; for the theorem that circles are in the ratio

of the squares of their diameters, &c, has been proved by

the help of it. But each of the theorems mentioned is by

no means less entitled to be accepted than those which

have been proved without the help of that lemma ; and,

therefore, that which I now publish must likewise be

accepted.' Hankel then reasons thus : ' Since, then,

Archimedes brings this lemma into such connection with

the theorem concerning the ratio of the areas of circles, and,

on the other hand, Eudemus states that this theorem had

been discovered and proved by Hippocrates, we may also

assume that Hippocrates laid down the above axiom, which

was taken up again byArchimedes, and which, in one shape

or another, forms the basis of the Method of Exhaustions

of the Ancients, i.e. of the method to exhaust, by means

of inscribed and circumscribed polygons, the surface of a

curvilinear figure. For this method necessarily requires

such a principle in order to show that the curvilinear figure

is really exhausted by these polygons.'91 Eudemus, no

doubt, stated that Hippocrates showed that circles have the

same ratio as the squares on their diameters, but he does

not give any indication as to the way in which the theorem

was proved. An examination, however, of the portion of

the passage quoted from Archimedes which is omitted by

Hankel will, I think, show that there is no ground for his

assumption.

The passage, which occurs in the letter of Archimedes

to Dositheus prefixed to his treatise on the quadrature of

94 Hankel, Gesch. der Math., pp. 121-2.
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the parabola, runs thus : ' Former geometers have also used

this axiom. For, by making use of it, they proved that

circles have to each other the duplicate ratio of their

diameters; and that spheres have to each other the tripli

cate ratio of their diameters ; moreover, that any pyramid

is the third part of a prism which has the same base and

the same altitude as the pyramid ; also, that any cone is the

third part of a cylinder which has the same base and the

same altitude as the cone; all these they proved by assum

ing the axiom which has been set forth.'95

We see now that Archimedes does not bring this axiom

into close connection with the theorem concerning the

ratios of the areas of circles alone, but with three other

theorems also ; and we know that Archimedes, in a sub

sequent letter to the same Dositheus, which accompanied

his treatise on the sphere and cylinder, states the two

latter theorems, and says expressly that they were dis

covered by Eudoxus.96 We know, too, that the doctrine of

proportion, as contained in the Fifth Book of Euclid, is

attributed to Eudoxus.97 Further, we shall find that the

invention of rigorous proofs for theorems such as Euclid,

VI. i, involves, in the case of incommensurable quantities,

the same difficulty which is met with in proving rigorously

the four theorems stated by Archimedes in connection with

this axiom ; and that in fact they all required a new

method of reasoning—the Method of Exhaustions—which

must, therefore, be attributed to Eudoxus.

The discovery of Hippocrates, which forms the basis of

his investigation concerning the quadrature of the circle,

has attracted much attention, and it may be interesting to

95 Archim. ex recens. Torelli, p. 18.

96 Ibid., p. 64.

97 We are told so in the anonymous scholium on the Elements of Euclid,

which Knoche attributes to Proclus : see Eucl., Elem., Graece ed. ab. August,

pars. 11., p. 329 ; also Untersuchungen , &c., Von Dr. J. H. Knoche, p. 10.

Cf. p. 49, and note 76, supra.
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inquire how it might probably have been arrived at. It

appears to me that it might have been suggested in the

following way :—Hippocrates might have met with the

annexed figure, excluding the dotted lines, in the arts of

decoration ; and, contemplating the figure, he might have

completed the four smaller circles and drawn their diame

ters, thus forming a square inscribed in the larger circle,

as in the diagram. A diameter of the larger circle being

then a diagonal of the square, whose sides are the diame

ters of the smaller circles, it follows that the larger circle is

equal to the sum of two of the smaller circles. The larger

circle is, therefore, equal to the sum of the four semicircles

included by the dotted lines. Taking away the common

parts—sc. the four segments of the larger circle standing

on the sides of the square—we see that the square is equal

to the sum of the four lunes.

 

This observation—concerning, as it does, the geometry

of areas—might even have been made by the Egyptians,

who knew the geometrical facts on which it is founded, and

who were celebrated for their skill in geometrical construc

tions. See Ch. II., pp. 29, 47, note 72.

In the investigation of Hippocrates given above we meet

with manifest traces of an analytical method, as stated in

Ch. II., p. 41, note 62. Indeed, Aristotle—and this is re

markable—after having defined airaywyri, evidently refers

to a part of this investigation as an instance of it : for he

H
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says: 'Or again [there is reduction], if the middle terms

between 7 and /3 are few ; for thus also there is a nearer

approach to knowledge. For example, if $ were quadra

ture, and t a rectilineal figure, and £ a circle ; if there were

only one middle term between c and £. viz., that a circle

with lunes is equal to a rectilineal figure, there would be

an approach to knowledge.'99 See pp. 67, 68, above.

In many instances I have had occasion to refer to the

method of reduction as one by which the ancient geometers

made their discoveries, but perhaps I should notice that in

general it was used along with geometrical constructions : 99

the importance attached to these may be seen from the

passages quoted above from Proclus and Democritus,

pp. 59, 80 ; as also from the fact that the Greeks had a

special name, i//£uSo-ypa0njua, for a faulty construction.

The principal figure, then, amongst the geometers of

this period is Hippocrates of Chios, who seems to have

attracted notice as well by the strangeness of his career as

by his striking discovery of the quadrature of the lune.

Though his contributions to geometry, which have been

set forth at length above, are in many respects important,

yet the judgment pronounced on him by the ancients is

certainly, on the whole, not a favourable one—witness

the statements of Aristotle, Eudemus, Iamblichus, and

Eutocius.

How is this to be explained ? The faulty reasoning

into which he is reported to have fallen in his pretended

quadrature of the circle does not by itself seem to me to

be a sufficient explanation of it : and indeed it is difficult

98 f) ird\iv [i7ro7<»7^ iari] ei o\lya tA y.iaa twv BT^ Kai yhp othws iyyvrcpov

tov eiSeVai. olov ei rb A eiij rerpaywvlfcadai, rb 5' if* § E evdvypcififiov, rb 5*

i$' § Z KvK\os' ei tov EZ %v fi6vov eiy fieaov, rb fierci fiiivlaKwv taov ylveadai

cvdvypdfifiip rbv KvK\ov, lyybs tiv eiy tov ciSeVai. Anal. Prior. II. xxv., p. 69s,

ed. Bekker. Observe the expressions rb 5' l<p' § E ebSiypa^nov, &c, here, and

see p. 72, note 45.

99 Concerning the importance of geometrical constructions as a process of

deduction, see P. Laffitte, les Grands Types de I' Humaniti, vol. 11., p. 329.
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to reconcile such a gross mistake with the sagacity shown

in his other discoveries, as Montucla has remarked.100

The account of the matter seems to me to be simply

this :—Hippocrates, after having been engaged in com

merce, went to Athens and frequented the schools of the

philosophers—evidently Pythagorean —as related above.

Now we must bear in mind that the early Pythagoreans

did not commit any of their doctrines to writing 101—their

teaching being .oral: and we must remember, further,

that their pupils {aKovcrriKot) were taught mathematics for

several years, during which time a constant and intense

application to the investigation of difficult questions was

enjoined on them, as also silence—the rule being so

stringent that they were not even permitted to ask ques

tions concerning the difficulties which they met with:102

and that after they had satisfied these conditions they

passed into the class of mathematicians (fiaOn/iariKoi), being

freed from the obligation of silence; and it is probable

that they then taught in their turn.

Taking all these circumstances into consideration, we

may, I think, fairly assume that Hippocrates imperfectly

understood some of the matter to which he had listened ;

and that, later, when he published what he had learned, he

did not faithfully render what had been communicated to

him.

If we adopt this view, we shall have the explanation of—

1. The intimate connection that exists between the work

of Hippocrates and that of the Pythagoreans ;

2. The paralogism into which he fell in his attempt

to square the circle : for the quadrature of the lune on

the side of the inscribed square may have been exhibited

in the school, and then it may have been shown that the

100 Montucla, Histoire des recherches sur la Quadrature du Cercle, p. 39,

nouvle. ed., Paris, 183 1.

101 See Ch. 11., p. 21, note II, and the references given there.

102 See A. Ed. Chaignet, Pythagore et la Philosophie Pythagoricienne, vol. I.,

p. 115, Paris, 1874 ; see also Iambi., Vit. Pyth., Cap. XVI., 68.

H 2
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problem of the quadrature of the circle was reducible to

that of the lune on the side of the inscribed hexagon ;

and what was stated conditionally may have been taken

up by Hippocrates as unconditional ;Wi

3. The further attempt which Hippocrates made to

solve the problem by squaring a lune and circle together

(see p. 74) ;

4. The obscurity and deficiency in the construction

given in p. 72 ; and the dependence of that construction

on a problem which we know was Pythagorean (see p. 24

[e), and note 2 6); 101

5. The passage in Iamblichus, see p. 58 (/); and, gene

rally, the unfavourable opinion entertained by the ancients

of Hippocrates.

This conjecture gains additional strength from the fact

that the publication of the Pythagorean doctrines was first

made by Philolaus, who was a contemporary of Socrates,

and, therefore, somewhat junior to Hippocrates: Philolaus

may have thought that it was full time to make this pub

lication, notwithstanding the Pythagorean precept to the

contrary.

The view which I have taken of the form of the

103 jn reference to this paralogism of Hippocrates, Bretschneider (Geom. vor

Eukl., p. 122) says, 'It is difficult to assume so gross a mistake on the part

of such a good geometer,' and he ascribes the supposed error to a complete

misunderstanding. He then gives an explanation similar to that given above,

with this difference, that he supposes Hippocrates to have stated the matter

correctly, and that Aristotle took it up erroneously: it seems to me more

probable that Hippocrates took up wrongly what he had heard at lecture than

that Aristotle did so on reading the work of Hippocrates. Further, we see

from the quotation in p. 98, from Anal. Prior., that Aristotle fully understood

the conditions of the question.

104 Referring to the application of areas, Mr. Charles Taylor, An Introduc

tion to the Ancient and Modern Geometry of Conics, Prolegomena, p. xxv.,

says, ' Although it has not been made out wherein consisted the importance

of the discovery in the hands of the Pythagoreans, we shall see that it played

a great part in the system of Apollonius, and that he was led to designate the

three conic sections by the Pythagorean terms Parabola, Hyperbola, Ellipse.'

I may notice that we have an instance of these problems in the construction

referred to above : for other applications of the method see Ch. 11., pp. 41, 43.
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demonstrations in geometry at this period differs alto

gether from that put forward by Bretschneider and

Hankel, and agrees better not only with what Simplicius

tells us 'of the summary manner of Eudemus, who,

according to archaic custom, gives concise proofs ' (see

p. 69), but also with what we know of the origin, develop

ment, and transmission of geometry : as to the last, what

room would there be for the silent meditation on difficult

questions which was enjoined on the pupils in the Pytha

gorean schools, if the steps were minute, and if laboured

proofs were given of the simplest theorems ?

The need of a change in the method of proof was

brought about at this very time, and was in great mea

sure due to the action of the Sophists, who questioned

everything.

Flaws, no doubt, were found in many demonstrations

which had hitherto passed current ; new conceptions arose,

while others, which had been secret, became generally

known, and gave rise to unexpected difficulties ; new

problems, whose solution could not be effected by the old

methods, came to the front, and attracted general atten

tion. It became necessary then on the one hand to recast

the old methods, and on the other to invent new methods,

which would enable geometers to solve the new problems.

I have already indicated the men who were equal to

this task, and I propose in the following chapters to

examine their work.
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CHAPTER IV.*

ARCHYTAS.

State of Hellas during the last generation of the fifth century B.C.—Magna

Graecia again became flourishing.—Archytas of Tarentum.—His life,

eminence as a Statesman and noble character.—Notices of his Geometrical

work.—Was there a Roman Agrimensor named Architas ?—The problem

' to find two Mean Proportionals between two Given Lines ' was first solved

by Archytas.—His Solution.—Theorems which occur in it.—Inferences

from it as to Archytas's knowledge of Geometry.—The conception of

Geometrical Loci involved in this Solution.—Different opinions as to its

importance.—Construction of Archytas's Solution.—Was Plato the inventor

of the method of Geometrical Analysis ?—Passage in the ' Republic ' of

Plato, in which the backward state of Solid Geometry is noticed.—Yet

Archytas had, for the period, a profound knowledge of Geometry of Three

Dimensions ; and Stereometry was founded in Plato's lifetime by Eudoxus.

DURING the last thirty years of the fifth century before

the Christian era no progress was made in geometry at

Athens, owing to the Peloponnesian war, which having

broken out between the two principal States of Greece,

gradually spread to the other States, and for the space

of a generation involved almost the whole of Hellas.

Although it was at Syracuse that the issue was really

decided, yet the Hellenic cities of Italy kept aloof from

the contest,1 and Magna Graecia enjoyed at this time a

* In the preparation of this and the following Chapters I have again made use

of the works of Bretschneider and Hankel, and have derived much advantage

from the great work of Cantor— Vorlesungen iiber Geschichte der Mathematik.

I have also constantly used the Index Graecitatis appended by Hultsch to vol.

III. of his edition of Pappus ; which, indeed, I have found invaluable.

1 At the time of the Athenian expedition to Sicily they were not received

into any of the Italian cities, nor were they allowed any market, but had only the

liberty of anchorage and water—and even that was denied them at Tarentum and

Locri. At Rhegium, however, though the Athenians were not received into the

city, they were allowed a market without the walls ; they then made proposals to

the Rhegians, begging them, as Chalcideans, to aid the Leontines. ' To which

was answered, that they would take part with neither, but whatever should seem

fitting to the rest of the Italians that they also would do.' Thucyd. VI. 44.
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period of comparative rest, and again became flourishing.

This proved to be an event of the highest importance ;

for, some years before the commencement of the Pelopon-

nesian war, the disorder which had long prevailed in the

cities of Magna Graecia had been allayed through the

intervention of the Achaeans;* party feeling, which had

run so high, had been soothed, and the banished Pytha

goreans allowed to return. The foundation of Thurii

(443 B c), under the auspices of Pericles, in which the

different Hellenic races joined, and which seems not to

have incurred any opposition from the native tribes, may

be regarded as an indication of the improved state of

affairs, and as a pledge for the future.3 It is probable that

the pacification was effected by the Achaeans on condition

2 ' The political creed and peculiar form of government now mentioned

also existed among the Achaeans in former times. This is clear from many other

facts, but one or two selected proofs will suffice, for the present, to make the

thing believed. At the time when the Senate-houses (ffwe'Spia) of the Pytha

goreans were burnt in the parts about Italy then called Magna Graecia, and a

universal change of the form of government was subsequently made (as was likely

when all the most eminent men in each State had been so unexpectedly cut off),

it came to pass that the Grecian cities in those parts were inundated with

bloodshed, sedition, and every kind of disorder. And when embassies came

from very many parts of Greece with a view to effect a cessation of differences in

the various States, the latter agreed in employing the Achaeans, and their well-

known integrity, for the removal of existing evils. Not only at this time did

they adopt the system of the Achaeans, but, some time after, they set about

imitating their form of government in a complete and thorough manner. For

the people of Crotona, Sybaris, and Caulon, sent for them by common consent ;

and first of all they established a common temple dedicated to Zeus, ' the Giver

of Concord, ' and a place in which they held their meetings and deliberations : in

the second place, they took the customs and laws of the Achaeans, and applied

themselves to their use, and to the management of their public affairs in accor

dance with them. But some time after, being hindered by the overbearing power

of Dionysius of Syracuse, and also by the encroachments made upon them by the

neigbouring natives of the country, they renounced them, not voluntarily, but

of necessity.' Polybius, n., 39. Polybius uses avv&piov for the senate at

Rome : there would be one in each Graeco-Italian State—a point which, as will

be seen, has not been sufficiently noted.

3 The foundation of Thurii, near the site of Sybaris, seems to have been

regarded as an event of high importance ; Herodotus was amongst the first

citizens, and Empedocles visited Thurii soon after it was founded. The names

of the tribes of Thurii show the pan-Hellenic character of the foundation,
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that, on the one hand, the banished Pythagoreans should

be allowed to return to their homes, and, on the other,

that they should give up all organised political action.1

Whether this be so or not, many Pythagoreans returned

to Italy, and the Brotherhood ceased for ever to exist as

a political association.1 Pythagoreanism, thus purified,

continued as a religious society and as a philosophic

School ; further, owing to this purification and to the

members being thus enabled to give their undivided atten-

4 Chaignet, Pythagore et la Philosophic Pythagoricienne, I., p. 93, says so, but

does not give his authority ; the passage in Polybius, II. 39, to which he refers,

does not contain this statement.

5 There are so many conflicting accounts of the events referred to here that it

is impossible to reconcile them (see p. 53). The view which I have adopted

seems to me to fit best with the contemporary history, with the history of

geometry, and with the balance of the authorities. Zeller, on the other hand,

thinks that the most probable account is ' that the first public outbreak must have

taken place after the death of Pythagoras, though an opposition to him and his

friends may perhaps have arisen during his lifetime, and caused his migration to

Metapontum. The party struggles with the Pythagoreans, thus begun, may have

repeated themselves at different times in the cities of Magna Graecia, and the

variations in the statements may be partially accounted for as recollections of

these different facts. The burning of the assembled Pythagoreans in Crotona,

and the general assault upon the Pythagorean party, most likely did not take

place until the middle of the fifth century ; and lastly, Pythagoras may have

spent the last portion of his life unmolested at Metapontum.' (Zeller, Pre-

Socratic Philosophy, vol. I., p. 360, E. T.).

Ueberweg takes a similar view :—

'But the persecutions were also several times renewed. In Crotona, as it

appears, the partisans of Pythagoras and the ' Cylonians ' were for a long time

after the death of Pythagoras living in opposition as political parties, till at

length, about a century later, the Pythagoreans were surprised by their opponents,

while engaged in a deliberation in the 'house of Milo' (who himself had died

long before), and the house being set on fire and surrounded, all perished with

the exception of Archippus and Lysis of Tarentum. (According to other

accounts, the burning of the house, in which the Pythagoreans were assembled,

took place on the occasion of the first reaction against the Society, in the

lifetime of Pythagoras.) Lysis went to Thebes, and was there (soon after 400

B.C.) a teacher of the youthful Epaminondas.' (Ueberweg, History of Philosophy,

vol. 1., p. 46, E. T.)

Zeller, in a note on the passage quoted above, gives the reasons on which his

suppositions are chiefly based. Chaignet, Pyth. et la Phil. Pyth. vol. I., p. 88, and

note, states Zeller's opinion, and, while admitting that the reasons advanced by

him do not want force, says that they are not strong enough to convince him : he

then gives his objections. Chaignet, further on, p. 94, »., referring to the name

Italian, by which the Pythagorean philosophy is known, says : < C'est meme ce qui
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tion and their whole energy to the solution of scientific

questions, it became as distinguised and flourishing as

ever : at this time, too, remarkable instances of devoted

friendship and of elevation of character are recorded of

some of the body. Towards the end of this and the begin

ning of the following centuries encroachments were made

on the more southerly cities by the native populations, and

some of them were attacked and taken by the elder Dio-

nysius :6 meanwhile Tarentum, provided with an excellent

me fait croire que les luttes intestines n'ont pas eu la duree que suppose M.

Zeller; car si les pythagoriciens avaient ete exiles pendant pres de soixante dix

ans de PItalie, comment le nom de l'ltalie serait-il devenu ou reste attache1 a leur

ecole ? ' Referring to this objection of Chaignet, Zeller says, ' I know not with

what eyes he can have read a discussion which expressly attempts to show that

the Pythagoreans were not expelled till 440, and returned before 406 ' (lac cit. p.

363, note).

To the objections urged by Chaignet I would add—

1 . Nearly all agree in attributing the origin of the troubles in Lower Italy to

the events which followed the destruction of Sybaris.

2. The fortunes of Magna Graecia seem to have been at their lowest ebb at

the time of the Persian war ; this appears from the fact that, before the battle of

Salamis, ambassadors were sent by the Lacedemonians and Athenians to

Syracuse and Corcyra, to invite them to join the defensive league against the

Persians, but passed by Lower Italy.

3. The revival of trade consequent on the formation of the confederacy of

Delos, 476 B.C., for the protection of the Aegean Sea, must have had a beneficial

influence on the cities of Magna Graecia, and the foundation of Thurii, 443 B.C.,

is in itself an indication that the settlement of the country had been already

effected.

4. The answer of the Rhegians to Nicias, 415 B.C., shows that at that time

there existed a good understanding between the Italiot cities.

5. Zeller's argument chiefly rests on the assumption that Lysis, the teacher of

Epaminondas, was the same as the Lysis who in nearly all the statements is

mentioned along with Archippus as being the only Pythagoreans who escaped the

slaughter. Bentley had long ago suggested that they were not the same. Lysis

and Archippus are mentioned as having handed down Pythagorean lore as heir

looms in their families (Porphyry, Vit. Pyth., p. 101, Didot). This fact is in my

judgment decisive of the matter; for when Lysis, the teacher of Epaminondas,

lived there were no longer any secrets. See p. 22, n. 11.

6 In 393 B.C. a league was formed by some of the cities in order to protect

themselves against the Lucanians and against Dionysius. Tarentum appears not

to have joined the league till later, and then its colony Heraclea was the place of

meeting. The passage in Thucydides, quoted above, shows, however, that long

before that date a good understanding existed between the cities of Magna

Graecia.
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harbour, and, on account of its remote situation, not yet

threatened, had gained in importance, and was now the

most opulent and powerful city in Magna Graecia. In

this city, at this time, Archytas—the last great Pytha

gorean—grew to manhod.

Archytas of Tarentum7 was a contemporary of Plato

(428-347 B.C.), but probably senior to him, and was said

by some to have been one of Plato's Pythagorean teachers8

when he visited Italy. Their friendship9 was proverbial,

and it was he who saved Plato's life when he was in

danger of being put to death by the younger Dionysius

(about 361 B.C.). Archytas was probably, almost certainly,

a pupil of Philolaus.10 We have the following particulars

of his life:—

He was a great statesman, and was seven times11 ap

pointed general of his fellow-citizens, notwithstanding the

law which forbade the command to be held for more than

one year, and he was, moreover, chosen commander-in-

chief, with autocratic powers, by the confederation of the

Hellenic cities of Magna Graecia;1' it is further stated that

1 See Diog. Laert. Vin. c. iv. See also J. Navarro, Tentamen d* Archytae

Tarentinivitaatque operibus, Pars Prior. Hafniae, 1819, and authorities given by

him.

BCic de Fin. v., xxix. 87 ; Rep. I. 10, 16; de Senec. 12, 41. Val. Max.

vin. 7. ♦

s Iambi., Vit. Pyth. 127, p. 48, ed. Didot. 'Verum ergo illud est quod, a

Tarentino Archyta, ut opinor, dici solitum, nostros senes commemorare audivi ab

aliis senibus auditum : "si quis in caelum ascendisset naturamque mundi et

pulchritudinem siderum perspexisset, insuavem illam admirationem ei fore, quae

jucundissuma fuisset, si aliquem cui narraret habuisset." Sic natura solitarium

nihil amat, semperque ad aliquod tamquam adminiculum adnititur quod in ami-

cissimo quoque dulcissimum est.'—Cic, de Amic. 23, 87.

10 Cic, de Oratore, Lib. in. xxxiv. 139, aut Philolaus Archytam Tarentinum ?

The common reading Philolaum Archytas Tarentinus, which is manifestly

wrong, was corrected by Orellius.

11 Diog. Laert. loc. cit. ^Elian, Var. Hist. vn. 14, says six.

12 Toi) Koivov Si twv 'ItoAiojtwv irpocirrij, arparrjybs alpedels aiitoKpdrwp virb twv

iro\irav Kal twi, irepl iKiivov rhv t6*ov 'EWiivav. Suidas, sub v. This tide

arparriybs airoKpdrap was conferred on Nicias and his colleagues by the

Athenians when they sent their great expedition to Sicily : it was also conferred
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he was never defeated as a general, but that, having once

given up his command through being envied, the troops he

had commanded were at once taken prisoners : he was

celebrated for his domestic virtues, and several touching

anecdotes are preserved of his just dealings with his

slaves, and of his kindness to them and to children."

Aristotle even mentions with praise a toy that was in

vented by him for the amusement of infants he was

the object of universal admiration on account of his being

endowed with every virtue ;1S and Horace, in a beautiful

Ode,18 in which he refers to the death of Archytas by

shipwreck in the Adriatic Sea, recognises his eminence

as an arithmetician, geometer, and astronomer.

In the list of works written by Aristotle, but unfortu

nately lost, we find three books on the philosophy of

Archytas, and one [ra IK tov Ti/huou Kul t(ov ' Apxvrtiuiv a] ;

these, however, may have been part of his works" on the

Pythagoreans which occur in the same list, but which also

are lost. Some works attributed to Archytas have come

down to us, but their authenticity has been questioned,

especially by Griippe, and is still a matter of dispute :18

these works, however, do not concern geometry.

He is mentioned by Eudemus in the passage quoted

from Proclus in the Introduction (p. 4.) along with his

contemporaries, Leodamas of Thasos and Theaetetus of

by the Syracusans on the elder Dionysius : Diodorus, XIII. 94. See Arnold,

History of Rome, I. p. 448, «. 18.

13 As to the former, which was in accordance with Pythagorean principles, see

Iambi., Vit. Pyth. xxxi. 197, pp. 66, 67, ed. Did. ; Plutarch, de ed. puer. III., p.

12, ed. Did. ; as to the latter, see Athenaeus, xn. 16; Aelian, Var. hist. XII. 15.

" Aristot. Pol. V. (8), c. vi. See also Suidas.

15 idavnifero Se Kaj irapa to?s iro\\oTs iirj irain) aperri, Diog. Laert. loc. cit.

" I. 28.

11 Diog. Laert. v. i., ed. Cobet, p. 1 16. This, however, could hardly have

been so, as one book only on the Pythagoreans is mentioned, and one against

them.

18 Griippe, ueber die Fragmente des Archytas und der dlteren Pythagoreer.

Berlin, 1840.
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Athens, who were also contemporaries of Plato, as having

increased the number of demonstrations of theorems and

solutions of problems, and developed them into a larger

and more systematic body of knowledge.19

The services of Archytas, in relation to the doctrine of

proportion, which are mentioned in conjunction with those

of Hippasus and Eudoxus, have been noticed in pp. 27 (0)

and 45.

One of the two methods of finding right-angled tri

angles whose sides can be expressed by numbers—the

Platonic one, namely, which sets out from even numbers—

is ascribed to Architas [no doubt, Archytas of Tarentum]

by Boethius :*0 see pp. 34, 35, and note 53. I have there

given the two rules of Pythagoras and Plato for finding

right-angled triangles, whose sides can be expressed by

numbers; and I have shown how the method of Pytha

goras, which sets out from odd numbers, results at once

from the consideration of the formation of squares by the

addition of consecutive gnomons, each of which contains

an odd number of squares. I have shown, further, that

the method attributed to Plato by Heron and Proclus,

which proceeds from even numbers, is a simple and

natural extension of the method of Pythagoras : indeed

it is difficult to conceive that an extension so simple and

natural could have escaped the notice of his successors.

Now Aristotle tells us that Plato followed the Pytha

goreans in many things ;J1 Alexander Aphrodisiensis, in

19 Proclus, ed. Friedlein, p. 66.

20 Boet., Geom., ed. Friedlein, p. 408. Heiberg, in a notice of Cantor's

'History of Mathematics,' Revue Critique d'Histoire et de Littirature, 16 Mai,

1881, pp. 378, 9, remarks, 'II est difficile de croire a l'existence d'un auteur

romain nomme Architas, qui aurait ecrit sur l'arithmetique, et dont le nom, qui

ne serait, du reste, ni grec ni latin, aurait totalement disparu avec ses ceuvres, a

l'exception de quelques passages dans Boece.' The question, however, still

remains as to the authenticity of the Ars Geometriae. Cantor stoutly maintains

that the Geometry of Boethius is genuiue : Friedlein, the editor of the edition

quoted, on the other hand dissents ; and the great majority of philologists agree

in regarding the question as still subjudice. See Rev. Crit. loc. cit.

21 Arist., Met. 1. 6, p. 987*, ed. Bek.
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his Commentary on the Metaphysics, repeats this state

ment;82 Asclepius goes further and says, not in many

things but in everything." Even Theon of Smyrna, a

Platonist, in his work ' Concerning those things which in

Mathematics are useful for the reading of Plato,' says that

Plato in many places follows the Pythagoreans." All this

being considered, it seems to me to amount almost to a

certainty that Plato learned his method for finding right-

angled triangles whose sides can be expressed numerically

from the Pythagoreans ; he probably then introduced it

into Greece, and thereby got the credit of having invented

his rule. It follows also, I think, that the Architas refer

red to by Boethius could be no other than the great Pytha

gorean philosopher of Tarentum.

The belief in the existence of a Roman agrimensor

named Architas, and that he was the man to whom Boe

thius—or the pseudo-Boethius—refers, is founded on a

remarkable passage of the Ars Geometriae?* which, I think,

has been incorrectly interpreted, and also on another pas

sage in which Euclid is mentioned as prior to Architas."

The former passage, which is as follows :—' Sed jam tem-

pus est ad geometricalis mensae traditionem ab Archita,

non sordido hujus disciplinae auctore, Latio accommo-

datam venire, si prius praemisero,' &c, is translated by

Cantor thus : 'But it is time to pass over to the communi

cation of the geometrical table, which was prepared for

Latium by Architas, no mean author of this science, when

I shall first have mentioned,' &c. this, in my opinion, is

not the sense of the passage. I think that ' ab Archita '

should be taken with traditionem, and not with accommo-

22 Alex. Aph., Schol. in Arist., Brand., p. 548% 8.

23 Asclep., Schol. loc. cit., p. 548% 35.

24 Theon. Smyrn. Arithm., ed. de Gelder, p. 17.

25 Boet., ed. Friedlein, p. 393.

28 Id., p. 412.

27 Cantor, Gesch. der Math., p. 493.
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datam, the correct translation being—' But it is now time

to come to the account of the geometrical table as given

by Architas (" no mean authority " in this branch of learn

ing), as adapted by me to Latin readers; when,' &c. Now

it is remarkable—and this, as far as I know, has been over

looked—that the author of the Ars Geometriae, whoever he

may have been, applies to Architas the very expression

applied by Archytas to Pythagoras in Hor. Od. I. 28 :

' iudice te, non sordidus auctor

' naturae verique.'

The mention of Euclid as prior to Archytas is easily

explained, since we know that for centuries Euclid the

geometer was confounded with Euclid of Megara,28 who

was a contemporary of Archytas, but senior to him.

We learn from Diogenes Laertius that he was the first

to employ scientific method in the treatment of Mechanics,

by introducing the use of mathematical principles ; and

was also the first to apply a mechanical motion in the

solution of a geometrical problem, while trying to find

by means of the section of a semi-cylinder two mean

proportionals, with a view to the duplication of the

cube.29

Eratosthenes, too, in his letter to Ptolemy III., having

28 This error seems to have originated with Valerius Maximus (vni. 12), an

author probably of the time of the emperor Tiberius, and was current in the

middle ages.

29 oStos irpuros to firixaviKa rats fiaSijfiariKaTs irpoffxpriffdfievos apxals fiedi&Seuae,

Kal irpuros KIvijaiv opyaviK^v Siaypiififiari yeufierpiKip irpofrfiyaye, 5ia tijs rofirjs rod

rjfiiKv\ivSpov 5vo jueVas ava \6yov \afieTv faruv eis rbv rov Kvfiov Snr\affiafffi6v.

Diog. Laert. loc. cit., ed. Cobet., p. 224.

That is, he first propounded the affinity and connection of Mechanics and

Mathematics with one another, by applying Mathematics to Mechanics, and

mechanical motion to Mathematics.

This seems to be the meaning of the passage : but Mechanics, or rather Sta

tics, was first raised to the rank of a demonstrative science by Archimedes, who

founded it on the principle of the lever. Archytas, however, was a practical

mechanician, and his wooden flying dove was the wonder of antiquity. Favorinus,

see Aul. Gell., Nodes Atticae, X. 12.
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related the origin of the Delian Problem (see p. 85), tells

us that ' the Delians sent a deputation to the geometers

who were staying with Plato at Academia, and requested

them to solve the problem for them. While they were

devoting themselves without stint of labour to the work,

and trying to find two mean proportionals between the two

given lines, Archytas of Tarentum is said to have dis

covered them by means of his sernicylinders, and Eudoxus

by means of the so called ' Curved Lines ' (Sta t<Lv jcaAoc-

fiivuiv KafiirvXwv ypawiwv). It was the lot, however, of all

these men to be able to solve the problem with satisfactory

demonstration ; while it was impossible to apply their

methods practically so that they should come into use;

except, to some small extent and with difficulty, that of

Menaechmus.'30

There is also a reference to this in the epigram which

closes the letter of Eratosthenes.31

The solution of Archytas, to which these passages

refer, has come down to us through Eutocius, and is as

follows :—

' The invention of Archytas as Eudemus relates it.' 31

'Let there be two given lines, aS, 7; it is required to

find two mean proportionals to them. Let a circle a/3S£

be described round the greater line aS ; and let the line

a/3, equal to y, be inserted in it ; and being produced let it

meet at the point ir, the line touching the circle at the

30 Archimedes, ex recens. Torelli, p. 144 ; Archimedis, Opera Omnia, ed. J.

L. Heiberg, vol. in., pp. 104, 106.

" nriSi av y 'Apxireo! Sva^xava %pya KvhivSpuv,

fnjtil Mevex^'iovs Kuvorofietv rpidtias

Kafiirv\ov eV ypannais elSos avaypd<perai.

Archim., ex. rec. Torelli, p. 146 ; Archim. Opera, ed. Heiberg, vol. III.,

p. 112.

M Ibid., ex. rec. Tor. p. 143 ; Ibid., ed. Heib. vol. III., p. 98.
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point S: further let /3t? be drawn parallel to n-S. Now let

it be conceived that a semicylinder is erected on the semi

circle a/3S, at right angles to it : also, at right angles to it,

let there be drawn on the line aS a semicircle lying in the

parallelogram of the cylinder. Then let this semicircle be

turned round from the point S towards /3, the extremity o

of the diameter remaining fixed ; it will in its circuit cut

the cylindrical surface and describe on it a certain line.

■y

. IT

Again, if, the line aS remaining fixed, the triangle <urS be

turned round, with a motion contrary to that of the semi

circle, it will form a conical surface with the straight line

air, which in its circuit will meet the cylindrical line [i.e. the

line which is described on the cylindrical surface by the

motion of the semicircle] in some point ; at the same time

the point /3 will describe a semicircle on the surface of the
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cone. Now, at the place" of meeting of the lines, let the

semicircle in the course of its motion have a position S'ko,

and the triangle in the course of its opposite motion a

position SAa ; and let the point of the said meeting be

Also let the semicircle described by /3 be /3ju£, and the

common section of it and of the circle /3S£a be /3£: now

from the point k let a perpendicular be drawn to the plane

of the semicircle /3Sa ; it will fall on the periphery of the

circle, because the cylinder stands perpendicularly. Let it

fall, and let it be «; and let the line joining the points 1

and a meet the line /3£ in the point 6; and let the right

line a\ meet the semicircle fiftZ in the point 11 ; also let the

lines fii, iid be drawn.

' Since, then, each of the semicircles S'kii, /3/<£ is at right

angles to the underlying plane, and, therefore, their common

section fid is at right angles to the plane of the circle;

so also is the line n9 at right angles to /3£. Therefore, the

rectangle under the lines 6[i, 0% ; that is, under 6a, 61 ; is

equal to the square on 116. The triangle af11 is therefore

similar to each of the triangles 1116, fia6, and the angle

111a is right. But the angle &Ka is also right. Therefore,

the lines kS', jut are parallel. And there will be the propor

tion :—As the line S'a is to ok, i. e. ica to at, so is the line ta

to ait, on account of the similarity of the triangles. The

four straight lines S'a, aic, at, afi are, therefore, in continued

proportion. Also the line afi is equal to y, since it is equal

to the line a/3. So the two lines aS, y being given, two

mean proportionals have been found, viz. ok, at.'

Although this extract from the History of Geometry of

Eudemus seems to have been to some extent modernised

by the omission of certain archaic expressions such as

those referred to in the preceding chapter (p. 72, n. 45)

[and by the introduction of the phrase ' parallelogram of

fievov 7ifiiK{iK\iov &s rijy rod AKA-, &c.

I
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the cylinder'],* yet the whole passage appears to me to bear

the impress of Eudemus's clear and concise style: further,

it agrees perfectly with the report of Diogenes Laertius,

and also with the words in the letter of Eratosthenes to

Ptolemy III., which have been given above. If now we

examine its contents, and compare them with those of the

more ancient fragment, we shall find a remarkable progress.

The following theorems occur in it :—

(a). If a perpendicular be drawn from the vertex of a

right-angled triangle on the hypotenuse, each side is a

mean proportional between the hypotenuse and its ad

jacent segment.34

[b). The perpendicular is the mean proportional be

tween the segments of the hypotenuse;35 and, conversely,

if the perpendicular on the base of a triangle be a mean

proportional between the segments of the base, the ver

tical angle is right.

(c) . If two chords of a circle cut one another, the rect

angle under the segments of one is equal to the rectangle

under the segments of the other. This was most probably

obtained by similar triangles, and, therefore, required the

following theorem, the ascription of which to Hippocrates

has been questioned.

(d) . The angles in the same segment of a circle are

equal to each other.

(e) . Two planes which are perpendicular to a third

plane intersect in a line which is perpendicular to that

plane, and also to their lines of intersection with the third

plane.

Archytas, as we see from his solution, was familiar

* [The term parallelogram was invented by Euclid : see Proclus, ed. Friedlein,

pp. 392, 3. Cf. Heiberg, Litterargeschichtliche Studien iiber Euklid, p. 35.]

34 The whole investigation is, in fact, based on this theorem.

ss The solution of the Delian problem attributed to Plato, and by Me-

naechmus, are founded on this theorem.
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with the generation of cylinders and cones, and had also

clear ideas on the interpenetration of surfaces ; he had,

moreover, a correct conception of geometrical loci, and of

their application to the determination of a point by means

of their intersection. Further, since by the theorem of

Thales the point n must lie on a semicircle of which at is

the diameter, we shall see hereafter that in the solution of

Archytas the same conceptions are made use of and the

same course of reasoning is pursued, which, in the hands

of his successor and contemporary Menaechmus, led to the

discovery of the three conic sections. Such knowledge

and inventive power surely outweigh in importance many

special theorems.

Cantor, indeed, misconceiving the sense of the word

roiroc, supposes that the expression ' geometrical locus1

occurs in this passage. He says : ' In the text handed

down by Eutocius, even the word roirog, geometrical locus,

occurs. If we knew with certainty that here Eutocius

reports literally according to Eudemus, and Eudemus lite

rally according to Archytas, this expression would be

very remarkable, because it corresponds with an impor

tant mathematical conception, the beginnings of which we

are indeed compelled to attribute to Archytas, whilst we

find it hard to believe in a development of it at that time

which has proceeded so far as to give it a name. In

our opinion, therefore, Eudemus, who was probably fol

lowed very closely by Eutocius, allowed himself, in his

report on the doubling of the cube by Archytas, some

changes in the style, and in this manner the word "locus"

which in the meanwhile had obtained the dignity of a

technical term, has been inserted. This supposition is

supported by the fact that the whole statement of the pro

cedure of Archytas sounds far less antique than, for in

stance, that of the attempts at quadrature of Hippocrates

of Chios. Of course we only assume that Eudemus has,

to a certain extent, treated the wording of Archytas freely.

I 2
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The sense he must have rendered faithfully, and thus the

conclusions we have drawn as to the stereometrical know

ledge of Archytas remain untouched.'36

This reasoning of Cantor is based on a misconception

of the meaning of the passage in which the word toitoq

occurs ; tottoq in it merely means place, as translated above.

Though Cantor's argument, founded on the occurrence of

the word toitoq, is not sound ; yet, as I have said, the

solution of Archytas involves the conception ofgeometrical

loci, and the determination of a point by means of their

intersection—not merely ' the beginnings of the concep

tion,' as Cantor supposes ; for surely such a notion could

not first arise with a curve of double curvature. The first

beginning of this notion has been referred to Thales in the

first chapter37 (p. 13).

Further, Archytas makes use of the theorem of Thales—

the angle in a semicircle is right. He shows, moreover,

that fid is a mean proportional between ad and 61, and

concludes that the angle ifia is right : it seems to me, there

fore, to be a fair inference from this that he must have seen

that the point n may lie anywhere on the circumference of

a circle of which ai is the diameter. Now Eutocius, in his

Commentaries on the Conics of Apollonius,38 tells us what

the old geometers meant by Plane Loci, and gives some

examples of them, the first of which is this very theorem.

It is as follows :—

38 Cantor, Gesch. der Math., p. 197.

37 Speaking of the solution of the ' Delian Problem ' by Menaechmus, Favaro

observes : ' Avvertiamo espressamente che Menecmo non fu egli stesso l'inventore

di questa dottrina [dei luoghi geometrici]. Montucla (Histoire des Mathimatiques,

nouvelle edition, tome premier, a Paris, An. vil., p. 171); e Chasles (Aperfu

historique, Bruxelles, 1837, p. 5) la attribuiscono alia scuola di Platone; G.

Johnston Allman [Greek Geometryfrom Thales to Euclid, Dublin, 1877, p. 171)

la fa risalire a Talete, appoggiando la sua argumentazione con valide ragioni.'

Antonio Favaro, Notizie Storico-Critiche sulfa Contruzione delle Equazioni.

Modena, 1878, p. 21.

S8 Apollonius, Conic, ed. Halleius, p. 10.
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' A finite straight line being given, to find a point from

which the perpendicular drawn to the given line shall be a

mean proportional between the segments. Geometers call

such a point a locus, since not one point only is the solu

tion of the problem, but the whole place which the circum

ference of a circle described on the given line as diameter

occupies : for if a semicircle be described on the given line,

whatever point you may take on the circumference, and

draw from it a perpendicular on the diameter, that point

will solve the problem.'

Eutocius then gives a second example—'A straight

line being given, to find a point without it from which the

straight lines drawn to its extremities shall be equal to

each other'—on which he makes observations of a similar

. character, and then adds : ' To the same effect Apollonius

himself writes in his Locus Resolutus, with the subjoined

[figure] :

" ' Two points in a plane being given, and the ratio

of two unequal lines being also given, a circle can be

described in the plane, so that the straight lines in

flected from the given points to the circumference of the

circle shall have the same ratio as the given one." '

Then follows the solution, which is accompanied with a

diagram. As this passage is remarkable in many respects,

I give the original :—

To 8e rpCrov toiv Kuvikwv irepii)(ei, (pn]<A, iroXXa Kai wapdSo^a Oewp-q-

p.ara xpijo-i/ia 7rpos Tas owfleo-eis ruiv o"rep€uiv roinav. 'EiriireSovs

toitov; £0os tois iraAaiois ye<i)/ieVpais Ae7eiv, ore twv irpo/3\rjp:drU}v ovK

a<p' ivbs o"rjp.elov p.6vov, dW dirb it\ci6v<iiv ylverai to iroirjp.a' oiov iv

eViTafei, rrjs evOeias SoO€iotji ireirepaofievrjs evpetv ti o"rjp.£iov d<fi ov r)

d)(6etcra Ka.derO's eVi rrjv So6€iarav p.eo-q dvd\oyov yiVerai ruiv rp.rjp.drU>v.

Tottov koXovo-i to tolovtov, oh p.bvov yap iv 0-rjp.eiov cctti to ttolovv to

irp6f3\rjp.a, dXka toVos oXos ov l^ei rj mpi^ipua tov irepi Sidp.erpov rrjv

hoOeio'av evOeiav KvK\ov idv yap iwl tijs SofoiOTjs ei^eias r)fJUKVK\iov

ypatfifj, oVep av iirl rrjs 7r€pi<£epeia.s Aa/?r;s orrj^iov, Kal air avrov

KdOerOV dydyrji irn tt)v 8idp.erpov, iroirjo-ei to wpopXrjOiv .... op-oiov
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teat ypa<fiei avros 'AiroXXwi'ios iv t<3 ava.\vo(iev<ji roirm, iiri rov vTtokei-

iiivov."

Avo io0ivruiv o-i]fieiu>v iv iirmiSw Ktu koyov 8odlvro<; avio-u>v evOeiiav

Svvarov i<rriv iv tw iirnreSio ypdipai kvKXov wore Tas airb iw SoOevrwv

o~qfteiuiv iirl rrjv irepi<j}epeiav rov kvk\ov xXw/xeVas evOeias \6yov exeiv

rov airrbv tu SoOevri.

It is to be observed, in the first place, that a contrast is

here made between Apollonius and the old geometers (of

iraXaiol ytwiiirQai), the same expression which, in p. 90, we

found was used by Pappus in speaking of the geometers be

fore the time of Menaechmus. Secondly, on examination it

will be seen that loci, as e.g. those given above, partake of

a certain ambiguity, since they can be enunciated either as

theorems or as problems ; and we shall see later that, about

the middle of the fourth century B. C, there was a discus

sion between Speusippus and the philosophers of the Aca

demy on the one side, and Menaechmus, the pupil and, no

doubt, successor of Eudoxus, and the mathematicians of

the school of Cyzicus, on the other, as to whether every

thing was a theorem or everything a problem : the mathe

maticians, as might be expected, took the latter view, and

the philosophers, just as naturally, held the former. Now

it was to propositions of this ambiguous character that the

term porism, in the sense in which it is now always used,

was applied—a signification which was quite consistent

with the etymology of the word.40 Lastly, the reader will

not fail to observe that the first of the three loci given above

38 Heiberg, in his Studien uber Euklid, p. 70, reads t& viroKelnevov, and adds

in a note that Halley has {nroKeinevtp, in place of rb {nroKelfievov, a statement

which is not correct. I have interpreted Halley's reading as referring to the

subjoined diagram.

*« irop'i&adai, to procure. The question is—in a theorem, to prove something ;

in a problem to construct something ; in a porism, to find something. So the

conclusion of the theorem is, Srep «5ei 5ei£ai, Q. E. D., of the problem, Sirep

cSei iroirjaai, Q. E. F., and of the porism, Sxep £5ei e&peiv, Q. E. I. Amongst the

ancients the word porism had also another signification, that of corollary. See

Heiberg, Stud, uber Eukl., pp. 56—79, where the obscure subject of porisms is

treated with remarkable clearness.



Archylas. 119

is strikingly suggestive of the method of Analytic Geo

metry. As to the term totoc, it may be noticed that Aris-

taeus, who was later than Menaechmus, but prior to Euclid,

wrote five books on Solid Loci [pi artptol roiroi)." In conclu

sion, I cannot agree with Cantor's view that the passage

has the appearance of being modernised in expression

[with the exception of the use of the Euclidean term

' parallelogram '] : there is nothing in the text from which

any alteration in phraseology can be inferred, as there

can be in the two solutions of the ' Delian Problem ' by

Menaechmus, in which the words parabola and hyperbola

occur.

The solution of Archytas seems to me not to have been

duly appreciated. Montucla does not give the solution,

but refers to it in a loose manner, and says that it was

merely a geometrical curiosity, and of no practical impor

tance.42 Chasles, who, as we have seen (p. 13, «. 19),

in the History of Geometry before Euclid, copies Mon

tucla, also says that the solution was purely specula

tive ; he even gives an inaccurate description of the

construction—taking an arete of the cylinder as axis of the

cone43—in which he is followed by some more recent

writers.44 Flauti, on the other hand, gives a clear and full

account of the method of Archytas, and shows how his

solution may be actually constructed. For this purpose it

is necessary to give a construction for finding the inter

section of the surface of the semicylinder with that of the

tore generated by the revolution of the semicircle round

the side of the cylinder through the point a as axis ; and

also for finding the intersection of the surface of the same

41 Pappi, Collect., ed. Hultsch, vol. II., p. 672.

42 ' Mais ce n'etoit-la qu'une curiosite geometrique, uniquement propre a

satisfaire 1' esprit, et dont la pratique ne scauroit tirer aucun secours.'—Montucla,

Histoire des Math., tom. I., p. 188.

43 Chasles, Aperfu hist., p. 6.

44 e.g. Hoefer, Histoire des Math., p. 133.
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semicylinder with that of the cone described by the revo

lution of the triangle airS : the intersection of these curves

gives the point k, and then the point t, by means of which

the problem is solved. Now, in order to determine the

point k, it will be sufficient to find the projections of these

two curves on the vertical plane on aS, which contains the

axes of the three surfaces of revolution concerned, and

which Archytas calls the parallelogram of the cylinder.

The projection on this plane of the curve of intersection of

the tore and semicylinder can be easily found : the pro

jection of the point k, for example, is at once obtained by

drawing from the point 1, which is the projection of the

point k on the horizontal plane a/35, a perpendicular & on

aS, and then at the point £ erecting in the vertical plane a

perpendicular £»} equal to ik, the ordinate of the semicircle

aicS', corresponding to the point 1 ; and in like manner for

all other points. The projection on the same vertical plane

of the curve of intersection of the cone and semicylinder can

also be found : for example, the projection of the point k,

which is the intersection of aic and ik, the sides of the cone

and cylinder, on the vertical plane, is the intersection of

the projections of these lines on that plane ; the latter pro

jection is the line and the former is obtained by draw

ing in the vertical plane, through the point t, a line ti.

perpendicular to a$ and equal to fyu, the ordinate of the

semicircle /3(u£, and then joining av, and producing it to

meet £»j ; and so for all other points on the curve of inter

section of the cone and cylinder." So far Flauti.

Each ofthese projections can be constructed by points :—

To find the ordinate of the first of these curves cor

responding to any point £, we have only to describe a

square, whose area is the excess of the rectangle under the

line a$ and a mean proportional between the lines aS and

as, over the square on the mean : the side of this square is

45 Flauti, Geometria di Sito, terza edizione. Napoli, 1842, pp. 192-194.
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the ordinate required.46 In order to describe the projection

of the intersection of the cone and cylinder, it will be suffi

cient to find the length, a£, which corresponds to any ordi

nate, £rj (= ik), supposed known, of this curve ; and to effect

this we have only to apply to the given line at a rectangle,

which shall be equal to the square on the line and

which shall be excessive by a rectangle similar to a given

one, namely, one whose sides are the lines aS and at—

i.e. the greater of the two given lines, between which the

two mean proportionals are sought, and the third propor

tional to it and the less."

46 For, fi,2 = uc2= ai . iS' = ai . (oS' - 01) ; but oJ' = 05 ;

therefore, f7j2 = oS . oi — or. Again, since o5 : ai : : ai: at,

we have also f,j"2 = oS . (y/aS . of - aQ .

"Thus, fl,u2 = i8e2-fle2. Now Bpi = ev, and ev : fij :: cm : a( ;

we have, therefore, ev- = "c ' ^ = 0e2 - 0e2.

<-

Hence, f„2 = — - of2 - ~ - of = -* . of» - .f2,
ae' o«* ae'

since " 0< : if : : oe : of.

But ,f2 = „£ . (o! - of) ;

hence we get f112 = —- . of- - oS . of ;
ae-

and, finally, since 05 : a/3 : : aj8 : ae,

a52
we have f-rj1 — . of2 - a5 . of.

ap-

The equations of these projections can, as M. Paul Tannery has shown (Sur

les Solutions du Probleme de Delos par Archytas et par Eudoxe, Memoires de la

Society des Sciences physiques et naturelles de Bordeaux, 2e serie, tome II.,

p. 277), be easily obtained by analytic geometry. Taking, as axes ofco-ordinates,

the line aS, the tangent to the circle a/35 at the point o, and the side of the

cylinder through the point o, the equations of the three surfaces are : —

the cylinder, x1 + y* = ax ;

thetore, ^2+_y2 + z2=av'*2 + /2;

a%
the cone, x1 +y* + z- = — #2,

where a and b are the lines 05 and a/9, between which the two mean proportionals

are sought.
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So much ingenuity and ability are shown in the treat

ment of this problem by Archytas, that the investigation

of these projections, in itself so natural,18 seems to have

been quite within his reach, especially as we know that

the subject of Perspective had been treated of already by

Anaxagoras and Democritus (see pp. 79, 83). It may be

observed, further, that the construction of the first projec

tion is easily obtained ; and as to the construction of the

second projection, we see that it requires merely the solu

tion of a problem attributed to the Pythagoreans by

Eudemus, simpler cases of which we have already met

with (see p. 24 (e), and pp. 41, 72, 72.46). On the other hand,

it should be noticed— 1° that we do not know when the

description of a curve by points was first made ; 2° that

the second projection, which is a hyperbola, was obtained *

later by Menaechmus as a section of the cone; 30 and

lastly, that the names of the conic sections—parabola, hyper

bola, and ellipse—derived from the problems concerning the

application, excess, and defect of areas, were first given to

them by Apollonius."

We easily obtain from these three equations :—

The last two give the first and second mean proportionals between b and a.

We also obtain easily the projections on the plane of zx of the curves of inter

section of the cylinder and tore—

and of the cylinder and cone,

These results agree with those obtained above geometrically.

48 ' La recherche des projections sur les plans donnes des intersections deux a

deux des surfaces auxiliaires est, a cet egard, si naturelle que, si l'on peut

s'etonner d'une chose, c'est precisement qu' Archytas ait conserve a sa solution

une forme purement theorique. ' P. Tannery, loc. cit., p. 279.

49 See supra, p. 24, and n. 26 : see also Apollonii Conica, ed. Halleius, p. 9,

also pp. 31, 33, 35; and Pappi Collect., ed. Hultsch, vol. II., p. 674; and

Proclus, ed. Friedlein, p. 419,

 
  

s'=av* (Va - v*),
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Several authors give Archytas credit for a knowledge

of the geometry of space, which was quite exceptional

and remarkable at that time, and they notice the pecu

liarity of his making use of a curve of double curvature

—the first, as far as we know, conceived by any geome

ter ; but no one, I believe, has pointed out the importance

of the conceptions and method of Archytas in relation to

the invention of the conic sections, and the filiation of

ideas seems to me to have been completely overlooked.

Bretschneider, not bearing in mind what Simplicius

tells us of Eudemus's concise proofs, thinks that this solu

tion, though faithfully transmitted, may have been some

what abbreviated. He thinks, too, that it must belong to

the later age of Archytas—a long time after the opening

of the Academy—inasmuch as the discussion of sections of

solids by planes, and of their intersections with each other,

must have made some progress before a geometer could

have hit upon such a solution as this ; and also because

such a solution was, no doubt, possible only when Analysis

was substituted for Synthesis.50

Bretschneider even attempts to detect the particular

analysis by which Archytas arrived at his solution, and

as Cantor thinks, with tolerable success.51 The latter

reason goes on the assumption, current since Montucla,

that Plato was the inventor of the method of geometrical

analysis—an assumption which is based on the following

passages in Diogenes Laertius and Pfoclus :—

He [Plato] first taught Leodamas of Thasos the ana

lytic method of inquiry."

Methods are also handed down, of which the best is

that through analysis, which brings back what is required

50 Bretsch., Geom. vor Eukl., pp. 151, 152.

51 Cantor, Gesch. der Math., p. 198.

52 Kal irpuros rbv Kara t)jv ava\vaiv tijs far'fiffeus rp6irov eiffriyrj<Taru Aeu-

So/iai'ti t$ 0aa'iCj!. Diog. Laert., n1. 24, ed. Cobet, p. 74.
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to some admitted principle, and which Plato, as they say,

transmitted to Leodamas, who is reported to have become

thereby the discoverer of many geometrical theorems.53

Some authors, on the other hand, think, and as it seems

to me with justice, that these passages prove nothing more

than that Plato communicated to Leodamas of Thasos this

method of analysis with which he had become acquainted,

most probably, in Cyrene and Italy." It is to be remem

bered that Plato—who in mathematics seems to have been

painstaking rather than inventive—has not treated of this

method in any of his numerous writings, nor is he reported

to have made any discoveries by means of it, as Leodamas

and Eudoxus are said to have done, and as we know

Archytas and Menaechmus did. Indeed we have only to

compare the solution attributed to Plato of the problem of

finding two mean proportionals—which must be regarded

as purely mechanical, inasmuch as the geometrical theo

rem on which it is based is met with in the solution of

Archytas—with the highly rational solutions of the same

problem by Archytas and Menaechmus, to see the wide

interval between them and him in a mathematical point of

view. Plato, moreover, was the pupil of Socrates, who

held such mean views of geometry as to say that it might

be cultivated only so far as that a person might be able to

distribute and accept a piece of land by measure." We

know that Plato, after his master's death, went to Cyrene

63 M4doSoi 5i Sfjucs irapc&l$ovrai' KaWlarrj fiiv ij Sia rrjs avd\vaeas iir apxyv

6fio\oyovfiev7iv avayovaa rb farovfiefiov, %v Kal S Tl\drwv, &s tpaai, AeaSdfiavri

irapeSwKev. cup' fis Kai h<e1rn iroWwv Kot4 ycafMrp'iav evperys iVriipijrai 7c

ce'ffflai.—Proclus, ed. Friedlein, p. 211.

64 J. J. de Gelder quotes these passages of Diogenes Laertius and Proclus,

and adds : ' Haec satis testantur doctissimum Montucla methodi analyticae

inventionem perperam Platoni tribuere. Bruckerum rectius scripsisse existimo ;

scilicet eos, qui Platonem hanc methodum invenisse volunt, non cogitare, ilium

audivisse Theodorum Cyrenaeum, celeberrimum Geometram, quem hanc rationem

reducendi quaestiones ad sua principia ignoravisse, non verosimile est (Bruckeri,

Hist. Crit. Phil., torn. I. p. 642)'—De Gelder, Theonis Smyrn. Arithm., Prae-

monenda, p. xlix., Lugd. Bat.

55Xenophon, Memorab., IV. 7 ; Diog. Laert., 11. 32, p. 41, ed. Cobet.
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to learn geometry from Theodorus, and then to the Pytha

goreans in Italy. Is it likely, then, that Plato, who, as far

as we know, never solved a geometrical question, should

have invented this method of solving problems in geometry

and taught it to Archytas, who was probably his teacher,

and who certainly was the foremost geometer of that time,

and that thereby Archytas was led to his celebrated solu

tion of the Delian problem ?

The former of the two reasons advanced by Bret-

schneider, and given above, has reference to and is based

upon the following well-known and remarkable passage of

the Republic of Plato. The question under consideration

is the order in which the sciences should be studied :

having placed arithmetic first, and geometry—i. e. the

geometry of plane surfaces—second, and having proposed

to make astronomy the third, he stops and proceeds :—

" 'Then take a step backward, for we have gone wrong

in the order of the sciences.'

' What was the mistake ?' he said.

'After plane geometry,' I said, ' we took solids in revolu

tion, instead of taking solids in themselves ; whereas, after

the second dimension the third, which is concerned with

cubes and dimensions of depth, ought to have followed.'

' That is true, Socrates ; but these subjects seem to be

as yet hardly explored.

' Why, yes,' I said, ' and for two reasons : in the first

place, no government patronises them, which leads to a

want of energy in the study ofthem, and they are difficult ;

in the second place, students cannot learn them unless

they have a teacher. But then a teacher is hardly to be

found ; and even if one could be found, as matters now

stand, the students of these subjects, who are very con

ceited, would not mind him. That, however, would be

otherwise if the whole state patronised and honoured

this science ; then they would listen, and there would be
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continuous and earnest search, and discoveries would be

made; since even now, disregarded as these studies are

by the world, and maimed of their fair proportions, and

although none of their votaries can tell the use of them,

still they force their way by their natural charm, and very

likely they may emerge into light.'

* Yes,' he said, ' there is a remarkable charm in them.

But I do not clearly understand the change in the order.

First you began with a geometry of plane surfaces ? '

'Yes,' I said.

' And you placed astronomy next, and then you made a

step backward ? '

■ Yes,' I said, ' the more haste the less speed ; the

ludicrous state of solid geometry made me pass over this

branch and go on to astronomy, or motion of solids.'

' True,' he said.

' Then regarding the science now omitted as supplied,

if only encouraged by the State, let us go on to astro

nomy.'

'That is the natural order,' he said."48

Cantor, too, says that ' stereometry proper, notwith

standing the knowledge of the regular solids, seems on

the whole to have been yet [at the time of Plato] in a very

backward state,'57 and in confirmation of his opinion quotes

part of a passage from the Laws.™ It will be seen, how

ever, on reading it to the end, that the ignorance of the

Hellenes referred to by Plato, and denounced by him in

such strong language, is an ignorance—not, as Cantor

thinks, of stereometry—but of incommensurables.

We do not know the date of the Republic, nor that of

the discovery of the cubature of the pyramid by Eudoxus,

54 Plato, Rep., VII. 528 ; Jowett, the Dialogues of Plato, vol. II., pp. 363, 364.

57 Cantor, Gesch. der Math., p. 193.

M Plato, Leges, vn., 819, 820; Jowett, op. tit., vol. IV., pp, 333, 334.
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which founded stereometry," and which was an important

advance in the direction indicated in the passage given

above : it is probable, however, that Plato had heard from

his Pythagorean teachers of this desideratum ; and I have

in the last chapter (p. 86, sq.) pointed out a problem

of high philosophical importance to the Pythagoreans at

that time, which required for its solution a knowledge

of stereometry. Further, the investigation given above

shows, as Cantor remarks, that Archytas formed an ho

nourable exception to the general ignorance of geometry

of three dimensions complained of by Plato. It is note

worthy that this difficult problem—the cubature of the

pyramid—was solved, not through the encouragement

of any State, as suggested by Plato, but, and in Plato's

own lifetime, by a solitary thinker—the great man whose

important services to geometry we have now to consider.

59 It should be noticed, however, that with the Greeks Stereometry had the

wider signification of geometry of three dimensions, as may be seen from the

following passage in Proclus : fi fiev yewfierpla Siaipeirai iraAic eXs re tV iirlire-

Sov flewpfac Kal t^v arepeofxerplav.—Proclus, ed. Friedlein, p. 39 : see also Hid.,

PP- 73, "6.
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CHAPTER V.

EUDOXUS.

Eudoxus of Cnidus.—His life.—Founded the School of Cyzicus.—Notices of his

Geometrical work.—Examination of and inferences from these Notices.—

Eudoxus discovered the Cubature of the Pyramid, invented the Method of

Exhaustions, and was the Founder of the Doctrine of Proportion as given in

the Fifth Book of Euclid.—Kanrv\ai ypafifndi and Hippopede.—Retro

spective view of the progress of Geometry.—Effect of the Dialectic Method

in general, and, in particular, in Geometry.—Necessity of recasting the

methods of investigation and proof.—Estimate of the services of Eudoxus.—

Though his fame was very great in antiquity, yet he was for centuries unduly

depreciated.—Justice is now done to him.—His place in the History of

Science.

Eudoxus of Cnidus1—astronomer, geometer, physician,

lawgiver—was born about 407 B.C.,' and was a pupil of

Archytas in geometry, and of Philistion, the Sicilian [or

Italian Locrian], in medicine, as Callimachus relates in his

Tablets. Sotion in his Successions, moreover, says that he

also heard Plato ; for when he was twenty-three years of

age and in narrow circumstances, he was attracted by the

reputation of the Socratic school, and, in company with

Theomedon the physician, by whom he was supported, he

went to Athens, where—or rather at Pira?us—he remained

two months, going each day to the city to hear the lectures

of the Sophists, Plato being one of them, by whom, how

ever, he was coldly received. He then returned home,

and, being again aided by the contributions of his friends,

he set sail for Egypt with Chrysippus—also a physician,

and who, as well as Eudoxus, learnt medicine from Philis

tion—bearing with him letters of recommendation from

Agesilaus to Nectanabis, by whom he was commended to

1 Diog. Laert., VIII., c. viii ; A. Boeckh, tuber die vierjahrigen Sonnenkreise

der Alien, vorziiglich den Eudoxischen, Berlin, 1863.
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the priests. When he was in Egypt with Chonuphis of

Heliopolis, Apis licked his garment, whereupon the priests

said that he would be illustrious (tv$o£ov), but short-lived.'

He remained in Egypt one year and four months, and

composed the Octaeferis3—an octennial period. Eudoxus

then—his years of study and travel now over—took up

his abode at Cyzicus, where he founded a school (which

became famous in geometry and astronomy), teaching there

and in the neighbouring cities of the Propontis ; he also

went to Mausolus. Subsequently, at the height of his

reputation, he returned to Athens, accompanied by a great

many pupils, for the sake, as some say, of annoying Plato,

because formerly he had not held him worthy of attention.

Some say that, on one occasion, when Plato gave an enter

tainment, Eudoxus, as there were many guests, introduced

the fashion of sitting in a semicircle.4 Aristotle tells

us that Eudoxus thought that pleasure was the summum

bonum ; and, though dissenting from his theory, he praises

Eudoxus in a manner which with him is quite unusual :—

' And his words were believed, more from the excellence

of his character than for themselves ; for he had the repu

tation of being singularly virtuous, aw<ppulv : it therefore

seemed that he did not hold this language as being a

2 Boeckh thinks, and advances weighty reasons for his opinion, that the

voyage of Eudoxus to Egypt took place when he was still young—that is, about

378 B. c. ; and not in 362 B. c, in which year it is placed by Letronne and others.

Boeckh shows that it is probable that the letters of recommendation from

Agesilaus to Nectanabis, which Eudoxus took with him, were of a much earlier

date than the military expedition of Agesilaus to Egypt. In this view Grote

agrees. See Boeckh, Sonnenkreise, pp. 140-148; Grote, Plato, vol. I., pp. 120-

124.

3 The Octaeteris was an intercalary cycle of eight years, which was formed

with the object of establishing a correspondence between the revolutions of the

sun and moon ; eight lunar years of 354 days, together with three months of 30

days each, make up 2922 days : this is precisely the number of days in eight

years of 365J days each. This period, therefore, presupposes a knowledge of the

true length of the solar year ; its invention, however, is attributed by Censorinus

to Cleostratus.

* Is this the foundation of the statement in Grote's Plato, vol. I., p. 124—

' the two then became friends ' ?

K
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friend to pleasure, but that the case really was so.'5 On

his return to his own country he was received with great

honours—as is manifest, Diogenes Laertius adds, from the

decree passed concerning him—and gave laws to his fel

low-citizens ; he also wrote treatises on astronomy and

geometry, and some other important works. He was

accounted most illustrious by the Greeks, and instead of

Eudoxus they used to call him Endoxus, on account of the

brilliancy of his fame. He died in the fifty-third year of

his age, circ. 354 B. C.

The above account of the life of Eudoxus, with the ex

ception of the reference to Aristotle, is handed down by

Diogenes Laertius, and rests on good authorities.6 Un

fortunately, some circumstances in it are left undetermined

as to the time of their occurrence. I have endeavoured to

present the events in what seems to me to be their natural

sequence. I regret, however, that in a few particulars as to

their sequence I am obliged to differ from Boeckh, who

has done so much to give a just view of the life and career

of Eudoxus, and of the importance of his work, and of the

high character of the school founded by him at Cyzicus.

Boeckh thinks it likely that Eudoxus heard Archytas in

geometry, and Philistion in medicine, in the interval be

tween his Egyptian journey and his abode at Cyzicus.7

Grote, too, in the notice which he gives of Eudoxus,

takes the same view. He says :— ' Eudoxus was born in

poor circumstances ; but so marked was his early promise,

that some of the medical school at Knidus assisted him to

prosecute his studies—to visit Athens, and hear the So

phists, Plato among them—to visit Egypt, Tarentum

5 Aristot. Eth. Nic., x. 2, p. 1 1 72, ed. Bek.

6 Callimachus of Cyrene ; he was invited by Ptolemy II., Philadelphia, to a

place in the Museum ; and was chief librarian of the library of Alexandria ; he

held this office from about 250 B. c. until his death, about 240 B. c. Hermippus

of Smyrna. Sotion of Alexandria flourished at the close of the third century B. c.

Apollodorus of Athens flourished about the year 143 B. C.—Smith's Dictionary.

" Boeckh, Sonnenkreise , p. 149.
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(where he studied geometry with Archytas), and Sicily

(where he studied ra larpiKa with Philistion). These facts

depend upon the nivaicte of Kallimachus, which are good

authority (Diog. Laert. VIII. 86).' 8

Now I think it is much more likely that, as narrated

above, Eudoxus went in his youth from Cnidus to Taren-

tum—between which cities, as we have seen, an old com

mercial intercourse existed9—and there studied geometry

under Archytas, and that he then studied medicine under

the Sicilian [or Italian Locrian] Philistion. In support of

this view, it is to be observed that—

i°. The narrative of Diogenes Laertius commences with

this statement, which rests on Callimachus, who is good

authority ;

2°. The life of Eudoxus is given by Diogenes Laertius

in his eighth book, which is devoted exclusively to the

Pythagorean philosophers : this could scarcely have been

so, if he was over thirty years of age when he heard Archy

tas, and that, too, only casually, as some think ;

3°. The statement that he went from Tarentum to

Sicily [or the Italian Locri] to hear Philistion, who pro

bably was a Pythagorean—for we know that medicine was

cultivated by the Pythagoreans—is in itself credible ;

4°. Chrysippus, the physician in whose company Eu

doxus travelled to Egypt, was also a pupil of Philistion in

medicine, and Theomedon, with whom Eudoxus went to

Athens, was a physician likewise ; in this way might arise

the relation between Eudoxus and some of the medical

school of Cnidus noticed by Grote.

The statement of Grote, that 'these facts depend on the

IlivaKeg of Kallimachus,' is not correct ; nor is there any

authority for his statement that Eudoxus was assisted by

the medical school of Cnidus to visit Tarentum and Sicily :

8 Grote, Plato, vol. I., p. 123, n.

» Supra, p. 19 : Herod., III. 138.

K 2
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the probability is that he became acquainted with some

physicians of Cnidus as fellow-pupils of Philistion.

The geometrical works of Eudoxus have unfortunately

been lost; and only the following brief notices of them

have come down to us :—

(a). Eudoxus of Cnidus, a little younger than Leon, and

a companion of Plato's pupils, in the first place increased

the number of general theorems, added three proportions

to the three already existing, and also developed further

the things begun by Plato concerning the section [of a

line], making use, for the purpose, of the analytical

method ; 10

(£). The discovery of the three later proportions, re

ferred to by Eudemus in the passage just quoted, is at

tributed by Iamblichus to Hippasus, Archytas, and

Eudoxus ; 11

(c) . Proclus tells us that Euclid collected the elements,

and arranged much of what Eudoxus had discovered. "

(d) . We learn further from an anonymous scholium on

the Elements of Euclid, which Knoche attributes to Pro

clus, that the Fifth Book, which treats of proportion, is com

mon to geometry, arithmetic, music, and, in a word, to all

mathematical science; and that this Book is said to be the

invention of Eudoxus (Ev$6£ov rtvog row nXdrwvog $i$aa-

K&Xov) ; "

(e) . Diogenes Laertius tells us, on the authority of the

Chronicles of Apollodorus, that Eudoxus was the disco

verer of the theory of curved lines (tvpttv r« to irepi rag Kofi-

irvXa$ ypafifiag) ; 14

(/). Eratosthenes says, in the passage quoted above

10 Proclus, ed. Friedlein, p. 67 : see Introduction, p. 4.

11 Iambi- in Nic. Arithm., ed. Tennulius, pp. 142, 159, 163.

12 Proclus, ed. Friedlein, p. 68 : see introduction, p. 5.

13 Euclidis Elem., ed. August., pars ii., p. 328; Knoche, Untersuchvngen,

&c, p. 10 : see p. 49.

Diog. Laert., Till, c. viii., e4. Cobet, p. 226.
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(p. 1 1 1 ), that Eudoxus employed these so called curved lines

to solve the problem of finding two mean proportionals

between two given lines ; 15 and in the epigram which

concludes his letter to Ptolemy III., Eratosthenes asso

ciates him with Archytas and Menaechmus ; "

[g). In the history of the ' Delian Problem ' given by

Plutarch, Plato is stated to have referred the Delians, who

implored his aid, to Eudoxus of Cnidus or to Helicon of

Cyzicus, for its solution

(A). We learn from Seneca that Eudoxus first brought

back with him from Egypt the knowledge of the motions

of the planets ;18 and from Simplicius, on the authority of

Eudemus, that, in order to explain these motions, and in

particular the retrograde and stationary appearances of

the planets, Eudoxus conceived a certain curve, which he

called the hippopede ; 19

(i). Archimedes tells us expressly that Eudoxus disco

vered the following theorems :—

Any pyramid is the third part of a prism which

has the same base and the same altitude as the

pyramid ;

Any cone is the third part of a cylinder which has

the same base and the same altitude as the

cone.20

(/). Archimedes, moreover, points out the way in which

these theorems were discovered : he tells us that he himself

obtained the quadrature of the parabola by means of the

following lemma :—' If two spaces are unequal, it is pos

sible to add their difference to itself so often that every

16 Archim., ed. Torelli, p. 144; ed. Heiberg., ill., p. 106.

16 Archim., ed. Tor., p. 146; ed. Heib., ill., p. 112. Some writers translate

deovSeos in this epigram by ' divine,' but the true sense seems to be ' God-fearing,'

1 pious ' : see Arist. (p. 129, supra).

" Plutarch, de Gen. Soc. I, Opera, ed. Didot, vol. III., p. 699.

18 Seneca, Quaest. Nat., VII. 3.

19 Brandis, Scholia in Aristot., p. 500".

20 Archim., ed. Torelli, p. 64; ed. Heiberg, vol. I., p. 4.
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finite space can be surpassed. Former geometers have

also used this lemma ; for, by making use of it, they proved

that circles have to each other the duplicate ratio of their

diameters, and that spheres have to each other the tripli

cate ratio of their diameters ; further, that any pyramid is

the third part of a prism which has the same base and the

same altitude as the pyramid; and that any cone is the

third part of a cylinder which has the same base and the

same altitude as the cone.'21

Archimedes, moreover, enunciates the same lemma for

lines and for volumes, as well as for surfaces. 82 And the

fourth definition of the Fifth Book of Euclid—which Book,

we have seen, has been ascribed to Eudoxus—is some

what similar.23 It should be observed that Archimedes

does not say that the lemma used by former geometers was

exactly the same as his, but like it : his words are :—6fioiov

t<[7 irpotipiifiiviy \rinfia tl Xafijidvovrtg typaQov.

Concerning the three new proportions referred to in (a)

and (b), see pp. 44, 45. In Proclus they are ascribed to

Eudoxus; whereas Iamblichus reports that they are the

invention of Archytas and Hippasus, and says that Eu

doxus and his school (oi iripi EvSo^ov paOnfjtariKoi) only

changed their names. The explanation of these conflict

ing statements, as Bretschneider has suggested, probably

lies in this—that Eudoxus, as pupil of Archytas, learned

these proportions from his teacher^ and first brought them

to Greece, and that later writers then believed him to

have been the inventor of them.24

21 Archim., ed. Tor., p. 18 ; ed. Heib., vol. II., p. 296.

22 *Eri 5i rav dvlawv ypafifiwv Kal twv avlawv iiriipaveiav Kal twv dvlawv irtc-

pewv rb fiei£ov tov e\daaovos imepexeiv roiovrtp, o avvridifievov avrb eoury Svvar6v

eariv {nrep4xeiv iravrbs tov irporedevros rwv irpbs &\\rj\a \eyofievwv. Archim.,

ed. Tor., p. 65 ; ed. Heib., vol. I., p. 10.

23 This definition is—

\6yov exeiv irpbs &WT]\a ^ueye'flij \4yerai, & Svvarai iroWair\aaia£6fieva taA^Aw

virepcxeiv.

21 Bretsch., Geom. vor Eukl., p. 164.
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For additional information on this subject, and with

relation to the further development of this doctrine by later

Greek mathematicians, who added four more means to the

six existing at this period, the reader is referred to Pappus,

Nicomachus, Iamblichus, and also to the observations of

Cantor with relation to them.25

The passage (a) concerning the section (trtpl rr)v ropqv)

was for a long time regarded as extremely obscure : it was

explained by Bretschneider as meaning the section of a

straight line in extreme and mean ratio, sec/to aurea, and

in the Introduction (p. 4, note) I adopted this explanation.

Bretschneider's interpretation has since been followed by

Cantor in his classical work on the History 0fMathematics,"

and may now be regarded as generally accepted.

A proportion contains in general four terms : the second

and third terms may, however, be equal, and then three

magnitudes only are concerned : further, if the magnitudes

are lines, the third term may be the difference between the

first and second, and thus the geometrical and arithmetical

ratios may occur in the same proportion: the greatest line

is then the sum of the two others, and is said to be cut in

extreme and mean ratio. The construction of the regu

lar pentagon depends ultimately on this section—which

Kepler says was called sectio aurea, sectio divina, and pro-

portio divina, on account of its many wonderful properties.

This problem, to cut a given straight line in extreme and

mean ratio, is solved in Euclid II. 11, and VI. 30; and

the solution depends on the application of areas, which

Eudemus tells us was an invention of the Pythagoreans.

Use is made of the problem in Euclid IV. 10-14; and the

subject is again taken up in the Thirteenth Book of the

Elements.

Bretschneider observes that the first five propositions

25 Pappi Collect., ed. Hultsch, vol. I., p. 70, sq. ; Cantor, Gesch. der Math. p.

206.

s8 Ibid., p 208.
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of this book are treated there in connection with the ana

lytical method, which is nowhere else mentioned by Euclid;

and infers, therefore, that these theorems are the property

of Eudoxus." Cantor repeats this observation of Bret-

schneider, and thinks that there is much probability in the

supposition that these five theorems are due to Eudoxus,

and have been piously preserved by Euclid.29 Heiberg, in

a notice of Cantor's Vorlesungen iiber Geschichte der Mathe-

matik, already referred to, has pointed out that these ana

lyses and syntheses proceed from a scholiast : S9 the reason

ing of Bretschneider and Cantor is, therefore, not con

clusive.

There is, however, I think, internal evidence to show

that these five propositions are older than Euclid, for—

1. The demonstrations of the first four of these theo

rems depend on the dissection of areas, and use is made

in them of the gnomon—an indication, it seems to me, of

their antiquity.

2. The first and fifth of these theorems can be obtained

at once from the solution of Euclid II. 1 1 ; and of these two

theorems the third is an immediate consequence; the solu

tion, therefore, of this problem given in Book II. must be

of later date.

These theorems, then, regard being had to the passage

of Proclus quoted above, may, as Bretschneider and Cantor

think, be due to Eudoxus : it appears to me, however, to

be more probable that the theorems have come down from

an older time ; but that the definitions of analysis and

synthesis given there, and also the aAA<uv (or aliler proofs),

!1 Bretsch., Geom. vor Eukl., p. 168.

n Cantor, Gesch. der Math., p. 208.

« Rev. Crit., &c, 16 Mai, 1881, p. 380. 'P. 189 et surtout, p. 236, M. C.

parait accepter pour authentiques les syntheses et analyses inserees dans les

elements d'Euclide (xiii. 1-5). Elles proviennent d'un scholiaste, ce qui ressort,-

d'ailleurs, de ce que, dans les manuscrits, elles se trouvent tantot juxtaposees aux

theses une a une, tantot reunies apres le chap. xiii. 5.'
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in which the analytical method is used, are the work of

Eudoxus.30

As most of the editions of the Elements do not contain

the Thirteenth Book, I give here the enunciations of the

first five propositions :—

Prop. I. If a straight line be cut in extreme and mean

ratio, the square on the greater segment, increased by half

of the whole line, is equal to five times the square of half

of the whole line.

Prop. II. If the square on a straight line is equal to

five times the square on one of its segments, and if the

double of this segment is cut in extreme and mean ratio,

the greater segment is the remaining part of the straight

line first proposed.

PROP. III. If a straight line is cut in extreme and mean

ratio, the square on the lesser segment, increased by half

the greater segment, is equal to five times the square on

half the greater segment.

Prop. IV. If a straight line is cut in extreme and

mean ratio, the squares on the whole line and on the

lesser segment, taken together, are equal to three times

the square on the greater segment.

Prop. V. If a straight line is cut in extreme and mean

ratio, and if there be added to it a line equal to the greater

segment, the whole line will be cut in extreme and mean

ratio, and the greater segment will be the line first pro

posed.

From the last of these propositions it follows that, if a

line be cut in extreme and mean ratio, the greater seg-

30 I have since learned that Dr. Heiberg takes the same view ; he thinks that

Cantor's supposition—or rather, as he should have said, Bretschneider's—that

these definitions are due to Eudoxus is probable. Zeitschrift fur Math, und

Phys., XXIX. Jahrgang, p. 20, 1883-4.
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raent will be cut in a similar manner by taking on it a

part equal to the less ; and so on continually ; and it re

sults from Prop. III. that twice the lesser segment exceeds

the greater. If now reference be made to the Tenth Book,

which treats of incommensurable magnitudes, we find that

the first proposition is as follows :—' Two unequal magni

tudes being given, if from the greater a part be taken

away which is greater than its half, and if from the re

mainder a greater part than its half, and so on, there will

remain a certain magnitude which will be less than the

lesser given magnitude'; and that the second proposition

is—' Two unequal magnitudes being proposed, if the lesser

be continually taken away from the greater, and if the

remainder never measures the preceding remainder, these

magnitudes will be incommensurable ' ; lastly, in the third

proposition we have the method of finding the greatest

common measure of two given commensurable magni

tudes. Taking these propositions together, and consider

ing them in connection with those in the Thirteenth Book,

referred to above, it seems likely that the writer to whom

the early propositions of the Tenth Book are due had in

view the section of a line in extreme and mean ratio, out

of which problem I have expressed the opinion that the

discovery of incommensurable magnitudes arose (see p. 42).

This, I think, affords an explanation of the place occu

pied by Eucl. X. 1 in the Elements, which would otherwise

be difficult to account for : we might rather expect to find

it at the head of Book XII., since it is the theorem on

which the Method of Exhaustions, as given by Euclid in

that book, is based, and by means of which the following

theorems in it are proved :—

Circles are to each other as the squares on their

diameters, XII. 2 :

A pyramid is the third part of a prism having the

same base and same height, XII. 7 ;
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A cone is the third part of a cylinder having the

same base and same height, XII. 10;

Spheres are to each other in the triplicate ratio

of their diameters, XII. 18.

Now two of the foregoing theorems are attributed to

Eudoxus by Archimedes; and the lemma, which Archi

medes tells us former geometers used in order to prove

these theorems, is substantially the same as that assumed

by Euclid in the proof of the first proposition of his Tenth

Book : it is probable, therefore, that this proposition also is

due to Eudoxus.

Eudoxus, therefore, as I have said (p. 96), must be re

garded as the inventor of the Method of Exhaustions. We

know, too, that the doctrine of proportion, as contained in

the Fifth Book of Euclid, is attributed to him. I have,

moreover, said [loc. cit.) that 'the invention of rigorous

proofs for theorems such as Euclid VI. 1, involves, in the

case of incommensurable quantities, the same difficulty

which is met with in proving rigorously the four theorems

stated by Archimedes in connection with this axiom.'31 In

all these cases the difficulty was got over, and rigorous

proofs supplied, in the same way—namely, by showing

that every supposition contrary to the existence of the

properties in question led, of necessity, to some contradic

tion, in short by the reductio ad aisurdum™ (airaywyri tie

aSvvarov). Hence it follows that Eudoxus must have been

31 ' C'etait encore par la reduction a l'absurde que les anciens etendaient aux

quantities incommensurables les rapports qu'ils avaient decouverts entre les quan-

tites commensurables ' (Carnot, Reflexions sur la Metaphysique du Calcul

Infinitesimal, p. 137, second edition : Paris, 1813).

If the bases of the triangles are commensurable, this theorem, Euclid VI. 1 ,

can be proved by means of the First Book and the Seventh Book, which latter

contains the theory of proportion for numbers and for commensurable magnitudes.

It is easy to see, then, that this theorem can be proved in a general manner—

so as to include the case where the bases are incommensurable—by the method

of reductio ad absurdum by means of the axiom used in Euclid X. 1, which has

been attributed above to Eudoxus : see p. 134.

3J Carnot, ibid., p. 135.
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familiar with this method of reasoning. Now this indirect

kind of proof is merely a case of the Analytical Method,

and is indeed the case in which the subsequent synthesis,

that is usually required as a complement, may be dispensed

with. In connection with this it may be observed that the

term used here, airayuyfi, is the same that we met with

(p. 41, n. 62) on our first introduction to the analytical me

thod ; this indeed is natural, for analysis, as Duhamel re

marked, is nothing else but a method of reduction.33

Eutocius, in his Commentary on the treatise of Archi

medes On the Sphere and Cylinder, in which he has handed

down the letter of Eratosthenes to Ptolemy III., and in

which he has also preserved the solutions of the Delian

Problem by Archytas, Menaechmus, and other eminent

mathematicians, with respect to the solution of Eudoxus,

merely says :

'We have met with the writings of many illustrious

men, in which the solution of this problem is professed;

we have declined, however, to report that of Eudoxus,

since he says in the introduction that he has found it by

means of curved lines, kuhitvXwv ypa11fiwv : in the proof, how

ever, he not only does not make any use of these curved

lines, but also, finding a discreet proportion, takes it as

a continuons one; which was an absurd thing to con

ceive—not merely for Eudoxus, but for those who had to

do with geometry in a very ordinary way.'34

As Eutocius omitted to transmit the solution of Eudoxus,

so I did not give the above with the other notices of his

geometrical work. It is quite unnecessary to defend

Eudoxus from either of the charges contained in this

passage. I will only remark, with Bretschneider, that it

33 ' L'analyse n'est donc autre chose qu'une methode de reduction' (Duhamel,

des Mtihodes dans les Sciences de Raisonnement, premiere partie, p. 41).

34 Archim., ed. Tor., p. 135 ; ed. Heiberg, vol. VI. p. 66.
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is strange that Eutocius, who had before him the letter of

Eratosthenes, did not recognise in the complete corruption

of the text the source of the defects which he blames.35

We have no further notice of these so called curved

lines : it is evident, however, that they could not have been

any of the conic sections, which were only discovered later

by Menaechmus, the pupil of Eudoxus.

There is a conjecture, however, concerning them which

is worth noticing: M. Paul Tannery thinks that the term

KafiirvXai ypafnfiai has, in the text of Eratosthenes, a par

ticular signification, and that, compared with, e. g. the

KanirvXa ro^a of Homer, it suggests the idea of a curve

symmetrical to an axis, which it cuts at right angles, and

presenting an inflexion on each side of this axis. Tannery

conjectures that these curves of Eudoxus are to be found

amongst the projections of the curves used in the solution

of his master, Archytas; and tries to find whether, amongst

these projections, any can be found to which the denomi

nation in question can be suitably applied. We have seen

above, pp. 119, 120, that Flauti has shown how the solution of

Archytas could be constructed by means of the projections,

on one of the vertical planes, of the curves employed in

that solution. I have further shown that the actual con

struction of these projections can be obtained by the aid of

geometrical theorems and problems known at the time of

Archytas ; though we have no evidence that he completed

his solution in this way. Tannery has considered these

curves, and shown that the term (cajuffuAai ypafifiai, in the

sense which he attaches to it, does not apply to either of

them, nor to the projections on the other vertical plane ;

but that, on the contrary, the term is quite applicable to

the projection of the intesrection of the cone and tore on

the circular base of the cylinder.36

3-3 Bretsch., Geom. vor Euil., p. 166.

36 Tannery, sur les Solutions du Problhne de Dtlos par Archytas et far

Eiidoxe,
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The astronomical work of Eudoxus is beyond the scope

of this treatise, and is only referred to in connection with

the hippopede [h). I may briefly state, however, that he

was a practical observer, and that he ' may be considered

as the father of scientific astronomical observation in

Greece'; further, that 'he was the first Greek astronomer

who devised a systematic theory for explaining the periodic

motions of the planets' ;37 that he did so by means of geo

metrical hypotheses, which latter were submitted to the test

of observations, and corrected thereby ; and that hence

arose the system of concentric spheres which made the

name of Eudoxus so illustrious amongst the ancients.

Although this theory was substantially geometrical,

and is in the highest degree worthy of the attention of the

students of the history of geometry, yet to render an

account of it which would be in the least degree satisfac

tory would altogether exceed the limits prescribed to me ;

I must, therefore, refer my readers to the excellent and

memorable monograph of Schiaparelli, 38 who with great

ability and with rare felicity has restored the work of

Eudoxus. In this memoir the nature of the spherical curve,

called by Eudoxus the htppopede, was first placed in a clear

light: it is the intersection of a sphere and cylinder; and

on account of its form, which resembles the figure

 

it is called by Schiaparelli a spherical lemniscate.3" A

passage in Xenophon, de re equestri, cap. 7, explains why

31 Sir George Cornewall Lewis, a Historical Survey of the Astronomy of

the Ancients, p. 147, sg. : London, 1862.

38 G. V. Schiaparelli, le Sfere Omocentriche di Eudosso, di Callippo e di

Aristotele (Ulrico Hoepli : Milano, 1875).

39 See Schiaparelli, loc. cit., section v.
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the name hippopede was given to this curve, and also to

one of the spirics (ij 'nriroiriSti, fita tC,v enrupiKuiv ovaa) 40 of

Perseus, which also has the form of a lemniscate. 41

I have examined the work of Eudoxus, and pointed out

the important theorems discovered by him ; I have also

dwelt on the importance of the methods of inquiry and

proof which he introduced. In order to appreciate this

part of his work, it seems desirable to take a brief retro

spective glance at the progress of geometry as set forth in

the former chapters of this work, and the state in which it

was at the time of Eudoxus, and also to refer to the philo

sophical movement during the last generation of the fifth

century, B. C. :—

In the first chapter (p. 14) I attributed to Thales the

theorem that the sides of equiangular triangles are pro

portional ; a theorem which contains the beginnings of the

doctrine of proportion and of the similarity of figures. It

is agreed on all hands that these two theories were treated

at length by Pythagoras and his School. It is almost

certain, however, that the theorems arrived at were proved

for commensurable magnitudes only, and were assumed to

hold good for all. We have seen, moreover, that the dis

covery of incommensurable magnitudes is attributed to

Pythagoras himself by Eudemus : this discovery, and the

construction of the regular pentagon, which involves in

commensurability, depending as it does on the section of

a line in extreme and mean ratio, were always regarded

as glories of the School, and kept secret ; and it is remark

able that the same evil fate is said to have overtaken the

person who divulged each of these secrets—secrets, too,

regarded by the brotherhood as so peculiar that the pen-

40 Proclus, ed. Friedlein, p. 127. With respect to the spiric lines, see

Knoche and Maerker, ex Prodi successors in Euclidis Elementa commentariis

definitionis quartae expositionem quae de recta est linea et sectionibus spinct's

commentati sunt y. H. Knochius et F. J. Maerkerus, Herfordiae, 1856.

41 See infra, p. 156, note 9.
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tagram, which might be taken to represent both these

discoveries, was used by them as a sign of recognition.

It seems to be a fair inference from what precedes, that

the Pythagoreans themselves were aware that their proofs

were not rigorous, and were open to serious objection ; "

indeed, after the invention of dialectics by Zeno, and the

great effect produced throughout Hellas by his novel and

remarkable negative argumentation, any other supposition

is not tenable. Further, it is probable that the early

Pythagoreans, who were naturally intent on enlarging the

boundaries of geometry, took for granted as self-evident

many theorems, especially the converses of those already

established. The first publication of the Pythagorean

doctrines was made by Philolaus ; and Democritus, who

was intimate with him, and probably his pupil, wrote on

incommensurables.

Meanwhile the dialectic method and the negative mode

of reasoning had become more general, or to use the words

of Grote :—

' We thus see that along with the methodised question

and answer, or dialectic method, employed from hencefor

ward more and more in philosophical inquiries, comes out

at the same time the negative tendency—the probing, test

ing, and scrutinising force—of Grecian speculation. The

negative side of Grecian speculation stands quite as pro

minently marked, and occupies as large a measure of the

intellectual force of their philosophers, as the positive side.

It is not simply to arrive at a conclusion, sustained by

a certain measure of plausible premise—and then to pro

claim it as an authoritative dogma, silencing or disparag-

43 A similar view of the subject is taken by P. Tannery, de la solution giomi-

trique des problimes du second degri avant Eurtide. Memoires de la Soci£te"

des Sciences physiques et naturelles de Bourdeaux, torn. IV. (2e serie), p. 406.

He says :—' La decouverte de l'incommensurabilitfi de certaines longueurs entre

elles, et avant tout de la diagonale du carre a son cot£, qu'elle soit due au Maitre ou

aux disciples, dut, des lors, etre un veritable scandale logique, une redoutable

pierre d'achoppement.'
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ing all objectors—that Grecian speculation aspires. To

unmask not only positive falsehood, but even affirmation

without evidence, exaggerated confidence in what was

only doubtful, and show of knowledge without the reality—

to look at a problem on all sides, and set forth all the diffi

culties attending its solution—to take account of deductions

from the affirmative evidence, even in the case ofconclusions

accepted as true upon the balance—all this will be found

pervading the march of their greatest thinkers. As a con

dition of all progressive philosophy, it is not less essential

that the grounds of negation should be freely exposed than

the grounds of affirmation. We shall find the two going

hand in hand, and the negative vein, indeed, the more

impressive and characteristic of the two, from Zeno down

ward, in our history.'"

As an immediate consequence of this, it would follow

that the truth of many theorems, which had been taken for

granted as self evident, must have been questioned ; and

that, in particular, doubt must have been thrown on the

whole theory of the similarity of figures and on all geome

trical truths resting on the doctrine of proportion : indeed

it might even have been asked what was the meaning of

ratio as applied to incommensurables, inasmuch as their

mere existence renders the arithmetical theory of propor

tion inexact in its very definition."

Now it is remarkable that the doctrine of proportion is

twice treated in the Elements—first, in a general manner,

so as to include incommensurables, in Book V., which tradi

tion ascribes to Eudoxus, and then arithmetically in Book

VII., which probably, as Hankel has supposed, contains the

treatment of the subject by the older Pythagoreans." The

twenty-first definition of Book VII. is—'Aptdfiul av\aXo-

yov tiffiv, orav 6 irpOtrOQ roil Sevrtpou /cat 6 rplrog tov

43 Grote, History of Greece, vol. VI. p. 48.

44 See the Articles on Proportion and Raiio in the English Cyclopaedia.

45 Hankel, Gesch. der Math., p. 390.

.L
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rtraprov (itokic y iroXXairXatnog, rj to aiirb (Uejoof, ij r<i ai»rd

Further, if we compare this definition with the third,

fourth, and fifth definitions of Book V., I think we can see

evidence of a gradual change in the idea of ratio, and of a

development of the doctrine of proportion —

1. The third definition, which is generally considered

not to belong to Euclid," seems to be an attempt to bridge

over the difficulty which is inherent in incommensurables,

and may be a survival of the manner in which the subject

was treated by Democritus.

2. The fourth definition11 is generally regarded as having

for its object the exclusion of the ratios of finite magni

tudes to magnitudes which are infinitely great on the one

side, and infinitely small on the other: it seems to me,

however, that its object may have been, rather, to include

the ratios of incommensurable magnitudes: moreover, since

the doctrine of proportion by means of the apagogic me

thod of proof can be founded on the axiom which is con

nected with this definition, and which is the basis of the

method of exhaustions, it is possible that the subject may

have been first presented in this manner by Eudoxus.

3. Lastly, in the fifth definition his final and systematic

manner of treating the subject is given.48

Those who are acquainted with the history of Greek

philosophy know that a state of things somewhat similar to

46 Aoyos Iarl Svo fieyedwv bfioyev&v ij Kara iiijAiKiJt7;to irpos &\\Tj\a iroia

irX«Vis. See Camerer, Euclidis Elementorum libri sex priores, torn. II. p. 74,

sq., Berolini, 1824.

47 A iJ 7 oc exeiv ""pos ^AAi;Ao fieyedrj \4ycrai7 & di/varai iru\\air\aaia^6fieva

48 In connection with what precedes, we are reminded of the aphorism of

Aristotle—' We cannot prove anything by starting from a different genus, e.g.

nothing geometrical by means of arithmetic Where the subjects are so

different as they are in arithmetic and geometry we cannot apply the arithmetical

sort of proof to that which belongs to quantities in general, unless these quantities

are numbers, which can only happen in certain cases.' Anal. post. 1. vii. p. 75*,

ed. Bek.
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that represented above existed with respect to it also, and

that a problem of a similar character, also requiring a new

method, proposed itself for solution towards the close of

the fifth century B.C. ; and, further, that this problem was

solved by Socrates by means of a new philosophic me

thod—the analysis of general conceptions. This must

have been known to Eudoxus, for we are informed that he

was attracted to Athens by the fame of the Socratic School-

Now a service, similar to that rendered by Socrates to phi

losophy, but of higher importance, was rendered by Eu

doxus to geometry, who not only completed it by the

foundation of stereometry, but, by the introduction of new

methods of investigation and proof, placed it on the firm

basis which it has maintained ever since.

This eminent thinker—one of the most illustrious men

of his age, an age so fruitful in great men, the precur

sor, too, of Archimedes and of Hipparchus—after having

been highly estimated in antiquity," was for centuries un

duly depreciated;80 and it is only within recent years that,

owing to the labours of some conscientious and learned

men, justice has been done to his memory, and his reputa

tion restored to its original lustre.51

49 E.g. Cicero, de Div. II. 42, 'Ad Chaldaeorum monstra veniamus: de

quibus Eudoxus, Platonis auditor, in astrologia judicio doctissimorum hominum

facile princeps, sic opinatur, id quod scriptum reliquit : Chaldaeis in praedic-

tione et in notatione cujusque vitae ex natali die, minime esse credendum' :

Plutarch, non posse suav. vivi sec. Epic. c. xi. Eu5<iJ<p Si nal "A^i/i^Sei Kal

50 As evidence of this depreciation I may notice—Delambre, Histoire de

V'Astronomie ancienne, 'L'Astronomien'a St€ cultivee veritablement qu'en Grece,

et presque uniquement par deux hommes, Hipparque et Ptolemee ' (torn. I

P' 32S) : 'Rien ne prouve qu'il [Eudoxe] fut geometre' (torn. I. p. 131). Well

may Schiaparelli say—' Questa enorme proposizione.' Equally monstrous is the

following :—' It is only in the first capacity [astronomer and not geometer] that

his fame has descended to our day, and he has more of it than can be justified

by any account of his astronomical science now in existence.' De Morgan, in

Smith's Dictionary.

61 Ideler, ueber Eudoxus, Abh. der Berl. Akad. v. J. 1828 and 1830:

Letronne, sur les ecrits et les travaux oVEudoxe de Cnide, d'apres M. Ludwig

L 2
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Something, however, remained to be cleared up, espe

cially with regard to his relations, and supposed obligations,

to Plato." I am convinced that the obligations were quite

in the opposite direction, and that Plato received from

Eudoxus incomparably more than he gave. As to his

solving problems proposed by Plato, the probablity is

that these questions were derived from the same source—

Archytas and the Pythagoreans. Yet I attach the highest

importance to the visit of Eudoxus to A thens ; for although

he heard Plato for two months only, that time was suf

ficient to enable Eudoxus to become acquainted with the

Socratic method, to see that it was indispensable to clear

up some of the fundamental conceptions of geometry, and,

above all, to free astronomy from metaphysical mystifica

tions, and to render the treatment of that science as real and

positive as that of geometry. To accomplish this, how

ever, it was incumbent on him to know the celestial

phenomena, and for this purpose—inasmuch as one human

life was too short—he saw the necessity of going to Egypt,

to learn from the priests the facts which an observation con

tinued during many centuries had brought to light, and

which were there preserved.

I would call particular attention to the place which

Eudoxus filled in the history of science—with him, in fact,

an epoch closed, and a new era, still in existence, opened."

Ideler, Journal des Savants, 1840 : Boeckh, Sonnenkreise der Alten, 1863 ;

Schiaparelli, le Sfere Omocentriche, Sec, 1875.

M Even those by whom the fame of Eudoxus has been revived seem to

acquiesce in this.

53 This has been pointed out by Auguste Comte :—' Celle-ci [la seconde

evolution scientifique de la Grdce] commenca pourtant, avec tous ses caracteres

propres, pendant la generation anterieure a cette ere [la fondation du Musee

d' Alexandrie], chez un savant trop meconnu, qui fournit une transition normale

entre ces deux grandes phases theoriques, composees chacune d'environ trois

siecles. Quoique nullement philosophe, Eudoxe de Cnide fut le dernier theoricien

embrassant, avec un egal succes, toutes les speculations accessibles a l'esprit

mathematique. II servit pareillement la geometrie et l'astronomie, tandis que,

bientot apres lui, la specialisation devint deja telle que ces deux sciences ne

purent plus etre notablement perfectionnees par les memes organes.' Politique

Positive, III., p. 316, Paris, 1853.
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He was geometer, astronomer, physician, lawgiver, and

was also counted amongst the Pythagoreans, and versed

in the philosophy of his time. He was, however, much

more the man of science, and, of all the ancients, no one

was more imbued with the true scientific and positive

spirit than was Eudoxus : in evidence of this, I would point

to—

i°. His work in all branches of the geometry of the

day—founding new, placing old on a rational basis, and

throwing light on all—as presented above.

20. The fact that he was the first who made observation

the foundation of the study of the heavens, and thus be

came the father of true astronomical science.

30. His geometrical hypothesis of concentric spheres,

which was conceived in the true scientific spirit, and which

satisfied all the conditions of a scientific research, even

according to the strict notions attached to that expression

at the present day.

40. His ' practical and positive genius, which was averse

to all idle speculations.'54

50. The purely scientific school founded by him at

Cyzicus, and the able mathematicians who issued from

that school, and who held the highest rank as geometers

and astronomers in the fourth century B. C.

We see, then, in Eudoxus something quite new—

the first appearance in the history of the world of the

man of science ; and, as in all like cases, this change was

64 Ideler, and after him Schiaparelli : this appears from the fact testified by

Cicero [vid. supra, n. 49), that Eudoxus had no faith in the Chaldean astrology

which was then coming into fashion among the Greeks ; and also from this—that

he did not, like many of his predecessors and contemporaries, give expression to

opinions upon things which were inaccessible to the observations and experience

of the time. An instance of this is found in Plutarch (non posse suav. viv. sec.

Epic, cxi., vol. iv., p. 1 138, ed. Didot), who relates that he, instead of speculating,

as others did, on the nature of the sun, contented himself with saying that ' he

would willingly undergo the fate of Phaeton if, by so doing, he could ascertain

its nature, magnitude, and form.'
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effected by a man who was thoroughly versed in the old

system .**

It is not without significance, too, that Eudoxus se

lected the retired and pleasant shores of the Propontis as

the situation of the school which he founded for the trans

mission of his method. Among the first who arose in this

school was Menaechmus, whose work I have next to con

sider.

It is pleasing to see that the number of students of the history of mathematics

is ever increasing ; and that the centres in which the subject is cultivated are

becoming more numerous ; it is particularly gratifying to observe that the subject

has at last attracted attention in England. Dr. Heiberg, of Copenhagen, has

completed his edition of Archimedes : Archimedis Opera omnia cum commentariis

Eutocii : e codice Florentino recensuit, Latine vertit notisque illustravit J. L.

Heiberg, Dr. Phil., vols. II. et in. : Lipsiae, 1881. Dr. Heiberg has been since

engaged in bringing out, in conjunction with Professor H. Menge, a complete

edition of the works of Euclid, of which two volumes have been published :

Euclidis Elementa, edidit et Latine interpretatus est J. L. Heiberg, Dr. Phil.,

vol. I., Libros i-iv. continens, vol. 11., Libros V.-ix continens, Lipsiae, 1883,

1884. As Heiberg's edition of Archimedes was preceded by his Quaestiones

Archimedeae, Hauniae, 1879; so, in anticipation of his edition of Euclid he has

published : Litterargeschichtliche Studien uber Euklid, Leipzig, 1882, a valuable

work, to which I have referred in the fourth chapter. Dr Hultsch, of Dresden,

informs me that his edition of Autolycus is finished, and that he hopes it will

appear at the end of this month (June, 1885). The publication of this work—

in itself so important, inasmuch as the Greek text of the propositions only of

Autolycus has been hitherto published—will have, moreover, an especial interest

with regard to the subject of the pre-Euclidian geometry. The Cambridge Press

announce a work by Mr. T. L. Heath (author of the Articles on ' Pappus ' and

' Porisms ' in the Encyclopaedia Britannica) on Diophantus ; a subject on which

M. Paul Tannery also has been occupied for some time.

65 Eudoxus may even be regarded as in a peculiar manner uniting in himself

and representing the previous philosophic and scientific movement ; for—though

not an Ionian—he was a native of one of the neighbouring Dorian cities ; he

studied under the Pythagoreans in Italy; and, subsequently, he went to Athens,

being attracted by the reputation of the Socratic school.
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The following works on the history of Mathematics have been recently pub

lished :—

Marie, Maximilien, Histoire des Sciences Mathtmatiques et Physiques, tomes

r.-V., Paris, 1883, 1884. The first volume alone—de Tkalis h DiophanU—

treats of the subject of these Papers. It is, in my judgment, inferior to the

Histoire des Mathematiques of M. Hoefer, notwithstanding the errors of the

latter, to which I called attention in p. 2, note. For the historical part of this

volume M. Marie has followed Montucla without making use, or even seeming to

suspect the existence, of the copious and valuable materials which have of late

years accumulated on this subject. Referring to this, Heiberg (Philologus xliii.

jfahresberichte, p. 324) says : ' The author has been engaged with his book for

forty years : one would have thought rather that the book was written forty years

ago.' M. Marie commences his Preface by saying : ' The history that I have

desired to write is that of the filiation of ideas and of scientific methods ; ' as if

that was not the aim of all recent enlightened inquiries. Hear what Hankel, in

Bullettino Boncompagni, v. p . 300, says : la Storia della matematica non deve

semplicemente enumerare gli scienzati e i loro lavori, ma essa deve altresi esporre

lo sviluppo interne* delle idee che vegnano nella sciensa (Quoted by Heiberg in

Philologus, 1. c.).

Gow, James, A Short History of Greek Mathematics, Cambridge, 1884_

This history, as far at least as geometry is concerned, is not, nor indeed does it

pretend to be, a work of independent research. Unlike M. Marie, however,

Mr. Gow has to some extent studied the recent works on the subject, and the

reader will see that he has made much use of the early chapters of this work

(published in Hermathena, No. v., 1877, and No. VII., 1881). On the other

hand, he has left unnoticed many important publications. In particular, the

numerous and valuable essays of M. Paul Tannery, which leave scarcely any

department of ancient mathematics untouched, and which throw light on all,

seem to be altogether unknown to him. Essays and monographs like those of

M. Tannery and others are in fact, with the single exception of Cantor's Vor-

lesungen iiber Geschichte der Mathematik, the only works in which progress in

the history of ancient mathematics has of late years been made : Bretschneider's

Geometrie vor Euklides and Hankel's Geschichte der Mathematik are no excep

tions ; for the former work is a monograph, and the latter, which was interrupted

by the death of the author, contains only some fragments of a history of mathe

matics, and consists in reality of a collection of essays. Should the reader look

at Heiberg's Paper in the Philologus, XLIII., 1884, pp. 321-346, and pp. 467-

522, which has been referred to above, he will see how numerous and how im

portant are the publications on Greek mathematics which have appeared since

the opening of a new period of mathematico-historical research with the works of

Chasles and Nesselmann more than forty years ago.

A glance at the subjoined list of the Papers of a single writer—M. Paul



152 Greek Geometryfrom Thaïes to Euclid.

Tannery—relating to the period from Thales to Euclid, will enable the reader to

form an opinion on the extent of the literature treated of by Dr. Heiberg.

Mimoires de la Sociiti des Sciences physiques et naturelles de Bordeaux

(2e Série).—Tome I, 1876, Note sur le système astronomique d'Eudoxe. Tome

II., 1878, Hippocrate de Chio et la quadrature des lunules ; Sur les solutions du

problème de Délos par Archytas et par Eudoxe. Tome IV., 1882, De la solution

géométrique des Problèmes du second degré avant Eudoxe. Tome v., 1883,

Seconde note sur le système astronomique d'Eudoxe ; Le fragment d'Eudème

sur la quadrature des lunules.

Bulletin des Sciences Mathimatiques et Astronomiques.—Tome VII., 1883,

Notes pour l'histoire des lignes et surfaces courbes dans l'antiquité. Tome ix.,

1885, Sur l'Arithmétique Pythagorienne. Le vrai problème de l'histoire des

Mathématiques anciennes.

Annales de la faculté des lettres de Bordeaux.—Tome IV., 1882, Sur les frag

ments d'Eudème de Rhodes relatifs à l'histoire des mathématiques. Tome v.,

1883, Un fragment de Speusippe.

Revue philosophique de France et de l'itranger, dirigie par M. Rïbot.—Mars,

1880, Thalès et ses emprunts £ Egypte.

Novembre, 1880, Mars, Août et Décembre, 1881, L'éducation Platonicienne.
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CHAPTER VI.

THE SUCCESSORS OF EUDOXUS.

I. Menaechmus.

Notices of Menaechmus and of his work.—His Solution of the Problem of the

Duplication of the Cube.—He discovered the three Conic Sections.—

Passage from the ' Review of Mathematics' of Geminus quoted.—Hypothesis

of Bretschneider as to the way in which Menaechmus was led to the discovery

of the Conic Sections.—Comparison of these Investigations with the Solution

of Archytas.—Various inferences from the notices of the work of Menaechmus

considered.—Successors of Eudoxus in the School of Cyzicus.—Solution of

the Problem of the Duplication of the Cube attributed to Plato.—Strong

presumption against its being genuine.—Plato's Solution.—The Geometrical

Theorems used in it were known to Archytas.—Recapitulation.

Menaechmus—pupil of Eudoxus, associate of Plato, and

the discoverer of the conic sections—is rightly considered

by Th. H. Martin1 to be the same as the Manaechmus of

Suidas and Eudocia, ' a Platonic philosopher of Alope-

connesus ; but, according to some, of Proconnesus, who

wrote philosophic works and three books on Plato's

1 Theonis Smymaei Platonici Liber de Astronomia, Paris, 1849, P- 59- A.

Boeckh {ueber die vierjahrigen Sonnenkreise der Alten, Berlin, 1863, p. 152),

Schiaparelli (le Sfere Omocentriche di Eudosso, di Callippo e di Aristotele,

Milano, 1875, p. 7), and Zeller, (Plato and the Older Academy, p. 554, note (2?),

E. T.), hold the same opinion as Martin : Bretschneider (Geom. vor Eukl., p. 162),

however, though thinking it probable that they were the same, says that the

question of their identity cannot be determined with certainty. Both Martin

and Bretschneider identify Menaechmus Alopeconnesius with the one referred

to by Theon in the fragment (k) given below. Max C. P. Schmidt (Die Frag-

mente des Mathematikers Menaechmus, Philologus, Band XLII., p. 77, 1884), on

the other hand, holds that they were distinct persons, but says that it is certainly

more probable that the Menaechmus referred to by Theon was the discoverer of

the conic sections, than that he was the Alopeconnesian, inasmuch as Theon con

nects him with Callippus, and calls them both tiadrifia.riKol. Schmidt, however,

does not give any reason in support of his opinion that the Alopeconnesian was a

distinct person. But when we consider that Alopeconnesus was in the Thracian

Chersonese, and not far from Cyzicus, and that Proconnesus, an island in the
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Republic' From the following anecdote, taken from the

writings of the grammarian Serenus and handed down by

Stobaeus, he appears to have been the mathematical

teacher of Alexander the Great :—Alexander requested

the geometer Menaechmus to teach him geometry con

cisely ; but he replied : ' O king, through the country

there are private and royal roads, but in geometry there is

only one road for all."2 We have seen that a similar story

is told of Euclid and Ptolemy I. (p. 5).

What we know further of Menaechmus is contained in

the following eleven fragments —

(a). Eudemus informs us in the passage quoted from

Proclus in the Introduction (p. 4), that Amyclas of Hera-

clea, one of Plato's companions, and Menaechmus, a

pupil of Eudoxus and also an associate of Plato, and his

brother, Deinostratus, made the whole of geometry more

perfect.4

(b.) Proclus mentions Menaechmus as having pointed

out the two different senses in which the word element

(aroixttov) is used.5

(c.) In another passage Proclus, having shown that

many so called conversions are false and are not properly

Propontis, was still nearer to Cyzicus, and that, further, the Menaechmus referred

to in the extract (k) modified the system of concentric spheres of Eudoxus, the

supposition of Th. M. Martin (I. c.) that this extract occurred in the work of the

Alopeconnesian on Plato's Republic in connection with the distaff of the Fates in

the tenth book becomes probable.

8 Stobaeus, Floril., ed. A. Meineke, vol. iv., p. 205. Bretschneider (Geom.

vorEukl., p. 162) doubts the authenticity of this anecdote, and thinks that itmay

be only an imitation of the similar one concerning Euclid and Ptolemy. He does

so on the ground that it is nowhere reported that Alexander had, besides Aristotle,

Menaechmus as a special teacher in geometry. This is an insufficient reason for

rejecting the anecdote, and, indeed, it seems to me that the probability lies in the

other direction, for we shall see that Aristotle had direct relations with the school

of Cyzicus.

3 The fragments of Menaechmus have been collected and given in Greek by

Max C. P. Schmidt (I.c.).

4 Proclus, ed. Fiiedlein, p. 67.

1 Ibid., p. 72.
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conversions, adds that this fact had not escaped the notice

of Menaechmus and Amphinomus and the mathematicians

who were their pupils.6

(d.) In a third passage of Proclus, where he discusses

the division of mathematical propositions into problems

and theorems, he says, that whilst in the view of Speu-

sippus and Amphinomus and their followers all proposi

tions were theorems, it was maintained on the contrary by

Menaechmus and the mathematicians of his School (ol irt/A

Mtvaixnov fiadrifLiartKo!) that they should all be called prob

lems—the difference being only in the nature of the question

. stated, the object being at one time to find the thing sought,

at another time, taking a definite thing, to see either what

it is, or of what kind it is, or what affection it has, or

what relation it has to something else.1

(e). In a fourth passage Proclus mentions him as the

discoverer of the conic sections. The passage is in many

respects so interesting that it deserves to be quoted in full :

'Again, Geminus divides a line into the compound and

the uncompounded—calling a compound that which is

broken and forms an angle ; then he divides a compound

line into that which makes a figure, and that which maybe

produced ad infinitum, saying that some form a figure, e. g.

the circle, the ellipse [dvptog),6 the cissoid, whilst others do

not form a figure, e. g. the section of the right-angled cone

' Proclus, ed. Friedlein, pp. 253-4.

» Ibid., pp. 77, 78.

8 ' i dvpe6s (the door-shape, oblong: cf. Heron Alexandr., ed. Hultsch, Deji-

nit. Q5, p. 27 : iroiovaa <rxw<x dvpoei$4s). It is called by Eutocius, Comm. to

Apollon., p. 10 : fAAci^ic, "o1 (Ivpebv Ka\ovai, and is used several times in

Proclus.' So Heiberg; who adds that in one passage it occurs in an extract

from Eudemus, and says that we may perhaps assume that we have here the

original name for the ellipse (Nogle Puncter af de graeske Mathematikeres

Terminologi, Philologisk-historiske Sam funds Mindeskrift, Kjobenhavn, 1879,

p. 7). With relation to the same term, Heiberg, in his Studien iiber Euklid,

p. 88, quotes a passage of the ♦aW^uca of Euclid, which had hitherto been over

looked : iav yap Kwvos fi Kv\iv$pos imirsb<p rfi7idrj ^ irapa t^p f$aaiv, ri to^u^ ylyverai

6£vywvlov Kwvov rofi-fi, tyris iatlv 6fio(a Qvpey, ed. D. Gregory, p. 561; and says
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[the parabola], the section of the obtuse-angled cone [the

hyperbola], the conchoid, the straight line, and all such.

And again, after another manner, of the uncompounded line

one kind is simple and the other mixed ; and of the simple,

one forms a figure, as the circular; but the other is indefinite,

as the straight line ; but of the mixed, one sort is in planes,

the other in solids ; and of that in planes, one kind meets

itself as the cissoid, another may be produced to infinity ;

but of that in solids, one maybe considered in the sections

of solids, and the other may be considered as [traced]

around solids. For the helix, which is decribed about a

sphere or cone, exists around solids, but the conic sections

and the spirical are generated from such a section of solids.

Further, as to these sections, the conics were conceived by

Menaechmus, with reference to which Eratosthenes says—

" Nor cut from a cone the Menaechmian triads " ;

and the latter [the spirics] were conceived by Perseus, who

made an epigram on their invention :

" Perseus found the three [spirical] lines in five sections,

and in honour of the discovery sacrificed to the gods."

Now, on the one hand, the three sections of the cone are

the parabola, the hyperbola, and the ellipse ; and, on the

other, of the spirical sections one kind is inwoven, like the

hippopede;* and another kind is dilated in the middle, and

that Ovpeit was probably the name by which the curve was known to Menaechmus.

It may be observed, however, that an ellipse is not ofthe shape of a door, neither

is a shield, which is a secondary signification of Svpe6s ; the primary signification

of the word is not ' door,' but ' large stone ' which might close the entrance to a

cave, as in Homer {Odyssey, ix.) : such a stone, or boulder, as may be met with

on exposed beaches is often of a flattened oval form, and the names of a shield of

such a shape, and of an ellipse, may have been thence derived.

9 twv Si aireipiKwv tofiwv ij fi4v Iariv ifxireir\eyfi4vy, iou<via tj? tov Xifuov irtSy.

The hippopede is also referred to in the two following passages of Proclus fj

linroireSy, fila rav aireifiK&v oZaa (ed. Fried., p. 127), and Kalroiye y KiaaoeiS^s

)lla olaa iroiei yavlav Kal fi IiriroxiSri (ibid., p. 128). In p. 142 I said that a passage

in Xenophon, de re equestri, cap. 7, explains why the name hippopede was given

to the curve conceived by Eudoxus for the explanation of the motions of the
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becomes narrow at each extremity; and another being-

oblong, has less distance in the middle, but is dilated on

each side.'10

[/). The line from Eratosthenes, which occurs ;n the

preceding passage, is taken from the epigram which closes

his famous letter to Ptolemy III., and which has been

already more than once referred to. We now cite it with

its context :—

firjSi itv y 'Ap\vr«i, Svcrfi^ava ipya KvKLvhpiov

fii.rjSi Meve^/wious Ktovorofieiv t/huSu?

8#j«u, . . .»

(g). In the letter itself the following passage, which has

been already quoted (p. m), is found :

' The Delians sent a deputation to the geometers who

were staying with Plato at Academia, and requested them

to solve the problem [of the duplication of the cube] for

them. While they were devoting themselves without stint

of labour to the work, and trying to find two mean propor-

planets, and in particular their retrograde and stationary appearances, and also to

one of the spirics of Perseus, each of which curves has the form of the lemniscate.

The passage in Xenophon is as follows :—'lriraaiav 5' iraivovfiev r^v iriSriv

Ka\ovfievijV eir' afupurepas yap ras yvddovs arp4<peadai e"di£ei. Kal rb fierafid\\eadtu

5e r)]V iiriraffiav ayadbv, Xva afi<p6repai ai yvdOoi Kad' iKdrepov rris iiriraaias iad£uvrai.

'Eiraivovnev Be Kal rijv erepofiilKri ir^Sriv fiaWov rrjs KvK\urepovS. Ibid., cap. 3 '

Tois ye p.^v krepoyvadovs fnivvei fiiv Kal ri ire'Sri Ka\ovnevri imraffia, . . . This

curve was named ire'Sij from its resemblance to the form of the loop of the wire

in a snare, which was in fact that of a figure of 8. Some writers have given a

different, and, to me it seems, not a correct, interpretation of the origin of this

term. Mr. Gow, for example, (A Short History of Greek Mathematics, p. 184)

says : ' Lastly, Eudoxus is reported to have invented a curve which he called

imroirlSij, or ' ' horse fetter," and which resembled those hobbles which Xenophon

describes as used in the riding school.' In the next page Mr. Gow says : 'Eudoxus

somehow used this curve in his description of planetary motions, . . .' This is

not correct : the two curves were of a similar form—that of the lemniscate—and,

therefore, the same name was given to each ; but they differed widely geometrically,

and were quite distinct from each other. See KLnoche and Maerker, op. cit.

p. 14, so. ; and Schiaparelli, le Sfere Omocentriche, &c., p. 32, sq.

10 Proclus, ed. Friedlein, pp. Ill, 112.

11 Archimedes, ex. rec. Torelli, p. 146; Archim., Opera, ed. Heiberg., vol.

III., p. 112.
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tionals between the two given lines, Archytas ofTarentum

is said to have discovered them by means of his semi-

cylinders, and Eudoxus by means of the so called curved

lines. It was the lot of all these men to be able to solve

the problem with satisfactory demonstration, while it was

impossible to apply their methods practically so that they

should come into use ; except, to some small extent and

with difficulty, that of Menaechmus.' "

(h) . The solution of the Delian Problem by Menaech

mus is also noticed by Proclus in his Commentary on the

Timaeus of Plato :—'How then, two straight lines being

given, it is possible to determine two mean proportionals,

as a conclusion to this discussion, I, having found the solu

tion of Archytas, will transcribe it, choosing it rather than

that of Menaechmus, because he makes use of the conic

lines, and also rather than that of Eratosthenes, because he

employs the application of a scale.' 13

(i) . The solutions of Menaechmus—of which there are

two—have been handed down by Eutocius in his Com

mentary on the Second Book of the Treatise of Archimedes

On the Sphere and Cylinder, and will be given at length

below.14

(/). We learn from Plutarch that ' Plato blamed Eu

doxus, Archytas, and Menaechmus, and their School, for

endeavouring to reduce the duplication of the cube to

instrumental and mechanical contrivances ; for in this way

[he said] the whole good of geometry is destroyed and

perverted, since it backslides into the things of sense, and

does not soar and try to grasp eternal and incorporeal

12 Archim., ex. rec. Torelli, p. 144; ibid., ed. Heiberg, vol. in., pp. 104, 106.

13 Proclus in Platonis Tinueum, p. 149 in libro III. (ed. Joann. Valder, Basel,

1534). I have taken this quotation and reference from Max. C. P. Schmidt,

diefragmente des Mathematikers Menaechmus, Philologus, XIII., p. 75. Heiberg,

(Archim. Opera, vol. III., Praefatio v.) also gives this passage, but his reference

is to p. 353, ed. Schneider.

14 Archim., ed. Torelli, p. 141, sq. ; Archim. Opera, ed. Heiberg, vol. 111.,

p. 91, sq.
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images; through the contemplation of which God is ever

God.'15

The same thing is repeated by Plutarch in his Life of

Marcellus as far as Eudoxus and Archytas are concerned ;

but in this passage Menaechmus, though not mentioned

by name, is, it seems to me, referred to. The passage

is:—'The first who gave an impulse to the study of

mechanics, a branch of knowledge so prepossessing and

celebrated, were Eudoxus and Archytas, who embellish

geometry by means of an element of easy elegance, and

underprop, by actual experiments and the use of instru

ments, some problems, which are not well supplied with

proof by means of abstract reasonings and diagrams;

that problem (for example) of two mean proportional

lines, which is also an indispensable element in many

drawings :—and this they each brought within the range

of mechanical contrivances, by applying certain instru

ments for finding mean proportionals (fitaoypaQovs) taken

from curved lines and sections (nafjnrvXwv yyafifiCov Kal

rfiiifiarwv). But, when Plato inveighed against them with

great indignation and persistence as destroying and per

verting all the good there is in geometry, which thus

absconds from incorporeal and intellectual to sensible

things, and besides employs again such bodies as require

much vulgar handicraft : in this way mechanics was

dissimilated and expelled from geometry, and being for

a long time looked down upon by philosophy, became one

of the arts of war.'16

16 Plut., Quaest. Conviv., lib. VIII., Q. ii. I ; Opera, ed. Didot, vol. IV.,

p. 876.

16 Ibid., Vila Marcetti, c. 14, sec. 5 ; Plut., Opera, ed. Didot, vol. I., pp. 364, 5.

The words Kaprrii\uv ypafifx-uv in this passage refer to the curves of Eudoxus (see

pp. 132 and 140) ; rfuifidruv refers to the solution of Archytas, and also, in my

judgment, to the conic sections. Instead of rfimi&ruv we should, no doubt,

expect to meet rofi&v; but Plutarch was not a mathematician, and the word,

moreover, occurs in a biographical work : to this may be added, that in one of

the Definitions of Heron [Def. 91, p. 26, ed. Hultsch) we find rnrifia used for

section.
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[k). Theon of Smyrna relates that ' he [Plato] blames

those philosophers who, identifying the stars, as if they

were inanimate, with spheres and their circles, intro

duce a multiplicity of spheres, as Aristotle thinks fit to do,

and amongst the mathematicians, Menaechmus and Cal-

lippus, who introduced the system of deferent and restituent

spheres (ot rac fliv <ptpovarag, rag St avtXirrovaag Hfrtj-yijcravro).'17

The solutions of Menaechmus referred to in (i) are as

follows :—

* Let the two given straight lines be a, £ ; it is required

to find two mean proportionals between them.—

' Let it be done, and let them be /3, 7 : and let the

straight line Sri, given in position and limited in 8, be laid

" Theonis Smyrnaei Platonici, Liber de Astronomia, ed. Th. H. Martin, pp.

33o. 332, Paris, 1849. The ofyaipcu aveArrrouirai were, according to this hypo

thesis, spheres of opposite movement, which have the object of neutralising the

effect of other enveloping spheres (Aristot., Met. xn., c. viii., ed. Bekker, p.

1074"). This modification of the system of concentric spheres of Eudoxus is

attributed to Aristotle, but we infer from this passage of Theon of Smyrna that it

was introduced by Menaechmus (Theon. Smyrn., Liber de Astron., Dissertatio, p.

59). Simplicius, however, in his Commentary on Aristotle, de Caelo (Schol. in

Aristot., Brandis, p. 498k), ascribes this modification to Eudoxus himself.

Martin (/. c. ) thinks it probable that this hypothesis was put forward by Me

naechmus in his work on Plato's Republic, with reference to the description of

the distaff of the Fates in the tenth book.

'As Menaechmus.

S

K
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down ; and at 8 let 8£, equal to the straight line 7, be

placed on it, and let the line 0£ be drawn at right angles,

and let £0, equal to the line /3, be laid down : since, then,

the three straight lines a, 0, 7 are proportional, the rect

angle under the lines a, 7, is equal to the square on /3 :

therefore the rectangle under the given line a and the line

7, that is the line 5£, is equal to the square on the line (j,

that is to the square on the line £0; therefore the point 0

lies on a parabola described through 8. Let the parallel

straight lines dk, 8k be drawn : since the rectangle under

/3, 7 is given (for it is equal to the rectangle under a, t),

the rectangle k0£ is also given : the point 0, therefore, lies

on a hyperbola described with the straight lines k8, S£ as

asymptotes. The point 0 is therefore given ; so also is

the point £.

' The synthesis will be as follows :—

' Let the given straight lines be a, e, and let the line Sti be

given in position and terminated at S; through 8 let a para

bola be described whose axis is Sti and parameter a. And

let the squares of the ordinates drawn at right angles to Sri

be equal to the rectangles applied to a, and having for

breadths the lines cut off by them to the point 8. Let

it [the parabola] be described, and let it be 80, and let the

line 8k [be drawn and let it] be a perpendicular ; and with

the straight lines k8, 8Z as asymptotes, let the hyperbola

be described, so that the lines drawn from it parallel to

the lines k8, 8% shall form an area equal to the rectangle

under a, e : it [the hyperbola] will cut the parabola : let

them cut in 0, and let perpendiculars dk, OZ, be drawn.

Since, then, the square on £0 is equal to the rectangle

under a and S£, there will be : as the line a is to £0, so is

the line £0 to £S. Again, since the rectangle under a, i is

equal to the rectangle 0£S, there will be : as the line « is

to the line £0, so is the line £8 to the line e : but the line a

is to the line £0, as the line £0 is to £3. And, therefore :

M
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as the line a is to the line £0, so is the line £0 to £S, and

the line £S to t. Let the line /3 be taken equal to the line

0£, and the line 7 equal to the line S£; there will be,

therefore : as the line a is to the line /3, so is the line /3

to the line 7, and the line 7 to t : the lines a, j3, 7, e are,

therefore, in continued proportion ; which was required to

be found.

Otherwise.

' Let a/3, (3y be the two given straight lines [placed] at

right angles to each other; and let their mean propor

tionals be <5/3, (it, so that, as the line y/3 is to /3<5, so is the

 

line /3S to /3t, and the line /3t to /3a, and let the perpen

diculars S£, t% be drawn. Since then there is : as the line

7/3 is to /3S, so is the line (3$ to fit ; therefore the rectangle

7/3e, that is, the rectangle under the given straight line [7/3]

and the line fii will be equal to the square on /3S, that is

[the square] on t£ : since then the rectangle under a given

line and the line /3e is equal to the square on e£, therefore

the point Z lies on a parabola described about the axis /3f.

Again, since there is : as the line a/3 is to /3e, so is the line

j3t to /3S, therefore the rectangle a/2S, that is, the rectangle

under the given straight line [a/3] and the line /3S, is equal
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to the square on t/3, that is [the square] on $Z ; the point

Z, therefore, lies on a parabola described about the axis /3<5 :

but it [the point Z] lies also on another given [parabola]

described about [the axis] /3t: the point Z is therefore given ;

as are also the perpendiculars £5, Zt : the points S, t are,

therefore, given.

The synthesis will be as follows : —

' Let a/3, /37 be the two given lines placed at right

angles to each other, and let them be produced indefi

nitely from the point /3 : and let there be described about

the axis /3t a parabola, so that the square on any ordinate

[£e] shall be equal to the rectangle applied to the line

/37 with the line fit as height. Again, let a parabola be

described about $fi as axis, so that the squares on its ordi-

nates shall be equal to rectangles applied to the line ufi.

These parabolas cut each other : let them cut at the point

Z, and from Z let the perpendiculars £<5, £e be drawn.

Since then, in the parabola, the line that is, the line

has been drawn, there will be: the rectangle under yfi, fit

equals the square on fiS : there is, therefore : as the line

7/3 is to fiS, so is the line Sfi to fit. Again, since in the

parabola the line £S, that is, the line t/3, has been drawn,

there will be : the rectangle under <5/3, /3a equals the

square on t/3 : there is, therefore : as the line Sfi is to fit,

so is the line fit to /3a ; but there was : as the line <5/3 is to

(it, so is the line >/3 to /3<S : and thus there will be, there

fore : as the line 7/3 is to /3S, so is the line /3S to /3a, and the

line /3e to /3a ; which was required to be found.'

Eutocius adds—' The parabola is described by means of

a compass (Siafii'irov) invented by Isidore of Miletus, the

engineer, our master, and described by him in his Com

mentary on the Treatise of Heron On Arches (KafiapiKiov).'

We have, therefore, the highest authority—that of

Eratosthenes, confirmed by Geminus, (e) and (/)—for the

fact that Menaechmus was the discoverer of the three

M 2
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conic sections, and that he conceived them as sections

of the cone. We see, further, that he employed two of

them, the parabola and the rectangular hyperbola, in his

solutions of the Delian problem. We learn, however,

from a passage of Geminus, quoted by Eutocius in his

Commentary on the Conics of Apollonius, which has

already been referred to in another connection (p. 11) that

these names, parabola and hyperbola, are of later origin, and

were given to these curves by Apollonius :—

' But what Geminus says is true, that the ancients (ol

7rnXmoi), defining a cone as the revolution of a right-angled

triangle, one of the sides about the right angle remaining

fixed, naturally supposed also that all cones were right,

and that there was one section only in each—in the right-

angled one, the section now called a parabola, in the ob

tuse-angled, the hyperbola, and in the acute-angled the

ellipse ; and you will find the sections so named by them.

As then the original investigators (ap\aiwv) observed the

two right angles in each individual kind of triangle, first

in the equilateral, again in the isosceles, and lastly in the

scalene ; those that came after them proved the general

theorem as follows :—" The three angles of every triangle

are equal to two right angles." So also in the sections of

a cone ; for they viewed the so called " section of the right-

angled cone" in the right-angled cone only, cut by a plane

at right angles to one side of the cone ; but the section of

the obtuse-angled cone they used to show as existing

in the obtuse-angled cone ; and the section of the acute-

angled cone in the acute-angled cone; in like manner in

all the cones drawing the planes at right angles to one

side of the cone ; which also even the original names them

selves of the lines indicate. But, afterwards, Apollonius

of Perga observed something which is universally true—

that in every cone, as well right as scalene, all these sec

tions exist according to the different application of the
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plane to the cone. His contemporaries, admiring him on

ticcount of the wonderful excellence of the theorems of

oonics proved by him, called Apollonius the " Great

Geometer." Geminus says this in the sixth book of his

J-Zeview of Mathematics.' 18

The statement in the preceding passage as to the ori

ginal names of the conic sections is also made by Pappus,

who says, further, that these names were given to them by

Aristaeus, and were subsequently changed by Apollonius

to those which have been in use ever since." In the writ

ings of Archimedes, moreover, the conic sections are

always called by their old names, and thus this statement

of Geminus is indirectly confirmed.20

It is much to be regretted that the two solutions of

Menaechmus have not been transmitted to us in their ori

ginal form. That they have been altered, either by Euto-

cius or by some author whom he followed, appears not

only from the employment in these solutions of the terms

parabola and hyperbola, as has been already frequently

pointed out,21 but much more from the fact that the lan-

18 Apollonii Conica, ed. Halleius, p. 9.

,9 Pappi Alexand. Collect. VII., ed. Hultsch, p. 672, sq. Mr. Gow (op. at.),

p. 186, note, says: 'That Menaechmus used the name "section of right-angled

cone," etc., is attested by Pappus, VII. (ed. Hultsch), p. 672.' This is not

correct ; the name of Menaechmus does riot occur in Pappus.

20 Heiberg (Nogle Puncter af de graeske Mathematikeres Terminologi,

Kjobenhavn, 1879, p. 3.) points out that 'only in three passages is the word

eAAeifir found in the works of Archimedes, but everywhere it ought to be removed

as a later interpolation, as Nizze has already asserted.' These passages are: 1°.

irepl Kmvoeiiiuv, ed. Torelli, p. 270, ed. Heiberg, vol. I. pp. 324, 326; 2°. ibid.

Tor. p. 272, Heib., id. p. 332, 1. 22 ; 30. ibid. Tor. p. 273, Heib. id. p. 334,

1. 5. Heiberg, moreover, calls attention to a passage where Eutocius (Comm.

to Archimedes, irepl a<paipas ical nvhivSpov, II. ed. Tor. p. 163, ed. Heib., vol. III.,

p. 154, 1. 9) attributes to Archimedes a fragment he had discovered, containing

the solution of a problem which requires the application of conic sections,

among other reasons because in it their original names are used.

21 First, as far as I know, by Reimer, Historia problematis de cubi duplica-

tione, Gbttingae, 1798, p. 64, note.



1 66 Greek Geometryfrom Thales to Euclid.

guage used in them is, in its character, altogether that

of Apollonius."

Let us now examine whether any inference can be

drawn from the previous notices as to the way in which

Menaechmus was led to the discovery of his curves. This

question has been considered by Bretschneider,»3 whose

hypothesis as to the course of the inquiry is very simple

and quite in accordance with what we know of the state of

geometry at that time.

We have seen that the right cone only was considered,

and was conceived to be cut by a plane perpendicular to a

side ; it is evident, moreover, that this plane is at right

angles to the plane passing through that side and the axis

of the cone. We have seen, further, that if the vertical

angle of the cone is right, the section is the curve, of which

the fundamental property—expressed now by the equation

y*=px—was known to Menaechmus. This being pre

mised, Bretschneider proceeds to show how this property

of the parabola may be obtained in the manner indicated.

Let DEF be a plane drawn at right angles to the side

AC of the right cone whose vertex is A, and circular base

BFC ; and let the triangle BAC (right-angled at A) be the

section of the cone made by the plane drawn through AC

and the axis of the cone. Let the plane DEF cut the cone

in the curve DKF, and the plane BAC in the line DE. If,

now, through any point J of the line DE a plane HKG be

drawn parallel to the base BFC of the cone, the section of

the cone made by this plane will be a circle, whose plane

will be at right angles to the plane BAC ; to which plane

the plane of the section DKF is also perpendicular ; the

22 e. g. irapaBo\ii, virep$o\ri, airifiirruros, ofiBia ir\evpi. The original

name for the asymptotes, ai tyyiara, is met with in Archimedes, de Conoidibus,

&c. (at iyyiara ras tov afi^\vyuviov K&vov tonas, ed. Heiberg, vol. I., p. 276,

1. 22 ; and again, 0/ tyyiara evieTiu, K. t. A., id., p. 278, 1. I). See Heiberg, Nogle

Punct., &c, p. 1 1.

" Bretsch., Geom. vor Eukl., p. 156, sq.
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line JK of intersection of these two planes will then be at

right angles to the plane BAC, and, therefore, to each of

the lines HG and DE in that plane. Let now the line DL

 

be drawn parallel to HG, and the line LM at right angles

to LD. In the semicircle HKG the square on JK is equal

to the rectangle HJG, that is, to the rectangle under LD

and JG, or, on account of the similar triangles JDG and

DLM, to the rectangle under DJ and DM. The section of

the right-angled cone, therefore, is such that the square on

the ordinate KJ is equal to the rectangle under a given

line DM and the abscissa DJ.

Bretschneider proceeds then to the consideration of

the sections of the acute-angled and obtuse-angled cones,

and investigates the manner in which Menaechmus may

have been led to the discovery of properties similar to those

which he had known in the semicircle, and found in the

case of the section of the right-angled cone.

Let a plane be drawn perpendicular to the side AC of

an acute-angled cone, and let it cut the cone in the curve

DKE, and let the plane through AC and the axis cut the

cone in the triangle BAC. Through any point J of the line

DE let a plane be drawn parallel to the base of the cone,

cutting the cone in the circle HKG, whose plane will be at

right angles to the plane BAC, to which plane the plane

of the section DKE is also perpendicular. The line JK

of intersection of these two planes will then be at right
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angles to the plane BAC ; and, therefore, to each of the

lines HG and DE in that plane, draw LD and EF

parallel to HG, and at the point L draw a perpen-

A
 

dicular to LD, intersecting DE in the point M. We

have then

HJ : JE : : LD : DE,

JG : JD : : EF : DE ;

therefore,

HJ . JG : JE . JD : : LD . EF : DEa.

But, on account of the similar triangles DEF and DLM,

EF : DE : : MD : LD.

Hence we get

HJ . JG : JE . JD : : MD : DE.

But in the semicircle HKG

JK*=HJ.JG;

therefore,

JK2 : JE . JD : : MD : DE,

that is, the square of the ordinate JK is to the rectangle

under EJ and JD in a constant ratio.

The investigation in the case of the section of the obtuse-

angled cone is similar to the above.
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Bretschneider observes that the construction given for

MD in the preceding investigations is so closely connected

with the position of the plane of section DKE at right angles

to the side AC, that it could scarcely have escaped the

observation of Menaechmus.

This hypothesis of Bretschneider, as to the properties

of the conic sections first perceived by Menaechmus, which

properties he employed to distinguish his curves from each

other, seems to me to be quite in accordance as well with

the state of geometry at that time as with the place which

Menaechmus occupied in its development.

A comparison of these investigations with the solution

of Archytas (see p. 1 1 1 , sg.) will show, as there stated,

that ' the same conceptions are made use of, and the same

course of reasoning is pursued' in each (p. 115):

In each investigation two planes are perpendicular to

an underlying plane; and the intersection of the two

planes is a common ordinate to two curves lying one in

each plane. In one of the intersecting planes the curve is

in each case a semicircle, and the common ordinate is,

therefore, a mean proportional between the segments of

its diameter. So far the investigation is the same for all.

Now, from the consideration of the figure in the underly

ing plane—which is different in each case—it follows

that :—in the first case—the solution of Archytas—the

ordinate in the second intersecting plane is a mean pro

portional between the segments of its base, whence it is

inferred that the extremity of the ordinate in this plane

also lies on a semicircle ; in the second case—the section

of the right-angled cone—fhe ordinate is a mean propor

tional between a given straight line and the abscissa ;

and, lastly, in the third case—the section of an acute-

angled cone—the ordinate is proportional to the geometric

mean between the segments of the base.

So far, it seems to me, we can safely go, but not farther.

From the first solution of Menaechmus, however, it has
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been generally inferred that he must have discovered the

asymptotes of the hyperbola, and have known the property

of the curve with relation to these lines, which property

we now express by the equation xy = a*. Menaechmus

may have discovered the asymptotes ; but, in my judg

ment, we are not justified in making this assertion, on

account of the fact, which is undoubted, that the solutions

of Menaechmus have not come down to us in his own

words. To this may be added that the words hyperbola

and asymptotes could not have been used by him, as these

terms were unknown to Archimedes.

From the passage in the letter of Eratosthenes at the

end of extract (g), coupled with the statement of Plutarch

(/), Bretschneider infers that it is not improbable that

Menaechmus invented some instrument for drawing his

curves." Cantor considers this interpretation as not impos

sible, and points out that there is in it no real contradiction

to the observation in Eutocius concerning the description

of the parabola by Isidore of Miletus." Bretschneider adds

that if Menaechmus had found out such an instrument it

could never have been in general use, since not the slightest

further mention of it has come down to us. It appears to

me, however, that it is more probable that Menaechmus

constructed the parabola and hyperbola by points, though

this supposition is rejected by Bretschneider on the ground

that such a construction would be very tedious. On the

other hand, it seems to me that the words of Eratosthenes

would apply very well to such a procedure. We know, on

the authority of Eudemus (see p. 24), that 'the inventions

concerning the application of areas'—on which, moreover,

the construction by points of the curves y*-=px and xy = d>

depend—'are ancient, ap\aia, and are due to the Pytha

goreans' :** it may be fairly inferred, then, that problems

21 Bretsch., Geom. vor £uil., p. 162.

26 Gesch. der. Math., p. 211.

26 Proclus, ed. Friedlein, p. 419.
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of application were frequently solved by the Greeks. And

we have the very direct testimony of Proclus in the passage

referred to, that the inventors of these constructions applied

them also to the arithmetical solution of the corresponding

problems. It is not surprising, therefore, to find—as M. Paul

Tannery27 has remarked—Diophantus constantly using the

expression napaftaWuv napa in the sense dividing.28

The extracts from Proclus (£), (c), and (d) are interesting

as showing that Menaechmus was not only a discoverer in

geometry, but that questions on the philosophy of mathe

matics also engaged his attention.

In the passages (c) and (d), moreover, the expression

oi irepi Mivai\pov paOnfiartKot occurs—precisely the same

expression as that used by Iamblichus with reference to

27 De la Solution Geometrique des Problemes du Second Degre avant Euclide

(Memoires de la Societe des Sciences phys. et nat. de Bordeaux, tom. iv., 2«

Serie, 1882, p. 409. Tannery (Bulletin des Sciences math- et astron., tom- iv.,

1880, p. 309) says that we must believe that Menaechmus made use of the

properties of the conic sections, which are now expressed by the equation

between the ordinate and the abscissa measured from the vertex, for the

construction of these curves by points.

28 In a paper published in the Philologus, Griechische und romische mathe-

matik (Phil. XLTII., 1884- pp. 474-5), Heiberg puts forward views which differ

widely from those stated above. He holds :—that it is not certain that Menaech

mus contrived an apparatus for the delineation of the conic sections : that the

only meaning which can be attached to Plato's blame (/) is, that Archytas,

Eudoxus, and Menaechmus had employed, for the duplication of the cube, curves

which could not be constructed with the rule and compass ; and that the

passage of Eratosthenes merely says that the curves of Menaechmus could be

constructed, and not that he had found an apparatus for the purpose. Heiberg

says, moreover, that it cannot be doubted that the Pythagoreans solved, by

means of the application of areas, the equations, which we now call the vertical

equations of the conic sections : but while admitting this, he holds that there is

no ground for inferring thence that these equations were employed for the

description of the conic sections by points ; and says that such a description by

points runs counter to the whole spirit of Greek geometry. On the other hand, it

seems to me that Tannery is right in believing that the quadratrix of Deinostra-

tus (the brother of Menaechmus), or of Hippias, the contemporary of Socrates,

was constructed in this manner (see Bulletin des Sciences math- et astron., pour

Vhistoire des lignes and surfaces courbes dans VAntiquiti, tom. VII., p. 279).

Moreover, the construction of the parabola and rectangular hyperbola by points

depends on the simplest problems of application of areas—the irapaflo\ii without

the addition of the 6repfiohri or e\\ei>\iis.
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Eudoxus (p. 134)—and we observe that in (d) this expres

sion stands in contrast with oi irtpl ^irtvmirirov, which is

met with in the same sentence. From this it follows that

Menaechmus had a school, and that it was looked on as

a mathematical rather than as a philosophical school.

Further, we have seen that Theon of Smyrna makes a

similar distinction between Aristotle on the one side and

Menaechmus and Callippus on the other (k). Lastly, we

learn from Simplicius that Callippus of Cyzicus, a pupil of

Polemarchus—the friend of Eudoxus—went subsequently

to Athens and lived with Aristotle, with whom he con

ferred in order to revise and complete the inventions of

Eudoxus."

When these statements are put together, and taken

in conjunction with the fact mentioned by Ptolemy, that

Callippus made astronomical and meteorological obser

vations at the Hellespont,30 we are, I think, justified in

assuming that the reference in each is to the School of

Cyzicus, founded by Eudoxus, whose successors were—

Helicon (probably), Menaechmus, Polemarchus, and Cal

lippus.

From the passages of Plutarch referred to in (/) we see

that Plato blamed Archytas, Eudoxus, and Menaechmus

for reducing the duplication of the cube to mechanical con

trivances. On the other hand the solution of this problem,

w The passage is in the Commentary of Simplicius on the Second Book of

Aristotle de Caelo, and is as follows :—elpijrai icol Sti irpuros EtfSofos S KWSios

e 7re/3aAe rai's Sick tuv ave\irrova&v Koi\ovii4voiv a<paipuv Oirodeffeiriy KaAAiirjros 5£ 6

Ku£iKrivbs Xlo\efidpxy avffxo\dffas rcp Ev56^ov yvupifiip, Kal juet' eKeTvov eis

'Ad-ftvas i\diiv, tiji 'ApiaToteAei ffvyKarefiiu, rh virb tou Ev$6^ov evpedevra avv

rip 'Api<rtoreAei $iopdovnev6s re Kol irpoaavair\ripSiv.—Scholia in Aristot. Brandis,

p. 498b. Callippus and Polemarchus, as Boeckh has remarked, could not have

been fellow-pupils of Eudoxus : Callippus, who flourished circ. 330 B.C., was too

young. The meaning of the passage must be as stated above. Boeckh conjectures

that Polemarchus was about twenty years older than Callippus. See Sonnenkreise,

V- 155-

30 4,a<reis air\avuv b.<rre^uv Kal auvayuy^ 4iriarip-aaiuv, Ptolemy, ed. Halma,

Paris, 1819, p. 53.
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attributed to Plato, and handed down by Eutocius, is purely

mechanical. Hence grave doubts have arisen as to whether

this solution is really due to Plato. These doubts are in

creased if reference be made to the following authorities :—

Eratosthenes, in his letter in which the history of the

Delian problem is given, refers to the solutions of Archy-

tas, Eudoxus, and Menaechmus, but takes no notice of

any solution by Plato, though mentioning him by name;

Theon of Smyrna also, quoting a writing of Eratosthenes

entitled ' The Platonic,' relates that the Delians sent to

Plato to consult him on this problem, and that he replied

that the god gave this oracle to the Delians, not that he

wanted his altar doubled, but that he meant to blame the

Hellenes for their neglect of mathematics and their con

tempt of geometry.31 Plutarch, too, gives a similar account

of the matter, and adds that Plato referred the Delians,

who implored his aid, to Eudoxus of Cnidus, and Helicon

of Cyzicus, for its solution.32 Lastly, Jo. Philoponus, in his

account of the matter, agrees in the main with Plutarch,

but in Plato's answer to the Delians he omits all reference

to others.33

Cantor, who has collected these authorities, sums up the

evidence, and says the choice lies between— 1° the assump

tion that Plato, when blaming Archytas, Eudoxus, and

Menaechmus, added, that it was not difficult to execute the

doubling of the cube mechanically; that it could be effected

by a simple machine, but that this was not geometry ; or

2° the rejection, as far as Plato is concerned, of the com

munication of Eutocius, on the ground of the statements of

Plutarch and the silence of Eratosthenes ; or lastly, 3° the

admission that a contradiction exists here which we have

not sufficient means to clear up.34

31 Theon. Smyrn. Arithm., ed. de Gelder, Lugdun. Bat. 1827, p. 5.

32 Plutarch, de Genio Socratis, Opera, ed. Didot., vol. III., p. 699.

33 Jo. Philop. ad Aristot. Analyt. post., I. vii.

34 Cantor, Gesch. der Math-, p. 202.
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The fact that Eratosthenes takes no notice of the solu

tion of Plato seems to me in itself to be a strong presump

tion against its genuineness. When, however, this silence

is taken in connection with the statements of Plutarch, that

Plato referred the Delians to others for the solution of their

difficulty, and also that Plato blamed the solutions of the

three great geometers, who were his contemporaries, as

mechanical—a condemnation quite in accordance, more

over, with the whole spirit of the Platonic philosophy—we

are forced, I think, to the conclusion that the sources from

which Eutocius took his account of this solution are not

trustworthy. This inference is strengthened by the fact,

that the source, from which the solution given by Eudoxus

of the same problem was known to Eutocius, was so

corrupt that it was unintelligible to him, and, therefore,

not handed down by him."

The solution atttributed to Plato is as follows :—

'As Plato.

'Two straight lines being given to find two mean pro

portionals in continued proportion.

/A
z

o K 3 A

>

/
H e

-4?

s

' Let the two given straight lines aj3, fly, between which

it is required to find two mean proportionals, be at right

35 See p. 140.
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angles to each other. Let them be produced to S, t. Now

let there be constructed a right angle ZH9, and in either

leg, as ZH, let a ruler KA be moved in a groove which is in

ZH, so as to remain parallel to HO. This will take place

if we imagine another ruler connected with 9H and

parallel to ZH, as 0M. For the upper surfaces of the

rulers ZH, 9M being furrowed with grooves shaped like a

dove-tail, in these grooves tenons connected with the ruler

KA being inserted, the motion of the ruler KA will be

always parallel to H9. This being arranged, let either

leg of the angle, as H9, be placed in contact with the

point y, and let the angle and the ruler . be moved so far

that the point H may fall on the line /3S, whilst the leg

H9 is in contact with the point 7, and the ruler KA be in

contact with the line /3e at the point K, but on the other

side with the point a : so that, as in the diagram, a right

angle be placed as the angle ySt, but the ruler KA have

the position of the line ea. This being so, what was re

quired will be done ; for the angles at $ and e being right,

there will be the line 7/3 to /3S, as the line S/3 to fde, and

the line tft to /3a.' 36

The instrument is in fact a gnomon, or carpenter's

square, with a ruler movable on one leg and at right

angles to it, after the manner of a shoemaker's size-stick.

If this solution be compared with the second solution

of Menaechmus it will be seen that the arrangement of the

two given lines and their mean proportionals is precisely

the same in each, and that, moreover, the analysis must

also be the same. Further, a reference to the solution of

Archytas (see pp. 11 1 and 114 (b)) will show that the only

geometrical theorems made use of in the solution attri

buted to Plato were known to Archytas. Hence it seems

36 Archim., ed. Torelli, p, 135 ; Archim. Opera, ed. Heiberg, vol. ill., p. 66,

sq. I have taken the diagrams used in this solution and that of Menaechmus

from Heiberg' s edition of Archimedes.
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to me that it may be fairly inferred that this solution was

subsequent to that of Menaechmus, as his solution was to

that of Archytas. This, so far as it goes, is in favour of

the first supposition of Cantor given above.

On account of the importance of the subject treated of

here, I will state briefly my views on the matter in ques

tion :—Menaechmus was led by the study of the solution

of Archytas, in the manner given above, to the discovery

/ of the curve whose property (ov/jnrrwfjia) is that now defined

by the equation y1 =px. Starting from this\ he arrived at

the properties of the sections of the acute-angled and of

the obtuse-angled right -cones, which are analogous to the

well-known property of the semicircle—the ordinate is a

mean proportional between the segments of the diameter.

Having found the curve defined by the property, that its

ordinate is a mean proportional between a given line and

the abscissa, Menaechmus saw that by means of two such

curves the problem of finding two mean proportionals

could be solved, as given in the second of his two solu

tions, which, I think, was the one first arrived at by him.

The question was then raised—Of what practical use is

your solution ? or, in other words, how can your curve be

described ?

Now we have seen that, side by side with the develop

ment of abstract geometry by the Greeks, the practical

art of geometrical drawing, which they derived originally

from the Egyptians, continued to be in use : that the

Pythagoreans especially were adepts in it, and that, in

particular, they were occupied with problems concern

ing the application {irapafiokri) of areas, including the

working of numerical examples of the same. Now any

number of points, as near to each other as we please,

on the curve y% =px, can be obtained with the greatest

facility by this method ; and in this manner, I think,

Menaechmus traced the curve known subsequently by



Menaechmus. 177

the name parabola—a name transferred from the opera-

tion (which was the proper signification of irapafioXvi) to

the result of the operation. We have seen that the same

name, irapajioXri, was transferred and applied to division,

which was also a transference of a name of an operation

to its result.

Having solved the problem by the intersection of two

parabolas, I think it probable that Menaechmus showed

that the practical solution of the question could be simpli

fied by using, instead of one of them, the curve xy = a}, the

construction of which by points is even easier than that of

the parabola. There is no evidence, however, for the

inference that Menaechmus knew that this curve was

the same as the one he had obtained as a section of the

obtuse-angled cone ; or that he knew of the existence

of the asymptotes of the hyperbola, and its equation in

relation to them.

Let us examine now whether anything can be derived

from the sources, which would enable us to fix the time

of the Delian deputation to Plato—be it real or fictitious.

We have seen that Sotion, after mentioning that

Eudoxus took up his abode at Cyzicus and taught there

and in the neighbouring cities of the Propontis, relates

that subsequently he returned to Athens accompanied by a

great many pupils [iravv iroXAoue irepl tavrbv i\ovra fiadiirag),

for the sake, as some say, of annoying Plato, because for

merly he had not held him worthy of attention (p. 129). We

learn, further, from Apollodorus, that Eudoxus flourished

about the hundred and third Olympiad—B.C. 367—and it

is probable, as Boeckh thinks, that this time falls in with

his residence at Cyzicus. Now the narrative of Plutarch—

that Plato referred the Delians to Eudoxus and Helicon

for the solution of their difficulty—points to the time of the

visit of Eudoxus and his pupils to Athens, for— 1° as we

know from Sotion, Plato and Eudoxus had not been on

N
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good terms; and z° it is not probable that, before this

visit, Helicon, who was a native of Cyzicus and a pupil of

Eudoxus, as we learn from the spurious 13th Epistle of

Plato, had become famous or was known to Plato. Boeckh

assumes, no doubt rightly, that the visit of Eudoxus and

his pupils to Athens, and their sojourn there, took place

a few years later than 01. 103, 1 —B.C. 367 ; so that it

occurred between the second and third visits of Plato to

Sicily (368 B.C. and 361 B.C.).31 To this time, therefore, he

refers the remarkable living and working together at the

Academy of eminent men, who were distinguished in

mathematics and astronomy, according to the report of

Eudemus as handed down by Proclus. Now, amongst

those named there we find Eudoxus himself, his pupil

Menaechmus, Deinostratus—the brother of Menaechmus

—and Athenaeus of Cyzicus;38 to these must be added

Helicon of Cyzicus—more distinguished as an astronomer

than a mathematician—who was recommended to Diony-

sius by Plato,39 and who was at the court of Dionysius

in company with Plato at the time of his third visit to

Syracuse.40

I quite agree with Boeckh in thinking that all the

pupils of Eudoxus and the citizens of Cyzicus, whom we

find at Athens at that time—even though they are not

expressly named as pupils of Eudoxus—belonged to the

school of Cyzicus ; and I have no doubt that to these

illustrious Cyzicenians the fame of the Academy—so

far at least as mathematics and astronomy are concerned

—is chiefly due.41 It is noteworthy that Aristotle, at the

37 Boeckh, Sonnenkreise, pp. 156, 157.

88 See Introduction, pp. 4, 5.

» Epist.VlaX., xiii.

40 Plutarch, Dion.

41 Zeller says : ' Among the disciples of Plato who are known to us, we find

many more foreigners than Athenians : the greater number belong to that

eastern portion of the Greek world which since the Persian war had fallen

chiefly under the influence of Athens. In the western regions, so far as these

were at all ripe for philosophy, Pythagoreanism, then in its first and most
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time of this visit, so famous and so important in conse

quence of the impetus thereby given to the mathematical

sciences, had recently joined the Academy, and was then

a young man ; and it is easy to conceive the profound

impression made by Eudoxus and his pupils on a nature

like that of Aristotle ; and an explanation is thus afforded

as well of the great respect which he entertained for

Eudoxus, as of the cordial relations which existed later

between him and the mathematicians and astronomers of

the school of Cyzicus."

flourishing period, most probably hindered the spread of Platonism, despite the

close relation between the two systems ' [Plato and the Older Academy, E. T ,

P ■ 5S3, SS-)- Zeller gives in a note a list of Plato's pupils, in which all

.the distinguished men of the School of Cyzicus are placed to the credit of

the Academy.

42 Aristotle was born in the year 384 B.C., and went to Athens 367 B.C.

Aafter the death of Plato (B.C. 347), Aristotleleft Athens and went to Atarneus in

Mysia, where his friend Hermias was dynast. When he was there he may

have renewed his relations with the distinguished men of the School of Cyzicus,

which was not far distant. It is quite possible that Menaechmus may have been

recommended as mathematical teacher to Alexander the Great by Aristotle ; and

we have seen that Callippus of Cyzicus, who had been a pupil of Polemarchus,

went to Athens to hold a conference with Aristotle on the system of Eudoxus,

with the view of revising and completing it.

N 2
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CHAPTER VII.

THE SUCCESSORS OF EUDOXUS.

II. Deinostratus*

Deinostratus.—The Quadratrix, its generation and characteristic property.—Use

of this curve to solve the two famous problems : 1°. the Trisection of an

Angle ; 2°. the Quadrature of the Circle.—Enunciation and proof of the

property of the Quadratrix on which this second employment of the Curve

depends.—Criticisms of Sporus and Pappus on the Curve and on this use of

it.—Theorems required for, and axioms used in, the proof of this property of

the Curve.—These axioms are substantially the same as the well-known

principles assumed by Archimedes.—The Problem solved by means of the

Quadratrix is the rectification of the Quadrant, and is a complement to the

work of Eudoxus.—Is the Hippias mentioned by Proclus in connection with

the Quadratrix the same as the Sophist Hippias of Elis ?

Deinostratus was brother of Menaechmus, and is men

tioned by Eudemus, together with Amyclas and Menaech

mus, as having made the whole of geometry more perfect

(P. 4).

The only notice of his work which has come down to

us is contained in the following passage of Pappus :—

'For the quadrature of the circle a certain curve1 was

employed by Deinostratus, Nicomedes, and some other

more recent geometers, which has received its name from

* The two works announced in the note (p. 150) have appeared: Autolyci de

Sphaera quae movetur Liber, de ortibus et occasibus Libri duo : una cum scholiis

antiquis e libris manuscriptis edidit Latina interpretatione et commentariis instruxit

Fridericus Hultsch, Lipsiae, 1885 ; Diophantos of Alexandria : a Study in the

History of Greek Algebra, by T. L. Heath, Cambridge, 1885.

The following works have also been published : Euclidis Elementa, edidit et

Latine interpretatus est J. L. Heiberg, Dr. Phil., vol. IV. libros xi.-xiii. con-

tinens, Lipsiae, 1885 ; die Lehre von den Kegelschnitten im Altertum von Dr.

H. G. Zeuthen, erster halbband, Kopenhagen, 1886.

1 ypafifiii. The Greeks had no special name for ' a curve.'
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the property that belongs to it ; for it is called by them the

quadratrix (rtrpa-ywviZovaa), and its generation is as follows :

' Let a square afiyS be assumed, and about the centre y

let the quadrant 2 /3tS be described, and let the line 7/3 be

moved so that the point y remain fixed, and the point /3 be

borne along the quadrant /3tS : again, let the straight line

(5a, always remaining parallel to the line yS, accompany

the point j3 while it is borne along the line /37 ; and let the

line moving uniformly, pass over the angle (3y$—that

is, the point /3 describe the quadrant /3tS—in the same

time in which the straight line /3a traverses the line /37—

that is, the point /3 is borne along fiy. It will evidently
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happen that each of the lines y(3 and /3a will coincide

simultaneously with the straight line y$. Such then being

the motion, the straight lines /3a, /37 in their motion will

cut one another in some point, which always changes its

place with them ; by which point, in the space between

the straight lines fiy, yS, and the quadrant /3eS, a certain

curve concave towards the same side such as /3»j0, is de

scribed; which indeed seems to be useful for finding a

square, which shall be equal to a given circle. But its

characteristic property (apxiKov avrrig avfnrrWfia) is this :—if

2 irepupepeia, arc. ' Ex recentiorum usu Graecam irepi<pepeiav, id est partem

aliquam totius circuli circumferentiae, Ernestum Nizze, Theodosii interpretem,

secuti plerumque arcum interpretati sumus.' (Autolycus, op. tit., Praefatio, pp.

xiv, xv.)
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any line, as 7ijt, be drawn to the circumference, as the whole

quadrant /3tS is to the arc eS, so is the straight line (5y to

»jA ; for this is evident from the generation of the curve.'3

Pappus, has, moreover, transmitted to us the property

of the quadratrix, from which it received its name, together

with the proof. It is as follows :—

4 If a/378 be a square, and fitS be the quadrant about the

centre 7, and the line /3»»0 be the quadratrix described as

in the manner given above ; it is proved that : as the

quadrant Stj3 is to the straight line fiy, so is /3y to the

straight line yO. For if it is not, the quadrant Se/3 will be

to the line fiy as fiy to a line greater than yd, or to a lesser.

' In the first place let it be, if possible [as fiy~\, to a

greater line^K ; and about the centre 7 let the quadrant

be described, cutting the curve at the point ij ; let the per

pendicular r)X be drawn, and let the joining line 7»} be

produced to the point t. Since then : as the quadrant

is to the straight line fiy, so is (3y—that is yS—to the

line 71c, and as 7S is to 71c, so is the quadrant (3tS to the

quadrant £jjk (for the circumferences of circles are to each

other as their diameters),4 it is evident that the quadrant

ZriK is equal to the straight line fiy. And since, on account

of the property of the curve, there is : as the quadrant /3eS

is to the arc tS, so is fiy to rjX ; and therefore : as the qua

drant £»jk is to the arc jjk, so is the straight line fiy to the

line jjA. And it has been shown that the quadrant £»jk is

equal to the straight line fiy ; therefore the arc »jk will be

equal to the straight line ijA, which is absurd. Therefore it

is not true that : as the quadrant /3cS is to the straight line

(3y, so is (3y to a line greater than yO.'

' Further, I say, that neither is it to a line less than yd.

For, if possible, let it be to 7ic, and about the centre 7 let

3 Pappi Collect., ed. Hultsch, vol. I., pp. 250, 252.

1(Hoc theorema extat V. propos. 11 et vin. propos. 22; simul autem scrip-

tor tacite efficit circulorum arcus quibus aequales anguli insistunt inter se esse ut

radios.' (Ibid., p. 257, «.)
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the quadrant be described, and let the line kij be drawn

at right angles to the line 7S, cutting the quadratrix at the

point jj, and let the joining line yri be produced to the

point t. In like manner then to what has been proved

above, we show that the quadrant £/uk is equal to the

straight line (iy, and that: as the quadrant /3eS is to the

arc tS—that is, as the quadrant £juk to the arc /uk—so is the

straight line /3y to the line ijk. From which it is evident

that the arc /uk is equal to the straight line kij, which is

absurd. Therefore it is not true that : as the quadrant /3tS

is to the straight line ($y, so is /37 to a line less than yO.

Neither is it to a greater, as has been proved above : there

fore it is to the line yO itself.'5

 

Pappus continues—' This also is evident, that if a third

proportional be taken to the straight lines 6y, 7/3, the

straight line [thus found] will be equal to the quadrant

(3tS ; and four times this line will be equal to the circum

ference of the whole circle. But the straight line, which is

equal to the circumference of a circle, being found, it is

evident that a square equal to the circle itself can be easily

constructed : for the rectangle under the perimeter of a

circle and its radius is double of the circle, as Archimedes

proved.'6

6 Pappi Collect., vol. I., pp. 256, 258.

8 ' Paulo aliis verbis Pappus id theorema enuntiat atque ipse Archimedes

circuli dimens. propos. I : iras KiitXos Xaos i<ttl rpiy&yw opdoywvla, ov tj fikv iK rod

Kevrfov Kari m<} rav irepl tV opdiiv, fi ireplfierpos rp A017rp. (Ibid., p. 259, *.)
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Pappus also relates that Sporus justly found fault with

this curve, for two reasons :—

1. 'It takes for granted the very thing for which the

quadratrix is employed ; for it is not possible to make one

point move from /3 to y along the straight line (3y in the

same time that another point moves along the quadrant

/3tS, unless the ratio of the straight line to the quadrant is

first known, inasmuch as it is necessary that the rates of

the motions should be to each other in the same ratio.

2. ' The extremity of the curve which is employed for

the quadrature of the circle — that is, the point in which the

quadratrix cuts the straight line 7S—is not found ; for when

the straight lines 7/3, /3a, being moved, are brought simul

taneously to the end of their motion, they coincide with the

line yS, and no longer cut one another—for the cutting

ceases before the coincidence with the line nS, which inter

section on the other hand is taken as the extremity of the

curve, in which it meets the straight line a<5 : unless, per

haps, some one might say that the curve should be con

sidered as produced—just as we suppose that straight lines

are produced—as far as aS ; but this by no means follows

from the principles laid down : but in order that this point

61 may be assumed, the ratio of the quadrant to the straight

line must be presupposed.'

He then adds, that ' unless this ratio is given, one

should not—trusting to the authority of the inventors—

accept a curve, which is rather of a mechanical kind (rrjv

ypafjififjv fjirixaviwripav irwg oSaav).1

Sporus was a mathematician whose solution of the

Delian problem has been handed down by Eutocius in his

Commentary on the treatise of Archimedes On the Sphere

and Cylinder ;8 this solution, he tells us, is the same as that

of Pappus, which precedes it in Eutocius, and which is also

1 Pappi Collect., vol. I., pp. 252, 254.

8 Archim., Opera, ed. Heiberg, vol. III., pp. 90, 92.
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given by Pappus himself in the third and eighth books of

his Collections? M. Paul Tannery thinks that Sporus was

the teacher, or an elder fellow-pupil of Pappus, and places

him towards the end of the third century of our era ; and,

further, he identifies him with Porus (Sporus) of Nicaea,

the author of a collection entitled 'ApiaronXiKa Kijpfa (see

p. 59), which contained, according to M.<Tannery, extracts

from mathematical works relating to the quadrature of the

circle and the duplication of the cube, as also a compilation

in relation to the Meteorologics of Aristotle. M. Tannery is

of opinion, moreover, that the historical works of Eudemus

were driven out of the field at an early period by compila

tions from them ; that the History of Geometry, in particular,

did not survive the fourth century ; and that this collection

of Sporus was the principal source from which Pappus,

Simplicius, and Eutocius derived their information con

cerning these two famous geometrical problems.10

In any case, it seems to me probable that a valuable

fragment of the History of Geometry of Eudemus is pre

served in the extracts from Pappus given above, whether

they have been taken by Pappus from that History, or

derived second-hand through Sporus [Porus].

On examining the demonstration of the property of the

quadratrix given above, we see that the following theorems

are required for it :—

(a). The circumferences of circles are to each other as

their diameters.

(3). The arcs of two concentric circles, which subtend

the same angle at their common centre, are to each other

as the quadrants of those circles.

sPappi Collect., vol. I., p. 64, sq. ; vol. HI. p. 1070, sq.

10 Sur les fragments a" Eudeme de Rhodes relatifs a Vhistoire des mathi-

matiques ; also, sur Sporos de Nicee ; Annales de la Faculte des Lettres de

Bordeaux, pp. 70-76, 257-261, 1882. Cf. Pour Vhistoire des lignes et surfaces

courbes dans Vantiquite. Bulletin des Sciences mathem. et astronom., 2' serie,

torn. vii.
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This theorem is an immediate consequence of Euclid,

VI. 33 :-

(c). In equal circles, angles at the centre have the same

ratio to each other as the arcs on which they stand.

We see, further, that the following assumptions are

made in the proof :—

i°. An arc ofa circle less than a quadrant is greater

than the perpendicular let fall from one of its extremities

on the radius drawn through the other ;

2°. And is less than the tangent drawn at one ex

tremity of the arc to meet the radius produced through

the other.

We notice, moreover, that the proof is indirect ; and it

is, indeed, as Cantor has remarked, the first of the kind

with which we meet." We have seen, however, that

Eudoxus must have been familiar with this method of

reasoning (p. 139); and we know that Autolycus ofPitane,

in Aeolis, who was a contemporary of Deinostratus, makes

use of the argument ad absurdum (oirtp iarlv aroirov, or

aSvvarov), in many propositions of his book irtpi Kivovfiivtig

a<patpag.u

We see, too, that the investigation of Deinostratus,

which gives a graphical solution of the determination of

the ratio of the circumference of a circle to its diameter, is

a complement to the work of Eudoxus, for the problem

which was solved by means of the quadratrix arose natu

rally from the theorem that circles are to each other as the

squares on their diameters.

It is to be observed, then, in the first place, that the

problem which is solved above by means of the quadratrix

is, in reality, the rectification of the quadrant, and that it

is taken for granted that the quadrature of the circle—

from which the name of the curve is derived—follows from

"Cantor, Gesch. der Math., p. 213. [This remark is not correct, see p. 43,

and «. 64.]

18 Autolycus, op. cit., pp. 12,4; 14,7; 24. 14; 32,4; 8, 17; 22, I.
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its rectification. Secondly, we see that in order to make

this inference the theorem—the area of a circle is equal

to one-half the rectangle under the circumference, or four

times the quadrant, and the radius—must be assumed.

This theorem is equivalent to the first proposition of

Archimedes, Dimensio circuit, referred to above. Lastly,

it is noteworthy that the rectification of the quadrant is

obtained by means of principles which are substantially

the same as those assumed by Archimedes, and adopted

by all geometers, ancient and modern.13

It seems to be a legitimate inference from this that

these axioms must be referred back to Deinostratus, and

most probably to Eudoxus.

Pappus, no doubt, in two places—v., prop. 11, and VUL,

prop. 22—proves that the circumferences of circles are to

each other as their diameters,14 and, in each place, makes

the proof depend on the theorem cited above. He adds,

however, in the former proposition :—' The same may be

proved without assuming that the rectangle under the

diameter of a circle and its periphery is four times the

circle. For the similar polygons, which are inscribed in

circles, or circumscribed about them, have perimeters

which have the same ratio to each other as the radii of the

circles, so that also the circumferences of circles are to

each other as their diameters.'

Bretschneider thinks that the criticisms of Sporus are

not of much importance, and says that they only come to

this :—' That the quadratrix cannot be constructed geo-

13 ' Nous partirons, pour la solution de ce probleme [de la rectification des

courbes], du principe d' Archimede, adopte par tous les geom&tres anciens et

modernes, suivant lequel deux lignes courbes, ou composees de droites, ayant

leurs concavites tournees du meme c6te et les memes extremites, celle qui renferme

l'autre est la plus longue. D'ou il suit qu'un arc de courbe tout concave du

meme cote, est plus grand que sa corde, et en mSme temps moindre que la somme

des deux tanger.tes menees aux deux extremites de l'arc, et comprises entre ces

extremites et leur point d'intersection.'—Lagrange, Thiorie des Fonctions Ana-

lytiques, p. 218. Paris, 1813.

14 Pappi Collect., vol. I., pp. 334, 336 ; vol. III., pp. 1 104, 1 106.
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metrically, but is obtained only mechanically by means of

a series of points, which must then be joined by a steady

stroke of the free hand." It seems to me, however, that

these criticisms are just; and that Sporus and Pappus are

right in maintaining that the description of the curve

assumes the very thing for which the quadratrix is

employed.1*

Bretschneider shows that the theorem from which the

quadratrix derives its name can be easily obtained by

the inf1nitesimal method, ' by means of the proportion

/3eS : 7S : : tS : rjA, from the observation that the nearer the

radius yt approaches to yS, the more nearly does the sector

ytS approach to a triangle similar to the triangle 7X17 ; and

therefore, for the limiting case, where ye and yS coincide,

the ratio : »jA actually passes over into that of yS : yd.'

He adds :—' Such considerations have often served the old

geometers as means for their discoveries, but are never

used as proofs. The latter are always given through the

redudio ad absurdum, which, indeed, allows no trace of the

way followed in the inquiry to be recognised.'1' This

observation is both just and important.

The same remark has been made by M. P. Laffitte, who

points out that, in the establishment of any truth, there are

two parts (or operations) which, he says, have not been

hitherto sufficiently distinguished :

1°. The invention or the discovery of the proposition.

20. Its proof.

And he further observes, that, after the discovery has been

15Bretsch., Geom. nor Eukl., p. 96.

16 ' Various other modes might be found of making either of these curves [the

quadratrix of Deinostratus and the quadratrix of Tschirnhausen] square the

circle ; but the fact is that the description of the curves themselves assumes

the point which their use is to determine.'—English Cyclopcedia, sub. v., Quad

ratrix.

17 Bretsch., Geom. vor Eukl., p. 154.
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arrived at, the proof is often furnished by the method ex

absurdo.™

In the third chapter (p. 93, sq.) I gave reasons in sup

port of Hankel's opinion that the Hippias referred to by

Proclus, in connection with the quadratrix, is not Hippias

of Elis. As I mentioned, however, in giving them,

I had not then read Cantor's defence of the common

opinion ; but, on reading it subsequently, I was much

struck with the force of his arguments, and introduced

them in a note—the only course then open to me. M.

Paul Tannery, in a Paper, the first part of which was

published in the Bulletin des Sciences mathdmatiques et

aslronomiques, Octobre, 1883, and entitled, ' Pour l'histoire

des lignes et surfaces courbes dans l'antiquite,' 19 has criti

cised the reasons advanced by me against the common

opinion : —

With reference to argument i°, he replies :—' This omis

sion is sufficiently explained by the discredit under which

the sophists laboured in the eyes of Eudemus ; and the list

in question presents a much more remarkable one—that of

Democritus.'

With reference to 20, he says :— ' This observation is

not accurate. An indefinite number of points of the

quadratrix, as near as one wishes, may be obtained by the

ruler and compass ; and it is doubtful whether the ancients

sought any other process for the construction of this curve.'

M. Tannery continues :—' The authority of Diogenes Laer-

tius is, moreover, so much the less acceptable, inasmuch as

he speaks in express terms of the solution of the Delian

problem by Archytas. Now, Eutocius [Archimedes, ed.

Torelli, pp. 143-144) has preserved to us, on the one hand,

this solution, in which there is not any employment of an

instrument; and, on the other hand (p. 145), a letter, in

18 P. Laffitte, les Grands Types de I'Humanitl, vol. II., p. 308, sq, ; p. 328, sq.

19 Bulletin des Sc. math, et astron., 2' serie, torn. VII. I, p. 279, sq.
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which Eratosthenes states that, " if Archytas, Eudoxus,

&c, were able to prove the accuracy of their solutions,

they could not realise them manually and practically, ex

cept, to a certain extent, Menaechmus, but in a very

troublesome way." ' (Cf. p. m.)

' The Mesolabe of Eratosthenes is, in fact, the oldest

instrument of which the employment for a geometrical

construction is known. This text indicates that, before

Menaechmus, people were not engrossed with the practical

tracing of curves ; whilst the inventor of the conic sections

would have tried, more or less, to resolve this question for

the lines which he had discovered.'

As to these observations of M. Tannery, I admit that

Diogenes Laertius is not a safe guide in mathematics,

as indeed I noticed in the first chapter (p. 10, n. 12). In

quoting him, I certainly did not mean to convey that, in

my opinion, Archytas had actually traced the curve, used

in his solution of the Delian problem, by any mechanical

means; and I agree with M. Tannery that the letter of

Eratosthenes is quite decisive on that point. At the same

time it is evident that the conception of a curve being

traced by means of motion is contained in the solution of

Archytas, to whom, along with Philolaus, his master, and

Eudoxus, his pupil, the first notions of mechanics are

attributed. And with respect to the quadratrix itself,

although, as M. Tannery remarks, an indefinite number of

points on the quadratrix, as near as one wishes, can be

obtained with the ruler and compass, yet the conception of

motion is no less involved in the nature and very definition

of the curve.

In reply to my observation 30, M. Tannery says :—

' The divergence of the accounts given by Proclus and by

Pappus is easily explained by the difference of the sources

from which they drew. All that the former says of curves

is undoubtedly borrowed from Geminus, an author of the

first century before the Christian era; and his language
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proves that Geminus was acquainted with a writing of

Hippias on the quadratrix, and regarded him as the in

ventor of this curve, though he was aware that Nicomedes

also was engaged with it.' M. Tannery continues :—'As

to Pappus, he quotes Geminus only apropos of the works of

Archimedes on Mechanics. He does not appear to have

borrowed anything from him for geometry, particularly in

the part which is concerned with curved lines and sur

faces ; ' and adds :—' One can scarcely doubt but that

Sporus was the source from which Pappus has derived

what he says on the quadratrix.' We have noticed this

above.

With reference to 40, M. Tannery says :—' The exist

ence of the Hippias referred to in it is by no means proved,

for the writing in question seems to be only a pure fancy ;

but in any case it is impossible to think of any geometer

posterior to Geminus, or even, as it seems to me, to Nico

medes.'

The suggestion which I made concerning Hippias, the

contemporary of Lucian, was thrown out by me without

sufficient consideration in reply to the observation of

Montucla. Later, I became aware of the ideal character

of that writing, and that it was the work of a pseudo-

Lucian.20

The result of the whole discussion seems to be : that

the quadratrix was invented, probably by Hippias of Elis,

with the object of trisecting an angle, and was originally

employed for that purpose ; that subsequently Deinostratus

used the curve for the quadrature of the circle, and that its

name was thence derived. This seems to be Cantor's view

of the matter.21 M. Tannery tells us that he, too, had at

first interpreted the passage of Pappus in the same way as

Cantor ; but that, on further consideration, he thinks that

20 See Zeller, History of Greek Philosophyfrom the earliest period to the time

of Socrates, vol. II., p. 422, n. 2, E.T.

21 Cantor, Gesch. der Math., pp. 167 and 212.
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it is open to grave objections. He says :—' In the first

place, the text of Geminus in Proclus clearly supposes that

the name of the curve had been given to it by its inventor,

Hippias. On the other hand, it is evident that the prac

tical use of the curve implies the construction of a model

cut in a square, having the quadratrix in place of the

hypotenuse, and which could be applied, like our protractor,

to the figures under consideration. Consequently, the

determination of the intersection of the curve with the axis

at once becomes necessary ; and the problem is not, in

reality, so difficult that we should think that Hippias was

incapable of perceiving its relation to the quadrature of the

circle. Finally, the fame of this last problem was at the

time sufficiently great to lead Hippias to borrow from it

the name of his curve, rather than from the problem which

he had, without any doubt, considered in the first place.'22

These views of M. Tannery seem to me to be inadmis

sible, and are indeed quite inconsistent with what we

know of Greek geometry (see supra, p. 95, so. ; p. 138, sq.).™

The problem solved by means of the quadratrix must, as

stated above, be regarded as the natural complement of the

work of Eudoxus ; and it is significant, therefore, that the

solution was effected by Deinostratus, who probably was

his pupil. Nor does the finding of the point of intersection

of the curve with the axis necessarily involve the determi

nation of 7r ; for, as seems to be suggested by Pappus, the

required point might be regarded as determined by the

production of the curve. Should it be said that the

theorem required for the determination of it was obtained

first by the infinitesimal method, I would reply that it was

32 Bull, des Sc. math, et astron., 2e serie, VII., I., p. 281.

23 Cf. Heiberg, Griechische und romische Mathematik, Philologus, 1884,

Jahresberichte, p. 474 : ' Wahrend Hankel, p. 121, ff. die exhaustionsmethode

auf Hippokrates zuriickgehen liess, und Cantor, p. 209, die moglichkeit zugibt,

hebt Allman, Greek Geometry Sec., II., p. 221 ff. [p. 95, sq. supra] mit recht

hervor, dass wir nicht berechtigt sind, diese methode fiir alter als Eudoxus zu

halten.'
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not likely that this was done by Hippias of Elis, who was

a senior contemporary of Democritus. If, then, the text

in Proclus supposes that the name of the curve had been

given to it by its inventor, it follows, in my opinion, that

this could not have been Hippias of Elis. I am, however,

on the whole, disposed to accept Cantor's view as given

above.

O
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CHAPTER VIII.

THE SUCCESSORS OF EUXODUS.

III. Aristaeus.

Aristaeus.—He was probably a senior contemporary of Euclid.—Passages in

Pappus relating to him quoted.—What is A iva\v6ficvos t6iros ? It was

treated of by Aristaeus, Euclid, and Apollonius of Perga.—List of the books

which are contained in it.—Aristaeus wrote five books on 'Solid Loci'.—

Names given by him to the three Conic Sections.—These names were changed

by Apollonius to those still in use.—Reason for the change and significance

of the new names.—Aristaeus wrote a book on the 'Comparison of the five

Regular Solids'.—He was one of the most important Geometers before

Euclid.—Discussion as to whether Aristaeus wrote one work only on

the Conic Sections, namely, the ' Solid Loci ' in five books, or whether he

wrote also the 'Elements of Conics' likewise in five books.—Theorem of

Aristaeus.—Enumeration of the Theorems required in its proof as given by

Hypsicles.—Simple proof of the 'Theorem of Aristaeus '.—Retrospect.—

Relation of the work done by Aristaeus to that of Archytas, and his successors.

Pappus has preserved the name, and given some account

of the work, of one other great geometer, who was a prede

cessor, and probably a senior contemporary of Euclid—

Aristaeus the elder. We have no details whatever of

his life.

The passages in Pappus relating to him are as fol

lows :—

[a) 'That which is called 6 avaXvofitvog [twoc],1 that is,

1 [t<5tos] S KoAoifyievor iva\v6fievos. r6iros, ' locus, i. e. quicquid aliqua ma-

thematicarum parte comprehenditur : S aorpovofioinevos riiros, VI. 474, 3 ; 6 ava-

\v6nevos ro'iroj, VII. 672, 4.' Index Graecitatis, Pappi Collect., voluminis III.

tomus II., p. 114. 'A ava\vdfievos t6kos, locus de resolutione, id est doctrina analy-

tica.' Ibid, sub voce, avaXiew, p. 5. Compare what Marinus says on the same

subject in his Commentary on the Data of Euclid :

' What is the value of the treatise about Data ? '

' The datum having been divided in a general way, and as far as is sufficient
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the department of mathematics which treats of analysis, is,

in short, a certain peculiar matter prepared for those who,

having gone through the elements, wish to acquire the

power of solving problems proposed to them in the con

struction of lines ; and it is useful for this purpose only. It

has been treated of by three men—Euclid, the author of

the Elements, Apollonius of Perga, and Aristaeus the

elder—and proceeds by the method of analysis and syn

thesis.' *

Pappus, having defined analysis and synthesis, pro

ceeds to give a complete list of the books, arranged in

order, which are contained in the roirog avaXvofitvoe. He

enumerates thirty-three books in all, amongst which we

find 'five books of Aristaeus on solid loci' ('Aptaraiov toitwi

aTtpiwv irivrt) : the remaining books, with the exception of

two by Eratosthenes concerning means (irioi fitaorrirwv $60),

were written by Euclid and Apollonius.3

{6) '[These plane problems, then, are found in the

ro-rog avaXvofitvog, and are set out first, with the exception

of the means of Eratosthenes ; for these come last. Next

to plane problems order requires the consideration of solid

problems. Now, they call solid problems, not only those

which are proposed in solid figures, but also those which,

not being capable of solution by plane loci, are solved by

means of the three conic lines, and so it is necessary to

write first concerning these. Five books of the Elements of

Conics were first published by the elder Aristaeus, which

for the present need, the next point is to state the utility of treatment of the

subject. This also is one of those things which have their result in relation to

something else. For the knowledge of this is necessary in the highest degree for

Tov kva\v6fxevov -r6irov as it is called ; and how much value 6 ava\v6fievos toVoj

has in mathematical science, and the kindred science of optics and music, has been

denned elsewhere, and that analysis is the discovery of a proof, and that it helps

us to the discovery of things similar, and that it is more important to possess the

analytical faculty than to have many proofs of particular things.' Euclidis Data,

ed. CI. Hardy, p. 13. Cf. Pappi Collect., Appendix, p. 1275.

2 Pappi Collect., VII., vol. II., p. 634.

3 Ibid., p. 636.

O 2
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were written in a compendious manner, inasmuch as those

who took up the study of them were now able to follow

him.]4

(c) 'Apollonius, completing Euclid's four books of

conies, and adding four others, published eight volumes of

conics. But Aristaeus, who wrote the five volumes of solid

loci, which have come down to the present time, in con

tinuation of the COTlics {' Aptaraiog ${, op yiypa<pi ra fii^pi tov

vvv avaoiSofiiva ariptCov toVojv rtv\tj t avvt\fj rotg koivikoTc),

called [as also did those before Apollonius] the first of the

three conic lines, the section of the acute-angled cone ;

the second, the section of the right-angled cone ; the third,

the section of the obtuse-angled cone. But since in each

of these three cones, according to the way in which it is

cut, these three lines exist, Apollonius, as it appears, felt a

difficulty as to why at all his predecessors distinguished by

name the section of an acute-angled cone, which might also

be that of the right-angled and obtuse-angled cone; and,

again, the section of the right-angled cone, which might

also be that of the acute-angled and the obtuse-angled

cone. Wherefore, changing the names, he called that

which had been named the section of the acute-angled

cone, the ellipse ; the section of the right-angled cone, the

parabola ; and the section of the obtuse-angled cone, the

hyperbola—each from a certain peculiar property. For the

rectangle applied to a certain straight line in the section

of the acute-angled cone is deficient (iXXdirti) by a square ;

in the section of the obtuse-angled cone it is excessive (tnrtp-

(5a\\u) by a square ; finally, in the section of the right-

angled cone the rectangle applied (irapafiaWofiivov) is

neither deficient nor excessive.

' [But this happened to Aristaeus, since he did not per

ceive that, according to a peculiar position of the plane

cutting the cone, the three curves exist in each ofthe cones,

4 Pappi Collect., p. 672. ' tA niv—yeypafifidva, interpolator! tribuit Hultsch.'

The spaced words are supplied in translation,
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which curves he named from the peculiarity of the cone.

For if the cutting plane be drawn parallel to one side of

tlie cone, one only of the three curves is generated, and

that one always the same, which Aristaeus named the

section of that so cut cone.]'5

{d) ' But as to what he [Apollonius] says in the third

book, that the locus with three or four lines has not been

completed by Euclid—for neither he himself, nor anyone

else, could [solve that locus] by those conical [theorems] only

which had been proved up to the time of Euclid, as also he

himself testifies, saying that it was not possible to complete

it without those things which he was compelled to discuss

before-hand—[as to this, Euclid, approving of Aristaeus as

a worthy mathematician on account of the conics which he

had handed down, and not being in haste, nor wishing to lay

down anew the same treatment of these subjects (6 St EvicXtf-

SijC airoSexpfxtvoQ rbv ' Apiarcuov a£iov ovra Itf olf jJSjj irapaStdwKti

KWVtKoig, Kai /ur) ijtOaaac rj JU17 OtXriaag E7nicara/3aAAe<r0a« tovtwv

rr)v avrrjv irpayfiarttav) —for he was most kind and friendly

to all those who were able to advance mathematics to any

extent, as is right, and by no means disposed to cavil, but

accurate, and no boaster like this man Apollonius—wrote

as much as could be proved by his conics: sc. those of

Aristaeus concerning that locus—not attributing any

finality to his demonstration, for then it would be neces

sary to blame him, but, as it is, not at all ; since Apollo

nius also himself, who left many things in his conics

unfinished, is not brought to task for it. But he, Apollo

nius, has been able to add to that locus (t<|? tw^) what

was wanting, having been furnished with the ideas by

the books already written by Euclid on the same locus

(irepi row tottov), and having been for a long time a fellow-

pupil of the disciples of Euclid in Alexandria, from which

*Pappi Collect., p. 672, 1. 18—p. 674, 1. 19. '1. 12. toSto S' (iradev (scil. i

'Apio-toioj)—1. 19. ropV interpolator! tribuit Hultsch.' Cf. Proclus, ed. Fried-

lein, pp. 419, 420. See pp. 164, 165.
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source he derived his habit of thought, which is not unsci

entific. Such is this locus with three or four lines, on which

he plumes himself greatly, adding, that he knew that he

owed thanks to him who first wrote about it.]'6

(e) We also learn from Hypsicles that Aristaeus wrote

a book on the Comparison of the Jive regular solids, and that

it contained the theorem : ' The same circle circumscribes

the pentagon of the dodecahedron and the triangle of the

icosahedron, these solids being inscribed in the same

sphere.' Hypsicles says, further, that ' this theorem is

also given by Apollonius in the second edition of his Com

parison of the dodecahedron with the icosahedron,'1 which

is : The surface of the dodecahedron is to the surface of the

icosahedron as the dodecahedron itself is to the icosahe

dron ; since the perpendiculars from the centre of the

sphere to the pentagon of the dodecahedron and to the

triangle of the icosahedron are the same.'6

The foregoing extracts lead us to form a high opinion

of Aristaeus, and to see that he was one of the most

important geometers before Euclid. We have, therefore,

great reason to regret the total loss of his writings.

In the passage (a) Aristaeus, Euclid, and Apollonius,

are named as the three authors on the doctrine of analysis.

This passage shows, further, the value that was attached

by the ancients to the five books of Aristaeus on solid loci,

which was one of the works—indeed one of the higher

works—included in the toitoq avaXvontvog. From the

passage (b) it would appear that Aristaeus published also

a work on the elements of conics in five books—an abridg-

' Pappi Collect., p. 676, 1. 19—p. 678, 1. 15. '1. 25. i Si EvK\elSris—p. 678,

1. 15, toiovt6s ianv, scholiastae cuidam historiae quidem veterum mathematico-

rum non imperito, sed qui dicendi genere languido et inconcinno usus sit, tribuit

Hultsch,' Ibid., p. 677. As Hultsch says, ' the writer of this passage has

employed a feeble and awkward manner of expression ' ; and it is difficult to see

the exact meaning of it. The spaced words are supplied in translation.

7 irevrc axrjfi^rwv aliynpiais.

s Euclid, Book XIV., Prop. 2. This book is in reality the work of Hypsicles.
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ment introductory to the study of solid loci. Of his work

on solid loci it is, moreover, stated in (c) : 'ApiaraXog if, 6g

yiyparpe ra p(\9i T0" v"v avaSiBoptva arepewv tottuiv rtv^V *

crvvexn ro'ig koivikoIc. This passage admits of several inter

pretations :—

1. That the work on solid loci was intended as an

extension of the theory of conics ;

2. Aristaeus first wrote the tottoi trrtpeoi in five books,

and then, to facilitate the study of them, he wrote the

K<if»>iica arotxtia—an epitome—also in five books ;

3. toic KwviKoig might possibly refer to the conics of

Euclid.

We learn further from (c) that Aristaeus gave to the

conic sections their original names, those by which they

were known before Apollonius.9 From (d) we learn that

Euclid praised the conics of Aristaeus, whom he valued

highly, and from the words i<p' oig r)S,j irapaSeSaiKti kcuwkoIc,

and tpOaaag, it has been concluded that he was a pre

decessor, and probably a senior contemporary of Euclid.10

We have seen that the passage [b) is regarded by

Hultsch as an interpolation. In this Heiberg agrees, and

infers thence that Aristaeus wrote only one work on the

conic sections—tottoi areptoi in five books—and holds that

the generally received opinion that Aristaeus, besides the

five books tottoi artptoi, had written five more books KwviKo.

aroixiia is not sufficiently well founded. He says : ' The

only passage which can be adduced for it, Pappus VII., p.

672, II: fiv piv ovv avaBedopiva KwviKwv (ttoixuidv trponpov

' Apiaratov tov Trptaj3vr(pov t reu^r/, we av riSti Svvarotg ovm toXq

tovtix trapaXapftavovaiv imTopwrepov ytypappiva, is rightly

rejected by Hultsch as not genuine,' and continues, 'It

occurs in a perfectly wrong place where Apollonius irtpl

vevanov is referred to, is objectionable in many respects in

s Cf. pp. 164, 165.

10 J. L. Heiberg, StuJien uber Euklid, p. 85.
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point of language, and contains nothing but what a reader

of Pappus already would find in him ; I believe, therefore,

that we, in the words p. 672, 4-14, have a scholium which

originally stood in the margin after p. 672, 16, and later

fell into the text in a wrong place : the scholiast has then

called the five books toitoi artptoi, here incorrectly oroi\iia

KwvtKa. And even were the passage genuine (and only

misplaced) the probability would be then that Pappus here

by arot\iia Kwvuea had meant the tottoi.' 11

With this conclusion of Heiberg I cannot agree. In

the first place, it should be observed that the passages of

Pappus enclosed by Hultsch in [ ] are to be considered as

interpolations for reasons of style, not of substance. The

passage referred to was either written by Pappus himself

(as Cantor and others assume), or it originated with an

experienced commentator (scholiast), whose statements in

other passages also are acknowledged as correct—or, to

doubt which there is no occasion; or else these scholia

contain remnants of the tradition of the mathematical

school of Alexandria, and this tradition must be considered

on the whole as correct, so long as the contrary is not

proved.12

In the next place, Heiberg is not correct in saying

that ' it is the only passage which can be adduced for it. '

The same statement is made expressly in the text of

Pappus himself, a few lines lower down, in the passage

quoted above : 'ApiaraiOQ Si, oq ytypaipi ra fiiXP1 r0^ v*>v avaSt-

Sofitva artptCjv tottov tcv\ii £ o-vvt\i) roie KutviKOig (p. 672, 1. 20).

Heiberg tries to obviate this objection by interpreting

11 J, L. Heiberg, /. c.

n It is certain that Pappus had a school. It may, therefore, be assumed that

one—or perhaps several—of his pupils had taken notes of his lectures ; and that

these notes, arising thus from the oral exposition of Pappus himself, were worked

out further by his pupils, and formed Commentaries, which were then written on

the margin, and subsequently received into the text, of the work which has come

down to us as noir^ou avvaywylj. These Commentaries are easily recognised by

their style, but as to their contents, they must be considered to be of almost

equal authority with the undoubted text of Pappus.
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trvvexn as meaning : ' which stands in connection with the

doctrine of the conic sections—depends on it'. In passage

(d), moreover, the conics of Aristaeus are, I think, directly

referred to in the words : Sia twv iiaivov [_' kpiaraiov] kwwicuv.

Heiberg, further, says that the interpolation, or scholium,

occurs in a perfectly wrong place; but, as he shows, it has

to be placed only two lines lower. My view of the matter

is that given above, p. 199, 2 :—Aristaeus first wrote the

solid loci in five books, and then, to facilitate the study of

them he wrote the Elements of Conics—an epitome—also in

five books.

The Conics of Aristaeus, no doubt, do not appear in the

list of books contained in the so-called rono? avaXvofitvog ;

neither do those of Euclid : they were both replaced by

the Conics of Apollonius in eight books.

We have seen that Aristaeus wrote a work on the

comparison of the five regular solids, and that it contained

the theorem : The same circle circumscribes the pentagon

of the dodecahedron and the triangle of the icosahedron,

these solids being inscribed in the same sphere (e).

If we examine the proof of this theorem as given

by Hypsicles, we see that it depends on the following

theorems :—

1. If a regular pentagon be inscribed in a circle, the

square on a side, together with the square on the line sub

tending two sides of the pentagon, is five times the square

on the radius of the circle ;

2. If the line subtending two sides of a regular penta

gon be cut in extreme and mean ratio, the greater segment

is the side of the pentagon. Euclid, XIII. 8 ;

3. The side of a regular decagon inscribed in a circle

is the greater segment of the radius cut in extreme and

mean ratio ;

4. The square on the side of a regular pentagon in

scribed in a circle is equal to the sum of the squares on the
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sides of the regular hexagon and decagon inscribed in the

same circle. Euclid, XIII. 10 ;

5. If an equilateral triangle be inscribed in a circle,

the square on the side is three times the square on the

radius. Euclid, XIII. 12 ;

6. The square on the diameter of a sphere is three

times the square on the side of the inscribed cube. Euclid,

XIII. 15 ;

7. The line subtending two sides of the pentagon of a

dodecahedron inscribed in a sphere is the side of the cube

inscribed in the same sphere ;

This follows from (2) taken with the corollary of XIII.

17 : If the side of the cube be cut in extreme and mean

ratio, the greater segment is the side of the dodecahedron ;

8. The square on the diameter of a sphere is five times

the square on the radius of the circle by means of which

the iscosahedron is descried—i. e. the circle circumscribing

the pentagon which forms the base of the five equilateral

triangles having for common vertex any vertex ofthe icosa-

hedron. Euclid, XIII. 16, and Corollary.

From the fact that ' the work of Aristaeus on the Com

parison of the regular solids is the newest and last that

treated, before Euclid, of this subject,' Bretschneider infers

that ' the contents of the thirteenth book ofthe Elements is

a recapitulation, at least partial, of the work of Aristaeus.' 13

This supposition of Bretschneider receives, I think, great

confirmation from the above examination, which shows

that the principal propositions in Book XIII. of the

Elements are required for the demonstration, as given by

Hypsicles, of the theorem of Aristaeus. This theorem,

moreover, goes beyond what is contained in the Elements

on this subject.

Further, one of the four problems treated of by Pappus

in the third book of his Collection is the inscription in the

sphere of the five regular polyhedra. M. Paul Tannery has

13 Geom. vor Eukl.,-p. 171.
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thrown out the suggestion that it is probably taken from

the Comparison ofthefivefigures by Aristaeus the elder, but

has given no reasons for his opinion.14 In support of this

conjecture I would put forward that : —

1. Pappus concludes his treatment of the subject by

saying that ' from the construction it is evident that the

same circle circumscribes the triangle of the icosahedron

and the pentagon of the dodecahedron inscribed in the

same sphere,'1' which is the theorem of Aristaeus, and

expressed, moreover, in nearly the same words as in

Hypsicles ;

2. Pappus says in Book VII., as we have seen, pp. 194-5,

that the works in the roirog avaXvi'i/ievog—of which the roirnt

artpeol of Aristaeus is one—proceed by the method of

analysis and synthesis ; and it is to be observed that the

investigation in Pappus of the problem, ' to inscribe the

regular solids,' is made by the analytical method ; 16

3. Pappus, moreover, in Book V., treats of ' the com

parison of the five figures having equal surface, viz. the

pyramid, cube, octahedron, dodecahedron and icosahedron,'

and says that he will do so, ' not by the so called analytic

method, by which some of the ancients (™v naXatuv) found

their proofs, but by the synthetic method arranged by him

in a more perspicuous and shorter manner'—l^ijc $e tovtoiq

ypaxpo/iev, cl»e VTre<T\6p-eda, rag avyKpiaEig twv i'txrjv tirupavtiav

tXpVrwv ittvtz o-^ijjuarwv, irvpapiSog re Kai Kv(!5ov Kai OKratSpov

SwScKaeSpov re Kai ttKoaatSpov, ov Sta rrig avaXvrtKrig Xtyopevrig

OtwptaQ, Si rig tvioi twv iraXaiiov iiroiovvro rag airoSti^cig, aAAci

Sia rrig Kara avvQtaiv ayojyijg ein to aafyiartpav Kai avvropwrtpov

vir Ifiov SieaKtvaapsvag."

The theorem of Aristaeus can be proved in the following

simple manner :—

14 VArithmttique des Grecs dans Pappus, Memoires de la Societe des Sciences

phys. et nat. de Bordeaux, 2e Serie, tom. III., p. 351. 1880.

15 Pappi Collect., vol. I., p. 162.

16 Ibid., pp. 142-162.

17 Ibid., pp. 410, 412.
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If a regular dodecahedron be inscribed in a sphere, the

poles of its faces will be the vertices of a regular icosahe-

dron inscribed in the same sphere ; and, conversely, the

vertices of the dodecahedron will be the poles of the faces

of the icosahedron. Now let R be the pole of the circle cir

cumscribing the pentagon ABCDE of the dodecahedron,

and let S and The the poles of the circles circumscribing

the two other pentagons of the dodecahedron which have

the vertex A in common : then A will be the pole of the

circle circumscribing the triangle RST of the icosahedron.

Now, if the points R and A be joined to O, the centre of the

sphere, the lines OR, OA so drawn will be at right angles

to the planes ABCDE and RST respectively: let them

intersect these planes at the points P and Q respectively.

Then the two right-angled triangles ORQ, OAP—having

equal hypotenuses OR, OA, and common angle ROA—

will be equal in every respect ; therefore OP = OQ and

AP= BQ. But AP and BQ are the radii of the circles

circumscribing the pentagon of the dodecahedron and the

triangle of the icosahedron, and OP, OQ are the perpen

diculars drawn from the centre to these two planes.

In the second chapter of this work (p. 38, sg.), we saw

that ' the Pythagoreans were much occupied with the

construction of regular polygons and solids, which in their

cosmology played an essential part as the fundamental

forms of the elements of the universe' : 16 and in the third

18 These Pythagorean ideas—which were adopted by Plato, Tl\irwv Se Kal it

toutoij irvdayoplfci (see p. 86, n. 76)—played such an important part in antiquity

that they gave rise to the belief, related by Proclus, that Euclid ' proposed to

himself the construction of the so-called Platonic bodies [the regular solids] as

the final aim of his systematisation of the Elements ' (p. 6). This has been noticed

by P. Ramus, who says: 'Nihil in antiqua geometria speciosius visum est quinque

corporibus ordinatis, eorumque gratia geometriam ut ex Proclo initio dictum est,

inventam esse veteres illi crediderunt ' ; but he adds : ' At in totis dementis nihil

est istis argutiis ineptius et inutilius.'*

• (Petri Rami Scholarum Mathematicarum Librj unus et triginta. Francofurti, 1599,

p. 306.)
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chapter (p. 86, sq.), I pointed out a problem of high

philosophical importance to the Pythagoreans, which, in

my judgment, naturally arose from their cosmological

speculations, and which required for its solution a knowledge

of stereometry, and also the solution ofthe famous problem :

to find two mean proportionals between two given lines. In

the same chapter (p. 88) I indicated the men who first

solved this problem, and laid the foundation of stereome

try : in the following chapters I examined their work ;

and finally in this chapter we have seen that Aristaeus

wrote works on the conic sections and on the regular solids,

and, further, that he is specially mentioned as one of those

who cultivated the analytic method—the method by the

aid of which these discoveries were made, as stated in

p. 88. Aristaeus may, therefore, be regarded as having

continued and summed up the work, which, arising from the

speculations of Philolaus, was carried on by his succes

sors—Archytas, Eudoxus, and Menaechmus. These men

were related to one another in succession as master and

pupil, and it seemed to me important that the continuity

of their work should not be broken in its presentation.

[It may be interesting to some of the readers of this work to know that

William Allman, M.D., Professor of Botany in the University of Dublin (1809-

1844), and father of the writer, in a Memoir entitled : ' An attempt to Illustrate a

Mathematical Connection between the parts of Vegetables' (read before the Royal

Society of London in the year 181 1), put forward the hypothesis that the minute

cells in the young shoots of vegetables are of the dodecahedral form in Dicotyle

donous plants ; and of the icosahedral form in Monocotyledonous plants ; and that

by means of this hypothesis he accounted for the prevalence of the number 5, and

the exogenous growth in the former, and of the number 3, and the endogenous

growth in the latter.]
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CHAPTER IX *

THEAETETUS.

Theaetetus of Athens.—Notices of his work.—Passage from Plato's 'Theaetetus'

quoted and annotated.—Theaetetus first wrote on the five ' Regular Solids.'—

In the composition of his ' Elements ' Euclid was most indebted to the

Pythagoreans, Theaetetus and Eudoxus.—What portions of the ' Elements '

are due to each of these sources ?—The principal part of the original work

of Euclid himself is contained in the Tenth Book.—Probable object of this

Book.—Pythagoras discovered the Theory of Incommensurables, and it is

probable that the Pythagoreans went farther in this research than is

commonly supposed.—Conclusion.

At the close of the last chapter I pointed out the con

nection between the several parts of this work, and stated

the reasons for the order which I followed. This order

was founded on the belief that the true history of Greek

geometry was most correctly represented by exhibiting

in an unbroken series the work done by Archytas and

his successors. This course of proceeding led to the tem

porary omission of at least one geometer, who had greatly

advanced the science.

Theaetetus of Athens, a pupil of Theodorus of Cyrene,

and also a disciple of Socrates, is represented by Plato, in

the dialogue which bears his name, as having impressed

both his teachers by his great natural gifts and genius.

* Within the last year the following works have been published : Euclidis

Elementa, edidit et Latine interpretatus est J. L. Heiberg, Dr. Phil., vol. in.,

librum x. continens, Lipsiae, 1886 ; die Lehre von den Kegelschnitten im Alter-

tum, von Dr. H. G. Zeuthen, zweiter halbband, Kopenhagen, 1886 ; Notice sur

les deux Lettres Arithmltiques de Nicolas Rhabdas (texte Grec et traduction), par '

M. Paul Tannery (Extrait des notices et extraits des manuscrits de la Bibliotheque

nationale, &c, torn, xxxn., i'«Partie), Paris, 1886.

A new journal, devoted to the History of Mathematics, has been founded this

year by Dr. Gustaf Enestrom, of Stockholm :—Bibliotheca Mathematica, Journal

d'Histoire des Mathematiques.
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All that we know of his work is contained in the following

notices :—

(a) . He is mentioned by Eudemus in the passage quoted

from Proclus in the Introduction (p. 4), along with his

contemporaries Archytas of Tarentum, and Leodamas of

Thasos, as having increased the number of demonstra

tions of theorems and solutions of problems, and developed

them into a larger and more systematic body of knowledge; 1

(b) . We learn from the same source that Hermotimus

of Colophon advanced yet further the stores of knowledge

acquired by Eudoxus and Theaetetus, and that he dis

covered much of the ' Elements,' and wrote some parts

of the 'Loci';'

(c) . Proclus, speaking of the collection of the ' Ele

ments ' made by Euclid, says that he arranged many

works of Eudoxus, and completed many of those of

Theaetetus ; 3

(d) . The theorem Euclid X. 9 :—' The squares on right

lines, commensurable in length, have to each other the

ratio which a square number has to a square number;

and conversely. But the squares on right lines incom

mensurable in length have not to each other the ratio

which a square number has to a square number ; and

conversely'—is attributed to Theaetetus by an anonymous

Scholiast, probably Proclus. The scholium is :—tovto to

ditbprifia Qtairririiov iortv ivpyfia Kai (iipvrirai avrov UXarwv iv

Qiairririji, aXX' £K£i fiiv fitpinwrtpov tyniirat [tKKtirat], tvravOa Bi

KaOoXov ; 4

(e) . In the passage referred to, Theaetetus relates how

his master Theodorus—who was subsequently the mathe

matical teacher of Plato—had been writing out for him

1 Proclus, ed. Friedlein, p. 66.

2 Ibid., p. 67.

3 Ibid., p. 68.

4 Knoche, op. cit., p. 24 ; cf. F. Commandinus, Euclidis Elementorum Libri

XV., una cum Scholiis antiquis, fol. 129, p. 2, Pisauri, 1619.
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and the younger Socrates something about squares :5 about

the squares whose areas are three feet and five feet, show

ing that in length they are not commensurable with the

square whose area is one foot" [that the sides ofthe squares

whose areas are three superficial feet and five superficial

feet are incommensurable with the side of the square

whose area is the unit of surface, i. e. are incommensu

rable with the unit of length], and that Theodorus had

taken up separately each square as far as that whose

area is seventeen square feet, and, somehow, stopped there.

Theaetetus continues :—' Then this sort of thing occurred

to us, since the squares appear to be infinite in number,'

5 n*pl Svvdfie&v ri rifuv 0eiJ5wpoj 85e eypaipe, ti}s re rpiiroSos ir4pi KoX irevt4-

iroSos airotpaivuv b"ri fi-fjKei ov ^vfifierpoi tj; iro$iaia. In mathematical language

iwafus signifies ' power,' especially the second power or square. In the passage

(e), however, the word seems not to be used steadily in the same signification,

and in 148 A it certainly means ' root.' M. Paul Tannery considers that the

present text of Plato is corrupt, and that in it Sivaiiis (power) should be replaced

throughout by Swafi4rn (root). Professor Campbell {Theaetetus of Plato, p. 21,

note) thinks that ' it is not clear that in Plato's time this point of terminology was

fixed.' But, on the other hand, J. Barthelemy Saint-Hilaire believes that the

expression, Svvafus, was probably invented by the Pythagoreans (Metaphysique

aVAristote, torn. II., p. 156, n. 16). In support of this view it may be noticed

that the term Svv&nei is used in its proper signification throughout the oldest frag

ment of Greek geometry—that handed down by Simplicius from the History of

Geometry of Eudemus on the quadrature of the lunes (see pp. 69-75 ; and, for

the revised Greek text, Simplicii in Aristotelis Physicorum libros quatuorpriores

commentaria, ed. H. Diels, pp. 61-68, Berlin, 1882)—and is so used, for the most

part, in paragraphs which, according to the criterion laid down in p. 72, «. 45,

must be regarded as genuine. Now since Eudemus, in this fragment, gives an

analysis of the work of Hippocrates, and, moreover, frequently refers to him by

name, it is probable that, in parts at least, he quoted the work on lunes textually,

and that the word Swifiei, which occurs throughout, must have been used by

Hippocrates, who we know was connected with the Pythagoreans. On the whole

then it seems to me probable that Plato had not fully grasped the distinction

between the terms Sivafus and Swafievui ; and that in this is to be found the true

explanation of the obscurity of the passage.

6 fiiiKei ov ^ififierpoi tij 7ro5<a(<j. See Euclid X., Def. I. Sififierpa neyedri

\4yerai rh r$ avr$ fi4rpip fierpodfieva, aavnnerpa $4, &v finiSif ivS4xerai Koivbv

fi4rpov yev4ff8ai. Z.Evdeiai$vv&fiei ffvnfierpoi eiaiv, Stow ra dir' abruv rerp&~

yuva r$ autip xupiy /i^rp^toi, atfiJ pifier poi $4, Srav rois dir' avruv rerpaydvois

fiijSev ivS4xrirai xWpi0v Koivbv fi4rpov yev4ffdai.

7 lireiSli &ireipoi to ir\rjdos ai Svvdfieis 4<paivovro. Cf. Eucl. X., Def. 3 : rovruv
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to try and comprise them in one term, by which to desig

nate all these squares.'

Socr. ' Did you discover anything of the kind ? '

Theaet. ' In my opinion we did. Attend, and see

whether you agree.'

Socr. ' Go on.'

Theaet. 'We divided all number into two classes:

comparing that number which can be produced by the

multiplication of equal numbers to a square in form, we

called it quadrangular and equilateral.'8

Socr. ' Very good.'

Theaet. ' The numbers which lie between these, such as

three and five, and every number which cannot be pro

duced by the multiplication of equal numbers, but becomes

either a larger number taken a lesser number of times, or

a lesser taken a greater number of times (for a greater

factor and a less always compose its sides) ; this we likened

to an oblong figure, and called it an oblong number {irpofiriKrj

apiOiiov).'"

uiroKeifievuv SeiKvvrai, ori t>) irporedeiffij eiflem {nrdpxovaiv evdeiai ir\ijdei airapoi

ffififierpoi tc Kal affvfifierpoi ai fiev fiijKei pAvov, ai Si Kal Swanei.

8 tvv apidfiov iravra oixa Sie\dfiofiev. tov fiev ovvdfievov laov iffaicis yiyveadai

tqJ rerpaydvcp to ffxrifia aireiKaffavres rerpdycav6v te Kal Iffoir\evpov irpoo'eiirofiev.

Cf. Euclid, VII., Def. 19: rerpdyiovos api8fiis 4o-riv S iadxis taos 4) [i5] inrb Svo

iauv ipidnuv irepux6nci"js , a^s0 Aristotle, Anal. Post. I. iv., oIovto eii8v virdpxei

ypanfifi Kal to irepupepes, Kal to irepnrov Kal &priov dpidnf, Kal to irpunov Kal

avvderov Kal ia6ir\evpoi/ Kal irepdn-qKes (see Euclid, VII., Def. 7, 6, 12, 14).

Plato's expression is tautologous.

9 toP roiwv fiera\V tolytoV, Siv Kal rci rpia Kal rO. irevre Kal iros os dSvvaros iffos

iadKis yev4a0ai, d\\' fi irAeiW i\arr0vaKis f) i\arruv 7rAeovdicis yiyverai, ueifav

tii Kal 4\arruv del ir\evpa abrbv irepi\afifidvei, rip irpofi-fiKei o5 ffxrifiari aireiKaffavres

irpofi^Kri apidfibv eVoAeVa^uev. Cf. Euclid, VII., Def. 17 : "Otov 5e 5iio dpidfiol

iro\\air\affidffavreS dAA^Aoos iroiuffi tivo, 0 yev6fievos ^ir (ire 50s KaAeiriu,

ir\evpal 5e avrov ol iroAAairAaffiaVai'tes a'AA^Aous apiOfioi. From the time of

Pythagoras—to whom the combination of arithmetic with geometry was due—the

properties of numbers were investigated geometrically. Thus composite numbers

(aivderoi) were figured as rectangles, whose sides (irAeu/ml) are the factors.

Similarly, prime numbers (irpaitoi) were represented by points ranged along a

right line, and were hence called linear (ypanuMol) not only by Theon. of Smyrna

(Arithm. ed. de Gelder, p. 34), and Nicomachus (Nicom. G., Introd. Arithm., n.

c. 7), but also by Speusippus, who wrote a little work on Pythagorean numbers

P
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Socr. ' Capital ! What next ? '

Theaet. ' The lines which form as their squares an

equilateral plane [square] number we denned as juijicoc

[length, i.e. containing a certain number of linear units],

and the lines which form as their squares an oblong num

ber (roi< irtponriKii) we defined as Swafiug, inasmuch as they

have no common measure with the former in length, but

in the surfaces of the squares, which are equivalent to

these oblong numbers. And in like manner with solid

numbers.' 10

Socr. ' The best thing you could do, my boys ; no one

could do better.'—(Theaetetus, 147 D-148 B.)

(see Theologumena Arithmetica, ed. Ast., p. 61). Prime numbers were also

figured as rectangles whose common breadth was the linear unit, and they are thus

represented in this passage.

In geometry rb e reprf/iijicej signified a rectangle, and was so defined by Euclid,

Book I., Def. 22 : twv Sk rerpair\evpuiv axrl^ru)v rerpdyiovov fikv tsriv, t la6-

ir\evp6v re iari Kal opdoy&viov, erep6firiKes Sk, b bpQoy&viov fi4v, ovK ia6ir\evpov 5e\

Cf. Hero, Def. 53 ; Geom.,pp. 43, 52, 53, &c, ed. Hultsch ; Pappi Alex. Collect.,

ed. Hultsch, vol. I., p. 140. Euclid does not use the term irep6fiyKes in his

Elements, but irapa\\y\6ypafinov opdoyaviov. It is now generally recognised that

he derived the materials of his Elements from various sources : the term freptf-

/iijicej may thus have been preserved in his work ; or, else, he thought it better to

avoid the use of this term, as it was employed in a particular sense. When the

sides of the rectangle were expressed in numbers, irpo^Kijs was the general name

for an oblong. In the particular cases where the sides of the oblong contained

two consecutive units, as—2, 3 ; 3, 4 ; &c, the term irepofiiiKris was employed,

inasmuch as the lengths of the sides were of different kinds, i. e. odd and even ;

whereas in a square they were of the same kind, either both odd, or both even

(see the second chapter, p. 32, n. 51). It should be observed that when a square

is constructed equal to an oblong of this kind (erep6firiKes), its side must be in

commensurable ; but in certain cases the side of the square, which is equal to an

oblong of the former kind (irpofinKes) (e.g. whose sides are 8, 2; 3, 27 ; and so

on) is commensurable. The two words a«e used in this passage in their strict

signification, and are not, as M. Paul Tannery thinks, synonymous (see Dom-

ninos de Larissa, Bulletin des Sciences math, et astrom., torn, vm., 1884, p. 297).

Professor Campbell remarks : ' these terms [irpo^Kris erfpoyu^Kijs] were dis

tinguished by the later Pythagoreans' (loc. cit., p. 23, «.). This is misleading,

for it seems to imply that they were not distinguished by the early Pythagoreans.

10 oaai fiev ypajifiaX rhv la6ir\evpov Kal iirlireSov apidfihv ^erpayitivl^ovai, fiyKos

Ispiaaaeda, Saai Sk tov erepofiiiKri, Swa^ueis, as fiiiKei fikv oil £vfifi4rpovs fue/cius,

roiy S'iiriire$ois a ovvavrai' Kal irepl ra arepea aWo roiovrov. Cf. Euclid, VII.,

Def. 18 : Srav 5k rpe1s apidfiol iro\\air\aaidaavrcs aW-ti\ovs iroiwal riva, <5 yev6"

uevos arepe6s eariv, ir\evpal ok avrov oi iro\\air\a.aiaaavres a\\ij\ovs apiduoi.
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(f). We learn from Suidas that he taught at Heraclea,

and that he first wrote on ' the five solids ' as they are

called.11

Eudoxus and Theaetetus, then, were the original think

ers to whom—after the Pythagoreans—Euclid was most

indebted in the composition of his ' Elements.' In the

former chapters of this work we have seen that we owe to

the Pythagoreans the substance of the first, second, and

fourth Books, also the doctrine of proportion and of the

similarity of figures, together with the discoveries respect

ing the application, excess, and defect of areas12—the subject

matter of the Sixth Book : the theorems arrived at, how

ever, were proved for commensurable magnitudes only,

and assumed to hold good for all. We have seen, further,

that the doctrine of proportion, treated in a general manner,

so as to include incommensurables (Book V.), and, conse

quently, the recasting of Book VI., and also the Method of

Exhaustions (Book XII.), were the work of Eudoxus. If we

are asked now—In what portion of the Elements does the

work of Theaetetus survive ? We answer: since Books VII.,

VIII., and IX. treat of numbers, and our question concerns

geometry ; and since the substance of Book XL, contain

ing, as it does, the basis of the geometry of volumes, is

probably of ancient date, we are led to seek for the work

Solid numbers (orepeol) were also treated in the little work of Speusippus referred

to above (Theol. Arith. loc. cit.).

11 ' Theaetetus, of Athens, astronomer, philosopher, disciple of Socrates,

taught at Heraclea. He first wrote on " the five solids " as they are called. He

lived after the Peloponnesian war.'

' Theaetetus, of Heraclea inPontus, philosopher, a pupil of Plato.' Sub. v.

It has been conjectured that the two Notices refer to the same person. Mak

ing every allowance for the inaccuracy of Suidas, this seems to me by no means

probable. It is much more likely that the second was a son, or relative, of

Theaetetus of Athens, and sent by him to his native city to study at the Academy

under Plato.

ia By this method the Pythagoreans solved geometrical problems, which

depend on the solution of quadratic equations. For examples of the method, see

supra, p. 41, and p. 72, n. 46.
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of Theaetetus in Books X. and XIII. : and it is precisely

with the subjects of these Books that the extracts (d), (e),

and (f) are concerned.

Having regard, however, to the difference in the man

ner of expression of Proclus in (c) :—' Euclid arranged

many works of Eudoxus, and completed many of those of

Theaetetus'—we infer that, whereas the bulk of the fifth

and twelfth Books are due to Eudoxus, on the other hand

Theaetetus laid the foundation only of the doctrine of

incommensurables, as treated in the tenth Book. In like

manner, from (/) we infer that the thirteenth Book, treat

ing of the regular solids, is based on the theorems

discovered by Theaetetus ; but it contains, probably, ' a

recapitulation, at least partial, of the work of Aristaeus'

(p. 202J.

From what precedes, it follows that the principal part

of the original work of Euclid himself, as distinguished

from that of his predecessors, is to be found in the Tenth

Book.13 De Morgan suspected that in this Book some

definite object was sought, and suggested that the classifi

cation of incommensurable quantities contained in it was

undertaken in the hope of determining thereby the ratio

of the circumference of the circle to its diameter, and

thus solving the vexed question of its quadrature." It is

13 See Heiberg., Studien uber Euklid, p. 34 : ' Nach Proklus hat er [Euklid]

vieles von den Untersuchungen des Theatet vervollkommnet ; also, da Theatet

sich besonders mit Inkommensurabilitat und Irrationalitat beschaftigte, darf wohl

einiges von dem sehr umfangreichen und vollstandigen «X Buche dera Euklid

selbst angeeignet werden, was und wie viel, wissen wir nicht.'

Professor P. Mansion, of the University of Ghent, informs me by a letter of

the 4th March, 1887, that for several years past he has pointed out this result—

the originality of the Tenth Book of the Elements of Euclid—to his pupils in his

Course on the History of Mathematics. His manner of proof is substantially the

same as that given by me above.

See also M. Paul Tannery : VEducation Flatonicienne, Revue Philosophique,

Mars, 1881, p. 295 ; la Constitution des Elements, Bulletin des Sciences math, et

astron., 1886, p. 190.

14 The English Cyclopaedia, Geometry, vol. IV., 375 ; Smith's Dictionary of

Greek and Roman Biography, Eucleides, vol. II., p. 67.
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more probable, however, that the object proposed con

cerned rather the subject of Book XIII., and had reference

to the determination of the ratios between the edges of the

regular solids and the radius of the circumscribed sphere,

ratios which in all cases are irrational.15 In this way is

seen, on the one hand, the connection which exists between

the two parts of the work of Theaetetus, and, on the other,

light is thrown on the tradition handed down by Proclus,

and referred to at the end of the last chapter, that ' Euclid

proposed to himself the construction of the so-called

Platonic bodies [the regular solids] as the final aim of his

systematisation of the Elements.'

We are not justified in inferring from the passage

in Theaetetus (e), that Theodorus had written a work on

' powers ' or ' roots,' much less that the contribution of

the Pythagoreans to the doctrine of incommensurables

was limited to proving the incommensurability of the

diagonal and side of a square, i.e. of^2." Theodorus,

who was a teacher of mathematics, is represented in the

passage merely as showing his pupils the incommensura

bility of y$, ... v/ 1 7, and there is no evidence that

this work was original on his part. On the contrary, the

knowledge of the incommensurability of*/s, at all events,

must be attributed to the Pythagoreans, inasmuch as it

is an immediate consequence of the incommensurability of

the segments of a line cut in extreme and mean ratio

which must have been known to them, and from which

indeed it is probable that the existence of incommensu

rable lines was discovered by Pythagoras himself (see

supra, p. 42, and pp. 137-8).

There are, moreover, good reasons for believing that

the Pythagoreans went farther in this research than has

been sometimes supposed ; indeed Eudemus says ex-

15 See Bretsch., Geom. vor Evkl., p. 148.

18 See P. Tannery, op. cxt., pp. 188, 189.
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pressly : ' Pythagoras discovered the theory of incom

mensurable quantities (ruv aXoywv irpayfiariiav).' Further,

the lines *f3, ^5, . . . would occur in many investigations

with which we know the Pythagoreans were occupied :—

i°. In the endeavour to find the so-called Pythagorean

triangles, i. e. right-angled triangles in rational numbers ;

2°. In the determination of a square, which shall be

any multiple of the square on the linear unit, a problem

which can be easily solved by successive applications of

the ' Theorem of Pythagoras '—the first right-angled tri

angle, in the construction, being isosceles, whose equal

sides are the linear unit; the second having for sides about

the right angle the hypotenuse of the first [</2) and the

linear unit ; the third having for sides about the right

angle and 1, and for hypotenuse 2, and so on ;

30. In the construction of the regular polygons, for the

third triangle in 2° is, in fact, the so-called ' most beautiful

right-angled scalene triangle ' (p. 38) ;

40. In finding a mean proportional between two given

lines, or the construction of a square which shall be equal

to a given rectangle, in the simple case when one line is

the linear unit, and the other contains 3, 5, . . . units.

The method followed in this work differs altogether

from that pursued by most writers. The usual course has

been to treat of the works of Archytas, Theaetetus,

Eudoxus, Menaechmus, &c.—the men to whom in fact, as

we have seen, the progress of geometry at that time was

really due—under the head of ' Plato and the Academy.'

This has given rise to an exaggerated view of the services

of Plato and of the Academy in the advancement of mathe

matics : which is the more remarkable because a just

appreciation of the services of Plato in this respect was
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made by Eudemus in the summary of the history of

geometry, so frequently quoted in these pages :

'Plato, who came next after them [Hippocrates of

Chios, and Theodorus of Cyrene], caused the other

branches of knowledge to make a very great advance

through his earnest zeal about them, and especially geo

metry: it is very remarkable how he crams his essays

throughout with mathematical terms and illustrations,

and everywhere tries to rouse an admiration for them in

those who embrace the study of philosophy.'1'

The way in which Plato is here spoken of is in striking

contrast to that in which Eudemus has, in the summary,

written of the promoters of geometry.

17 n\&ruv 5' iirl rovrois yei,6fievos, fieyiffrriv iiro'njffev iiriSoaiv ra re HWa

fiad-fifi&ra Kal r^iv yecanerpiav \afieiv Sia r^v irepl avra inrovZiiv, 81 tom 5?}A<j$ iffri

Kal ra ffvyypdfifiara rois fiadijfiariKoTs \6yois KarairvKviaffas Kal iravraxov rb irepl

avra 6avp.a tuv <pi\offocpias avrex0fiei'ui' lircyeipuv- Proclus, ed. Friedlein, p. 66.





NOTES AND ADDITIONS.

Continuation of Bibliographical Notices.*

INCE the publication of the concluding part of this work in

O Hermathena (July, 1887), M. Paul Tannery has collected his

Papers, which appeared in the Bulletin des Sciences mathimatiques

et astronomiques, since April, 1885, and published them in a volume

entitled : La Glomitrie Greeque comment son histoire nous est parvenue

et ce que nous en savons. Essai Critique. Premiere partie. Histoire

generate de la gfamltrie llementaire. Paris, 1887.

M. Paul Tannery has also published a volume on the origin of

science in general—Pour VHistoire de la Science Hellene de Thalh a

Empldocle. Paris, 1887. This work is founded on articles which

were published by M. Tannery in the Revue philosophique.

Dr. Heiberg has completed his edition of the Elements of

Euclid by the publication of vol. v.—Continens Elemenlornm qui

feruntur Libros XIV.-XV. et Scholia in Elementa cum Prolegomenis

criticis et Appendicibus. Lipsiae, 1888.

The first part of a Monograph on Eudoxus by Herr Hans

Kiinsberg has recently appeared—Der Astronom, Mathematiker und

Geograph EUDOXOS, von Knidos, I. Theil : Lebensbeschreibung

des Eudoxos, Ueberblick iiber seine astronomiscke Lehre und geometrische

Betrachtung der Hippopede von Hans Kiinsberg, kgl. Reallehrer.

(Programm zum Jahresbericht der vierkursigen konigl. Realschule

Dinkelsbiihl pro 1888.) Druck von C. Fritz in Dinkelsbiihl.

There has also been recently published : A Short Account of the

History of Mathematics, by Walter W. Rouse Ball, Fellow and

Assistant-Tutor of Trinity College, Cambridge ; and of the Inner

Temple, Barrister-at-law. London, Macmillan and Co., 1 888.

This book is for the most part a transcript of some lectures

delivered this year by Mr. W. W. Rouse Ball.

 

* See pp. I, 52, 150, 180, and 206.
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Pages ii, 12.

The passage of Geminus referred to here is taken from his

Review of Mathematics, and is given in txtenso in Chapter vi.,

pp. 164, 165.

Pages 16, 80.

Harpedonaptae. See Cantor {Vorlesungen uber Geschichle der

Mathematik, pp. 55-57), who points out the Greek origin {apirdirq,

a rope, and airreiv, to fasten), previously overlooked, of this name,

and shows from inscriptions on the Egyptian temples that the

duty of these ' rope-fasteners ' consisted in the orientation of the

buildings by reference to the constellation of the Great Bear.

The meridian being thus found, the line at right angles to it was

probably determined by the construction of a triangle with ropes

measuring 3, 4 and 5 lengths respectively. We have seen (p. 29)

that the Egyptians knew that such a triangle would be right-

angled. The operation of rope-stretching, Cantor adds, was one

of unknown antiquity, being noticed in a record of the time of

Amenemhat I., which is preserved in the Berlin Museum.

Pages 29-32.

In connection with this passage of Plutarch, and the observa

tions thereon, it is interesting to note that M. Paul Tannery (la

Geomitrie Grecque, p. 105) has found in G. Pachymeres (MSS. de la

Bibliotheque nationale) the expression to Oeuprjfia rijs vu/i^ii;s, to

designate the 'theorem of Pythagoras' (Euclid 1. 47). In a letter

to me, of July 3, 1886, M. Tannery mentions that the Arabs call

it ' the theorem of the bride.' This name for the theorem seems

to point to the old Egyptian idea as handed down by Plutarch.
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Page 37, Note 58.

I have since found in Billingsley's Euclide1 the following note

on I. 43 :—

' This proposition Pelitarius calleth Gnomicall, and misticall

for that of it (sayeth he) spring infinite demonstrations and uses

in Geometry.' (Fol. 54.)

On referring to Peletarius, however, it will be found that he

only calls the figure Gnomic: not the proposition. After the

demonstration of I. 43, he says : ' Vix enim usquam in toto

opere Geometrico occurrit Figuratio magis foecunda quam haec

Gnomica : hoc est, quae uno parallelogrammo et Gnoma confla-

tur . . . Nam hie Gnomonis explicandi locus est maxime

oportunus : licet Euclides ad secundum librum distulerit.

' Hanc ego Figuram mysticam soleo vocare: Ex ea enim,

velut ex locupletissimo promptuario, innumerabiles exeunt Demon-

strationes. Quod cum magna voluptate perspiciet qui re Geometrica

seri6 se exercebit.' (Iacobi Peletarii Cenomani, in Euclidis Elementa

Geometrica Demonstrationum Libri Sex, p. 41. Lugduni, apud loan.

Tornsesium et Gul. Gazeium, 1557.)

Page 43, Note 64.

This proposition—Euclid X. 1 1 7—is an interpolation, and is

recognised as such by August, who gives it in Appendix V., pars, ii.,

1 The Elements of Geometrie of the most auncient Philosopher EUCLIDE

of Megara. Faithfully {now first) translated into the Englishe toung, by

H. Billingsley, Citizen of London.

Whereunto are annexed certainc Scholies, Annotations, and Inventions, of the best

Mathematiciens, both of time past, and in this our age.

With a very fruitfull Praface made iy M. I. Dee, specifying the chiefe
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p. 296 ; and by Heiberg, who gives it in the Appendix to Book X.,

(Euclidis Elementa, vol. nr., p. 408). In Billingsle/s Euelide,

after this theorem, which is prop. 116 in that edition, 'An other

demonstration after Flussas ' is given. Then follows the observa

tion : ' This demonstration I thought good to adde, for that the

former demonstrations seme not so full, and they are thought of

some to be none of Theons, as also the proposition to be none of

Euelida. (Fol. 310, p. 2.)

Pages 49 and 132 (d).

P. Ramus suspected that this Scholium was due to Proclus ; he

says : ' Quintum librum Scholiastes graecus Arcadius nempe vel

Pappus vel quod apparet 6 19 p. 10 [Euclid X. 19],1 Proclus refert

ad Eudoxum Platonis praeceptorem, quem tamen Proclus sodalem

Platonis efficit, et scopum ait esse libri de analogiis, et cert6 de

solis analogiis agitur libro quinto. Proclus putat totum librum

hunc esse communem Arithmeticae et Geometriae '

(Petri Rami Scholarum Mathtmaticarum libri unus et triginta,

p. 212 Francofurti, 15 990

Page 59.

Last line 'ApiorortAiica Kr/pCa, the name of a collection made by

Porus (Sporus) of Nicaea. See Archimedis Opera, ed. Heiberg,

vol. in., pp. 264 and 300 : cf. infra pp. 184-5. Dr. Heiberg, how

ever, distinguishes the KrjpCa of Porus from the Krjpia of Aristotle,

and thinks that by the latter is meant his treatise -rrepi o-o<pi<ttiku,v

i\£yX<i>v (loe. cit., p. 265).

1 See Commandinus, Euclidis Elementorum, Libri XV., una cum Scholiis

antiquis, fol. 135, p. 2, Pisauri, 1619 ; also Euclidis Elem. Graece ed. ab August,

pars ii., p. 284 ; and Biltingsley's Euclide, fol. 246, in each of which a certain

lemma, scholium, or annotacion, is attributed to Proclus.
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Page 6i.

M. Paul Tannery (la Géométrie Grecque, p. 8 1 ) thinks that this

passage of Iamblichus has hitherto been misunderstood. The last

sentence is translated by M. Tannery thus : ' Voici comment les

Pythagoriciens disent que la Géométrie fut rendue publique.

L'argent des Pythagoriciens fut perdu par l'un d'eux ; * 1 à la suite

de ce malheur, on lui accorda de battre monnaie avec la Géométrie,

—et la Géométrie fut appelée Tradition touchant Pythagore.' * M.

Tannery infers that the last words of the passage were the title of a

work on Geometry which Eudemus had in his possession, and from

which he derived his information concerning the works of the

Pythagorean School.

I am unable to agree with M. Tannery either as to the inter

pretation of this passage or in the inference he draws from it.

Pages 64-75.

The first part of this extract—as far as p. 69—is taken by

Simplicius chiefly from Alexander of Aphrodisias, and the re

mainder—from p. 69 to the end—from the second book of the

History of Geometry of Eudemus.

The Aldine edition of the commentary of Simplicius on the

Physica Auscultatio was published in 1526. In this edition the

text of the fragment of Eudemus is admitted to be very inaccurate.

* He adds the following notes :—

' 1 'A7rojSaAeû' two. r^v ovalav râv TlvOayopdwv. On traduit d'ordinaire : " Un

pythagoricien perdit sa fortune." Cette interprétation ne tient nullement compte

de la construction de la phrase, ni des moeurs de l'époque à laquelle se rapporte

la tradition. Les Pythagoriciens vivaient en communanté ; le dépositaire de la

bourse commune la perd, il faut recourir à des moyens extraordinaires. Voilà

la légende ; autrement elle ne se tient pas.

' 2 'EKoAeîro Si fi yeafierpla irpls Tlvdayépov laropla, ce que Kiessling traduit ;

" Vocabatur autem Geometria a Pythagora historia." Il semble avoir entendu :

" Pythagore appelait Géométrie histoire", interprétation insoutenable à tous les

points de vue.'
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M. Paul Tannery {la Géométrie Grecque) has noticed the suc

cessive attempts which have been made to explain and restore

this fragment—a subject which he had treated more fully in the

Mémoires de la Société des Sciences physiques et naturelles de Bordeaux

(Tome v., 2* série, 1883). I give here the passage from the

former work :—

' Bretschneider (1870) parvint le premier à expliquer conven

ablement l'extrait d'Eudème conservé par Simplicius, et par

reconnaître qu'aucun paralogisme n'y est attribué à Hippocrate ;

qu'au contraire on trouve dans cet extrait une suite de théorèmes

aussi intéressants qu' irréprochables.

' Quoique le document ne remonte pas à Hippocrate lui-même,

il n'en serait pas moins inappréciable pour permettre de juger

des connaissances géométriques de son époque, si malheureuse

ment Simplicius, sous prétexte d'éclaircir un texte trop concis, ne

s'était pas avisé d'y introduire des explications de son cru et de

malencontreux développements, qui le défigurent singulièrement.

La restitution du texte d'Eudème devient dès lors assez difficile

pour que Bretschneider ait été entraîné à de graves erreurs,

notamment à dénier à Hippocrate la connaissance de la pro

priété caractéristique des segments semblables, à savoir que tous

les angles inscrits y sont égaux.

'M. Allman {Hermathena, iv., No. 7, p. 196-202; 1881) a, le

premier, donné une traduction du texte d'Eudème, en le débar

rassant des interpolations de Simplicius, d'après des règles dont

l'application peut être discutée dans les détails, mais dont les

principes sont hors de conteste. L'année suivante (Berlin,* 1882)

paraissait l'édition critique du Commentaire de Simplicius sur les

quatre premiers Livres de la Physique d'Aristote, avec un texte

singulièrement amélioré et un essai de distinction des inter

polations dans le fragment d'Eudème (p. 61-68). Pour cette

distinction, le savant éditeur, H. Diels, s'était aidé des lumières

de M. Usener de Bonn, qui, en procédant suivant des principes

analogues à ceux de M. Allman, est arrivé à des résultats con

cordants sur divers points, divergents sur d'autres. M. Diels a,

d'autre part, inséré dans sa Préface, à la suite de remarques de

M. Usener (p. xxm.-xxvi.), quelques pages (xxvi.-xxxi.) d'obser

vations critiques qu'il m'avait demandées, et dans lesquelles, tout
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en proposant des explications ou des corrections particulières pour

certains passages obscurs, j'ai soutenu une partie des conclusions

de M. Allman, en abandonnant les autres.

' J'ai repris depuis la question dans les Mémoires de la Société des

Sciences physiques et naturelles de Bordeaux (v2, p. 179-187: 1883),

où j'ai publié le texte d'Eudème tel que je le comprenais, accom

pagné d'une traduction et] des observations nécessaires. Enfin,

M. Heiberg (Philologus, xliii. 2, p. 337-344) a soumis ma restitu

tion à une critique détaillée et proposé ses opinions sur divers

points spéciaux.' (la Géométrie Grecque, pp. 116-7.)

Page 85, Note 73.

Biering, Historia problematis cubi duplicandi, Hauniae, 1884.

Dr. Heiberg, in his notice of Cantor's ' History of Mathematics,'

Revue Critique d''Histoire et de Littérature, 16 Mai, 1881, p. 380,

remarks on this work : 'Je profite de l'occasion pour rappeler qu'il

a été prouvé, lors* de la soutenance orale de cette thèse, qu'elle

n'est qu'un impudent plagiat de l'ouvrage de Reimer sur le même

sujet.'

Pages 93, 94.

With reference to the question discussed here concerning

Hippias of Elis, see infra, pp. 189 sq.
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Absurdum, reductio ad, 43, 82, 83,

139, 186, 188.

Academy, 5, 85, 118, 123, 157, 178,

179, 211, 214.

Achaeans, 103.

Achilles and tortoise, 55.

aSivarov, iirayuyfi eis, 139 , Snptimv,

186.

Aelian, 10b, 107.

iEschylus, 58.

Agatharchus, 79.

Agesilaus, 128, 129.

'AKrivoypa<piri, 81.

Alexander of Aphrodisias, 66, 77, 78,

108, 221.

Alexander the Great, 154, 179.

Alexandria, School of, I, 2, 200.

Algebra, 16, 48, 70.

Allman, George Johnston, 1 16, 192,

222, 223.

Allman, William, 205.

&Koyov, 3, 47, 83.

Amasis, 9.

Amenemhat I., 218.

Ameristus (Mamercus), 3, 93.

Amphinomus, 155.

Amyclas, 4, 79, 154, 180.

ava\oyov, 145.

Analysis, method of geometrical, used

by Eudoxus, 4, 88, 132 ; defined

in and used by Euclid, 4, 136, 195,

198 ; known to Pythagoreans, 41 ;

9

invented or taught by Plato, 41,

123 ; elaborated or invented by Ar-

chytas, 41, 88, 123; by Theodorus,

41 ; used by Hippocrates, 41, 97 ; by

Menaechmus, 88, 160-163; amethod

of reduction, 140; treated of by Pap

pus, Apollonius, and Aristaeus, 194,

195, 198, 203.

Anaxagoras, 3, 17, 54, 58, 59, 79, 83,

122.

Angles, of isosceles triangle, 8, 10 ; sum

of, in triangle, 10-13, 24i m semi

circle, 10, 13, 76, 1 16 ; in same seg

ment, 73, 114; in similar segments,

76 ; re-entrant, 74 ; trisection of,

88-92, 191.

Anticleides, 22.

Antiphon, 56, 59, 62, 64-66, 77, 81,

82.

iirayuyi,, 41, 58, 59, 89, 97, 139, I4O.

Apollodorus (Apollodotus), 8, 25, 26,

130, 132, 177.

Apollonius, on conic sections, 93, 100,

122, 164, 165, 196, 201 ; on loci, 117,

118, 197; on doctrine of analysis,

195, 198 ; on regular solids, 198.

airoteAe<TiUci, 29.

Arc, 181.

Arcadius, 220.

Archaic Greek geometrical expressions,

8. 3°. 72, 155. 166-

4pX<, 29-
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Archimedes, Opera, 3, 53, 150: junior

to Euclid, 5 ; quadrature of parabola,

25, 133 ; of circle, 47, 59, 82, 183,

187; terminology, 70, 165, 166, 170 ;

trisection of angle, 90, 91 ; spirals,

92, 93 ; method of exhaustions, 95,

96, 133, 134 ; mechanics, 110 ; solid

geometry, 133, 134; ref. 57, 59, 82,

85, l»i I57. I58, 175. 22°-

Archippus, 104, 105.

Architas, 35, 1 08-1 10.

Archytas, life, 4, 106, 107 ; relations

with Plato, 4, 106, 148, 172-174,

175 ; doctrine of proportion, 27, 45,

108, 132, 134 ; numerical expression

of sides of right-angled triangles, 35,

108, 109 ; or Architas, 35, 108-110;

geometrical analysis, 41, 88; Delian

Problem, 88, 110-114, 133, 140, '4',

'52> 157—159, 189, 190; mechanics

and mechanical contrivances, 94, no,

158, 159, 171-173, 190; mathematical

knowledge of, 1 14-127, 169, 175,

176; relations with Eudoxus, 128,

130-134, 148 ; continuity of work,

205, 206.

Areas and surfaces, geometry of, 7, 16,

28 sg. ; around point, 12, 24, 38;

application (excess and defect) of, 24,

2S, 4i,43. 122. '7°. 171. 2»-

Aristaeus, 165, 194-205.

Aristophanes, 26, 42, 78.

Aristotle, gnomonic numbers, 32, 33 ;

ref. to Hippocrates, 57, 58, 61, 100;

quadrature of circle, 62 sq., 100 ; ter

minology, 70; axayuyii, 97, 98; toy

invented by Archytas, 107 ; lost

works, 107 ; character of Eudoxus,

129; aphorism of, 146; relations

with Alexander the Great, 154 ; with

School of Cyzicus, 154, 178, 179;

astronomical theory, 160, 172 ; square

and oblong numbers, 209 ; ref., 19,

22, 43, 56, 98, 108, 220, 222.

Aristoxenus, 20, 23, 79.

Arithmetic, 21-23, 48-50, 125, 132,

146.

Arneth, 1, 46, 93.

Arrow, flying, 55.

S/JtioI, 32, 209.

Asclepius, 109.

Ast, 27, 28.

Astronomy, 7, 8, 17, 21, 23, 125, 126,

142, 148, 149, 160.

aainfierpa, 208, 209.

Asymptotes, 166, 170, 177.

Athenaeus, 107.

Athenaeus of Cyzicus, 5, 178.

Athenians, 102, 105.

Athens, 18, 53, 54, 102.

Atomists, 22, 56.

August, 49, 132, 219, 220.

Aulus Gellius, no.

Autolycus, 150, 180, 181, 186.

Babylonians, 14, 27, 50.

Ball, W. W. Rouse, 217.

Bentley, 105.

Bibliographical Notes, 1-3, 52, 53,

ro2, 150-152, 180, 206, 217.

Biering, 85, 223.

Billingsley, 219, 220.

Birch, 16.

Boeckh, 129, 130, 153, 172, 178.

Boethius (Boetius), 3, 35, 48, 109.

Brandis, 19.

Bretschneider, notices of works, 1, 2,

52, 62, 151 ; on determination of dis

tances by Thales, 14 ; on squares on

sides of right-angled triangle, 3b ; on

geometry of Hippocrates, 63, 71-

74, 100 ; on quadratrix, 93, 187, 188 ;

on Archytas' solution of Delian

Problem, 123, 125; on proportions

ascribed to Eudoxus, 134 ; on Eu

clid's Elements, 135-137, 202 ; on

Eutocius' criticism of Eudoxus, 140 ;

on Menaechmus, 153, 154 ; do. as to
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conic sections, 166-170; ref., 4, 14,

46, 48, 56, 60, 68, 69, 222.

Bryson, 62, 77, 81, 82.

Callimachus, 128, 130, 131.

Callippus, 153, 160, 172, 179.

Camerer, 36, 146.

Campbell, 208, 210.

Cantor, notices of works, 52, 102, 151 ;

on Hippias, 94, 189; on Architas,

108, 109 ; on loci asknown to Archy-

tas, 115, 116, 119; on stereometry of

Plato's time, 126, 127; on Euclid's

Elements, 136, 137 ; on invention of

instrument by Menaechmus, 170; on

objection of Plato to geometrical in-

struments, 173 ; on indirect proof by

Deinostratus, 186 ; on quadratrix,

94, 191-193; on method of exhaus

tions, 192 ; on Harpedonaptae, 218 ;

ref., 60, 123, 135, 200, 223.

Carnot, 139.

Censorinus, 129.

Chaignet, 99, 104.

Chaldaeans, 14, 147.

Chisles, 13, 26, 46, 93, 119, 151.

Chonuphis, 129.

Chrysippus, 128, 131.

Cicero, 20, 79, 106, 147, 149.

Circle, properties of, 8, 10, 46, 76, 79,

96, 114, 138, 185-187, 201-204;

problems relating to, 77 ; most beau

tiful of all plane figures, 28, 46 ; con

tact of, 80, 83 ; on quadrature of, 62-

75. 77-79, 8l, 82, 96, 97, 99, 100,

180-184.

Cissoid, 90, 155, 156.

Clairaut, 15, 55.

Cleinias, 79.

Clemens, Alexandrinus, 16, 80.

Cleostratus, 129.

Commandinus, 207, 220.

Comte, 8, 15, 16, 48, 148.

Conchoid, 90, 92, 93, 156.

Cone (see also conic sections), 81, 96,

'33, "34. 139-

Conic sections, names of, 24, 100, 122,

155, 164, 196; not known to Pytha

goreans, 46 j treated ofby Apollonius,

93, 100, 122, 164, I65; by Aristaeus,

196-199 ; discovered byMenaechmus,

I IS, 122, 155-157, 163, 164, 170,

171, 176, 177 ; employed by him to

solve Delian Problem, 160-164; on

way in which he was led to the dis

covery, 166-169 : discovery related

to work of Archytas, 115, 123, 169;

relations to cone, 164-168, 196, 197.

Contact of circle and of sphere, 80, 83.

Cosmogony, Cosmology, 29, 38, 40, 46,

86, 87, 204, 205.

Counters, 31.

Crotona, 20, 22, 53, 103, 104.

Cube, known to Egyptians, 39 ; dupli

cation of (Delian Problem), 84, 85,

no, in, 140, 157-159, 173, 176, 177 ;

held as one of the Elements, 86, 87;

propositions regarding, 86-88, 202.

Curve (see also Line, curved), 180.

Cyclopaedia, English, 188.

Cylinder, 96, 110-114, 119-122, 133,

134, 139, 141, 142, 158.

Cylon, 20.

Cylonians, 104.

Cyzicinus, see Athenaeus.

Cyzicus, School of, 118, 129, 130, 149,

150, 172, 177-79-

Dante, 13.

Data of Euclid, 194, 195.

Daye. 219,

Decagon, 201, 202.

Dee, 219.

Definitions, 23.

Deinostratus, 5, 92, 94, 154, 171, 178,

180-193.

Delambre, 147.

Delian Problem, see Cube, duplication

of, Proportionals, two mean.

0 2
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Democritus, on Egyptian Harpedo-

naptae, 16, 80 ; atomic philosophy

founded by, 56 ; on incommensu-

rables, 57, 146 ; not named by Pro-

clus, 79, 189; Plato's antagonism

to, 79 ; Education of, 79, 80 ; mathe

matical writings of, 80, 81, 83 ; on

section of cone, 81; ref., 98, 122,

M4. 193-

De Morgan, 3, 147, 212, 219.

Descartes, 48.

Dialectics, 55-57, 144-

Diels, 28, 208, 222.

Diogenes Laertius, ignorance of geo

metry, 10, 14, 190; on views of Py

thagoras, as to circle and sphere, 28,

46 ; on Plato in relation to analytical

method, 41, 123 ; ref. to Democritus,

57, 79-81 ; on use by Archytas of

mechanical motion in geometry, 94,

no, 189 ; onEudoxus, 128-132 ; ref.,

14, 19, 20, 22, 23, 26, 56, 93, t28.

Dionysius, elder, 103, 105, 107 ; younger,

178.

Diophantus, 150, 171. '

SiopHrn6s, 4*

Disaster in connection with disclosure

of secrets, 25, 43, 60, 143.

Dodecahedron, 26, 39, 40, 43, 60, 61,

86, 198, 201-204.

Domninos, 210.

Dositheus, 95, 96.

Drawing, geometrical, 176.

Duhamel, 140.

Swafi4ni, Sivafiis, 208.

Duplication of the cube, see Cube.

f, 4*' I AB, 72.

Egyptians, invention of geometry by,

2 ; its elementary character, 7, 15 ;

geometry and astronomy learned by

Thales from, 7, 8 ; tiled pavements

of, 12, 29, 31, 33 ; ignorant of simi

larity and proportion of figures, 14 ;

square and level used by, 15 ; skilled

in practical geometry, 16, 80, 218;

Democritus taught by, 16, 80; cos

mology of, 29-32, 218; geometry of

Pythagoreans compared with, 28, 39,

47, 78 ; geometrical facts known to,

7, 26, 29, 33, 37, 38, 39, 43 ; quadra

ture of circle sought by, 47, 79, 97 ;

trisection of right angle possible for,

88 ; motions of planets learned by

Eudoxus from, 133, 148 ; art of

geometrical drawing derived from,

176.

Eisenlohr, 16.

Eleatic School, 54-56.

Elements, natural, represented by re

gular solids, 38, 40, 86, 87, 204.

Elements, writers of, 4, 5; of Euclid,

terms used in, 4, 25, 65, 209, 210 ;

construction of Platonic bodies, the

final aim of, 6, 204 ; propositions

in, referred to Thales, 9, I1, 14; to

School of Pythagoras, II, 24, 26,

40-44, 47, 145, 211 ; to Egyptians,

37, 38 ; to Eudoxus, 96, 132, 134-

140, 145, 146, 211,212; to Demo

critus, 146 ; to Aristaeus, 202 ; to

Theaetetus, 207, 211, 212 ; reference

to by Simplicius in extract from

Eudemus, 63, 64, 69, 71; Heiberg's

edition of, 150, 180, 206, 217, 220 ;

ref., 35, 36, 45. 49, 57, 7*, 82,

208-210, 219, 220.

&AeuK 24, 155, 165, 171.

Ellipse, 24, 100, 122, 155, 156.

Enestrom, 206.

Equation, 48, 171.

Equations, quadratic, 73, 211.

Eratosthenes, proportion as bond of

mathematics, 49 ; reduction of De-

lian Problem by Hippocrates, 59,

84 ; legend of Delian Problem, 85 ;

its solution by Archytas, Eudoxus,

and Menaechmus, II1, 158, 159, 173,

190 ; discovery of conic sections by

Menaechmus, 156, 163, 170, 171 ;
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epigram, 156, 157 ; Plato's answci

to Delians, 173, 174; works, 173,

195; Mesolabe, 190; ref., 114, 140,

141.

ircpifiiiiccs, irepofiitKris, $2, 209, 2IO.

Euclid (see also Elements), 5, 55, no,

114, 132, 155, 195. 197-199. *91-

Eudemus, historical summary, 2-5 ;

application of areas, 24 ; quadrature

of lune, 69-75, 22I, 222 ! solution of

Delian Problem by Archytas, 111-

113, 185, 215; ref. passim.

Eudoxus, sketch of life, 4, 128-132;

geometrical work of, 45, 88, 96, 1 1 1 ,

132-143, 149-159, 187 ; doctrines in

Euclid's Elements attributed to, see

Elements; relations with Archytas,

128, 131 ; with Plato, 128, 129, 147,

148, 159, 172-174. 177, with

Menaechmus, 153 ; school of

Cyzicus, 129, 130, 149, 150, 178,

179; term hippopede invented by,

142, 156, 157; supposed use of in

struments by, 159, 171, 190;

place in history of science, 148-150;

ref., 90, 158, 160, 172, 186, 205,

207, 214, 217, 220.

Euripides, 54, 85.

Eutocius, on quadrature of circle, 59 ;

on solution of Delian Problem by

Archytas, 1 11-113; byEudoxus, 140,

141 ; by Menaechmus, 158, 160-163;

by Plato, 173-175; by Sporus, 184,

185; on loci, 1 1 5- 1 1 9 ; on names of

conic sections, 155, 164; on use of

instruments in geometry, 163, 170;

ref., 21, 98, 189.

Qdywvov, 65.

Exhaustions, method of, 82, 95, 96,

138, '39. HO, I92,

Fabricius, 60, 61.

Favaro, 1 16.

Favorinus, 23, 1 10.

Figures, similar, 14, 15, 25, 44, 75, 76,

143-

Finger, n.

Flauti, 119, 120, 141.

Flussas, 220.

Friedlein, 3, 108.

Frisch, 49.

Gelder de, 124.

Geminus, II, 155, 163-165, 191, 192,

218.

Geometry, invented by Egyptians, 2 ;

no royal road to, 5, 154; brought to

Greece byThales, 3, 7, 19 ; of Egyp

tians and Thales compared, 7, 15,

16 ; of Thales analysed, 10-17 ;

raised to rank of science by Pytha

goras, 19, 22 ; ofPythagorean school

analysed, 28-48, 143, 144, 211 ; of

Pythagoreans and Egyptians com

pared, 28, 29 ; first published by Hip

pocrates in Athens, 54 ; influence of

Eleatic School and of Sophists on

development of, 54-57, 101, 144-

147 ; of Hippocrates analysed, 75-

77 ; of Democritus, 81-83 i of

Archytas, 114-116, 122, 123; ser

vices of Eudoxus to, 148, 149; of

Deinostratus analysed, 185, 186; of

Aristaeus analysed, 201, 202.

yvAfjutiv, 3o*

Gnomon, 30-33, 35, 37, 80, 83, 136,

219.

Guomonic numbers, see Numbers, gno-

monic.

Gow, 151, 157, 165.

ypafifiiKol, 209.

Greece, see Hellas.

Gregory, D., 155.

Grote, 19, 129-131, 144.

Griippe, 107.

Halley, It, 118.

Hankel, work by, 2 ; on reputed know

ledge of musical proportion by Baby
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Ionian*, 27, 28; on Pythagoreans

in reference to square and oblong,

33 ; to pentagon and dodecahedron,

38; to Euclid's Elements, 43, 145;

on Eleatic Philosophy, 54, 55 ; on

invention of quadratrix, 93, 94 . on

method of exhaustions, 95, 192 ; on

method in history of mathematics,

151 ; ref. 19, 52, 73, ioi.

Harmonical proportion, 27, 44, 45.

Hurpedonaptae, 16, 80, 218.

Heath, 150, 180.

Heiberg, works by, 53, 150, 180, 206,

21 7 ; on Lemmata of Archimedes,

91 ; on passage from Eutocius, 118;

from Pappus, 199-201 ; ref. to Eu

clid's Elements, 136, 137, 212, 220;

on Marie's Hist, des Sc. math, et

phys., 151 ; on mathematical terms,

155, 10S. 100 I on description of conic

sections, 171; ref., 114, 158, 175,

192, 220, 223.

Helicon, 133, 172, 177, 178.

Helix, 156.

Hellas, review of events in, 18, 19, 52-

54, 102-106.

Hermias, 179.

Hermotimus, 5, 207.

Herodotus, 18, 19, 103.

Heron, 3, 34, 37, 108, 159, 210.

Hexagon, 12, 24, 40, 65, 76, 202.

Hieronymus, 8, 14.

Hiller, 52.

Hippasus, 25, 27, 42, 45, 60, 61, '32,

134-

Hippias of Elis, 3, 92-94, 1 7 1, 189-

193. «3-

Hippocrates of Chios, biographical

references to, 4, 57-59, 61, 62, 98-

100 ; first writer of Elements, 4, 58 ;

quadrature of lunes, 4, 41, 58, 59,

D/-7S. 99, «oo ; of circle, 59, 62, 67,

68, 96, 97, 99, 100 ; use of method

of reduction by, 41, 58, 59, 84, 97;

inferences as to geometrical know

ledge of, 76, 77, 84; disclosure of

Pythagorean secrets by, 58, 60, 61 ;

reduction of Delian Problem by, 59,

84 ; supposed use of method of ex

haustions by, 95, 96, 192; term

Suvd/iei used by, 208 ; ref. 44, 47,

114, 115, 222.

Hippopede, 133, 142, 143, 156, 157,

217.

Hoche, 3.

Hoefer, 2, 16, 35, 151.

Homer, 78, 141, 156.

Horace, 107, 110.

Horus, 29, 32.

Hultsch, 3, 52, 102, 150, 180, 196-200,

2 10. See also Autolycus, Heron, and

Pappus.

Hyperbola, 24, 90, too, 119, 122, 164-

166, 170, 171, 177.

Hypsicles, 198, 201-203.

Iamblichus, on shipwreck of Hippasus,

25, 43, 61 ; on Pythagoreans in refe

rence to disclosure of secrets, 25, 42,

43, 58, 60, 61 ; to jealousy regarding

Pythagoras, 26, 61 ; to signs of re

cognition, 26, 42 ; to maxim quoted,

51 ; on proportions, 27, 45, 46, 132,

134; on quadrature of circle, 28;

ref., 20, 45, 77, 98, 99, 100, 135,

171, 221.

Icosahedron, 39, 86, 87, 198, 201-204.

Ideler, 149.

Incommensurables, Irrational quanti

ties, theory of, discovered by Py

thagoras, 3, 22, 27, 33, 42, 47, 96,

'37-139, '43. '44. 2I3, 2I4- treated

of in Elements of Euclid, 42, 43,

138, 145, 146, 207, 211-213 ; by

Democritus, 80, 83, 144 ; by Eu-

doxus, 96, 139, 145, 211; by Theo

doras, 207, 208, 213; by Theaetetus,

207, 212, 213; dialogue on, from

Plato's Theaetetus, 207-210; diffi

culties resulting from, 56, 57,73, 145.
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Index Graecitatis, 52, 102.

Infinitesimals, 81-83, >92-

Infinity, 55, 57.

Instruments, geometrical, 15, 158, 159,

163, 170, 172-175, 184, 189, 190,

192.

Ionia, 7, 18, 53.

Ionic School, 12, 17.

Irrational, see Incommensurables.

Isidore, 163, 170.

Isis, 29.

Isocrates, 20.

Isoperimetry, 46.

Italic School, 19.

Kafiiri\ai ypafifial, III, l$2, 140, 141.

Kepler, 26, 32, 35, 45, 49, 135.

Keria ('Api<rtoteAifci i<ripiaj, 59, • 85,

220.

Kiessling, 51, 221.

Knoche, 43, 49, 132, 157.

Kiinsberg, 217.

Laertius, see Diogenes.

Laffitte, 8, I1, 17, 98, 188, 189.

Leibnitz, 82, 83.

Lemmata, 90, 91.

Lemniscate, 142, 143.

Leodamas, 4, 41, 123, 124, 207.

Leon, 4.

Letronne, 129.

Letters, early use of, in diagrams, 26,

72 ; archaic manner of expression in

denoting lines and points by, 72 ;

employed by Aristotle to denote

conceptions, 97, 98.

Leucippus, 56, 79.

Level, 15.

Lewes, 19.

Lewis, 10.

Lines, geometry of, founded by Thales,

7, 15 ; analogous to duad, 24 ;

Aristotle on indivisible, 56 ; prob

lems concerning, 76, 77 ; conchoidal,

92 ; mixed, 92, 156 ; curved, 92, 93,

II1, 122, 132, 140, 141, 180, 187 ;

classified by Geminus, 155-157. See

also under Proportionals, Ratio.

Loci, 5, 207.

Locus, t6iros, 13, 115-119, 195,201,

203.

\6yoSf 146.

Lucian, 28, 42, 94, 191.

Lune, Lunule, quadrature of, 4, 41, 58,

63, 67-75. 97-100.

Lysis, 104, 105.

Maerker, 157.

Magna Graecia, 18, 19, 53, 102-106.

Mamercus, see Ameristus.

Manaechmus, 153.

Mansion, 212.

Marie, 151.

Marinus, 194.

Martin, 153, 160.

Mathematics, 19, 22, 23.

Matrimony, 29, 218, 219.

Means, see proportion ; work by Era

tosthenes, 195.

Measures and Weights, 23.

Mechanics, 110, 159, 190.

firjKuS, 208, 210.

Medmaeus, see Mendaeus.

Menaechmus, relations with Eudoxus,

4, 88, 90, 150, 153, 154, 178, 205 ;

with Plato, 4, 153, 154, 178; with

Deinostratus, 4, 154, 178, 180; with

Alexander the Great, 154, 179 ; solu

tion of Delian Problem by, 88, 114,

116, 124, 158-165, 172-177; conic

sections discovered by, 88, 90, 155-

157, 163-171, 176, 177; analytical

method used by, 88, 124; on prob

lem and theorem, 118, 155; iden

tical with Manaechmus of Suidas and

Eudocia, 153; on word element, 154;

on false conversions, 154, 155 ;

studied philosophy of mathematics,

171; ref. in, 115, 118, 119, 122,

140, 141, 190.
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Mendaeus (Medmaeus), 5.

Menge, 150.

Mesolabe, 190.

Miletus, 7, 18, 53.

Moeris, 22.

Monad, 24.

Montucla, on foundation of doctrine of

Isoperimetry, 46 ; on expulsion of

Hippocrates by Pythagoreans, 60 ;

on invention of quadratrix, 92-94,

191 ; on solution of Delian Problem

by Archytas, 119; on Plato, in refe

rence to method of analysis, 123-4 ;

ref., 13, 99, 151.

Motion, 55, 94, no, 190.

Multiplicity, 55.

Music, 22, 23, 49, 132.

Musical proportion : see Proportion.

Navarro, 106.

Nectanabis, 128, 129.

Neocleides, 4.

Neo-Pythagoreans, 19, 20.

Nesselmann, 151.

Nicias, 105, 106.

Nicomachus, 3, 27, 44, 135, 209.

Nicomedes, 92, 93, 94, 180, 191.

Nizze, 3, 165, 181.

Numbers, base of Pythagorean philo

sophy, 21 ; sides of right-angled

triangles expressible by, 26, 27, 33,

34, 108, 109; triangular, 28; gno-

monic, 31-33; square, 31-33, 208-

210; oblong, 32, 33, 209, 210; sum

mation of the natural, odd and even,

46 ; cyclical, in relation to quadrature

of circle, 78 ; treated of by Democri-

tus, 80 ; composite, 209 ; prime, 209,

210; linear, 209, 210; solid, 210.

See also under Proportion, Ratio.

vifupris, rb fleefynjjiia rrjs, 2 18.

Oath, Pythagorean, 28.

Octae'teris, 129.

Octahedron, 39, 86, 203.

Oenopides, 3, 12, 30, 58.

oKrdywvov, 65.

Orellius, 106.

Orientals, 7, 8, 37.

Osiris, 29.

r, 192.

Pachymeres, 218.

Pamphila, 8, 9, 14.

Pappus, Collectiones (ed. Hultsch), 3,

52, 102 ; terms and expressions used

by, 65, 75, 118; on trisection of angle,

89, 90 ; on plane, solid, and linear

problems, 90 ; on quadratrix, 94,

180-184, 188, 190, 191 ; on names of

conic sections, 165 j relations with

Sporus, 185, 191 ; on proportion of

circumference to diameter of circles,

187 ; on Aristaeus the elder, 194-

198; on r<Jiros tt.va\v6fievos, 194, 195 »

on inscription of polyhedra in sphere,

202, 203 ; ref. passim.,

lrapaPiWeiv, ■Kapafio\ij, 24, 25, 171,

177.

Parabola, 24, 25, 100, 119, 122, 133,

160-164, 166, 177.

Paracelsus, 26.

Parallelogram, 112, 114, 119, 120.

Parmenides, 55.

Peletarius, 219.

irti\Uov, 23.

Pentagon, 39, 40, 45, 65, 143, 198, 201,

202.

Pentagram, 26, 45, 143-144.

Pericles, 54, 103.

7iepiaa6s (Tcpimfc), 32, 33, 209.

irepitpdpeia, 181.

Perseus, 93, 143, 156.

Perspective, 79, 81, 83.

Qaivifieva of Euclid, 155.

Philippus Mendaeus, 5.

Philistion, 128, 131.
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Philolaus, 22, 62, 80, 86, 100, 106, 144

205.

Philoponus, 33, 58, 61, 62, 173.

Philosophy, Greek, 1, 144, 145 ; of

Thales, 1, 17; of Pythagoras and

Pythagoreans, 1, 21, 48-50, 86, 87,

178; Ionic, 54, 56; Eleatic, 54-57,

144; atomic, 56, 57; of Socrates,

146, 147 ; Eudoxus versed in, 149,

150 ; of mathematics studied by Me-

naechmus, 171; Platonic, 174, 179.

Phoenicians, 50, 53, 54.

Planets, motions of the, 133.

Plato (Tl\dnev), mathematical services

of, 4, 124, 214, 215; relations with

Archytas, 4, 106, 108, 125 ; with

Theodoras of Cyrene, 61, 124, 207 ;

with Socrates, 124; with Eudoxus,

128-130, 148, 177, 178; with

Menaechmus, 4, 153, 178; with

Deinostratus, Athenaeus, and Heli

con of Cyzicus, 1 78 ; with Theaetetus,

206, 211; School of, in reference to

conception of loci, 13 ; on right-

angled triangles with sides expressible

by numbers, 29, 34, 35, 108, 109 :

on dissection of figures, 38 ; on

regular solids, 38, 86 ; in relation to

method of analysis, 41, 123, 124;

term imvreinmra used by, 75 ; de

struction of writings of Democritus

desired by, 79; in relation to the

Pythagoreans, 86, 108, 109, 204;

on solution of Delian Problem,

114, 124, 133, 157-159, 171-^76 ;

on solid geometry, 125, 126; on

order in study of sciences, 125, 126;

on ignorance of incommensurables,

126 ; use of instruments in geometry

condemned by, 158, 159, 172—174;

on geometrical conception of num

bers (from Theaetetus), 207-210; ref.,

3, 46, 85, 86, 108, II1, 132, 147,

179, 220.

r\evpai, 209, 210.

Pliny, 9, 15.

Plutarch, on measurement of pyramids

by Thales, 9, 14, 15 ; on figure simi

lar to one and equal to another, 25,

44 ; on triangle with sides of 3, 4,

and 5 parts, 26, 29, 218 ; on Thales

and Hippocrates as merchants, 57 ;

on Democritus in ref. to section of

cone, 81, 82; on Pythagorean cos

mology, 85-87 ; on Plato in ref. to

Delian Problem, 133, 158, 159, 170,

172-174, 177; on Helicon of Cyzicus,

178.

Point, plane round a, 12, 24, 38 ; Py

thagorean definition of, 24 ; analo

gous to monad, 24 ; determination

of, see Locus.

Points, construction of curves by, 170,

171, 188-190.

Polemarchus, 172, 179.

Polybius, 18, 103.

Polygon, 12, 28, 38, 44,47, 65, 66, 78,

82.

Polyhedron, 88. See also} Solids,

regular.

Porism, 118.

Porphyrins, 22.

Poms, 185, 220.

iroa6v, 23.

Power, 208, 213.

Prime numbers, 209.

Prism, 88, 96, 133, 134, 138.

Problem and theorem, 10, 118, 155.

Problems, three kinds of, 90.

Proclus on History of Geometry, 2-6 ;

on application of areas, 24, 25 ; on

Pythagorean triangles, 34, 35; on

theorem of Pythagoras, 36 ; on aira-

yuyii, 41 ; on Plato in reference to

analytical method, 123, 124; on

Menaechmus, 154-157; ref. passtm.

Progressions, 27, 28, 46.

Projections, 120-122, 141.

irpo^Kijj, 209, 2IO.
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Proportion, doctrine of, 4, 44-50, 108,

132, 143, 145, 146, 211; in theorem

of Thales, 14, 16, 143 ; arithmetical,

geometrical, harmonical, and most

perfect or musical, 27, 44-46 ; dis

crete and continuous, 140.

Proportional, mean, 40, 43, 84, 117,

214.

Proportionals, two mean, reduction of

Delian Problem to finding, 41, 59;

84 ; in relation to Pythagorean cos

mology, 85-88, 205 ; solution by

Archytas, 88, m-114, 158, 159;

by Eudoxus, 88, in, 133, 158, 159;

by Menaechmus, 88, III, 158, 160-

163 ; by Eratosthenes, 158 ; attri

buted to Plato, 174, 175.

irpwtoi, 209.

Protractor, 192.

'fieuSoypd(prifia, 64, 68, 98.

Ptolemy I., 5, 154, 172 ; III., letter of

Eratosthenes to, 59, 85, no, 114,

«33. 140. "57. 173-

Pyramid, height of, measured by

Thales, 8, 9, 14 ; in papyrus Rhind,

16; compared with prism, 88,96, 133,

'34, 138 ; cubature of, 126, 127.

See also Solids, regular, and Tetra

hedron.

Pythagoras, personal notices of, 19, 20 ;

relations with Thales, 19, 20, 49 ;

with Egypt and Egyptians, 20, 50;

Brotherhood of, 20, 53, 54, 102-105 ;

veneration entertained for, 20, 21,

26 ; raised mathematics to rank of a

science, 22 ; discovered the irrational

and the construction of the regular

solids, 3, 22 ; added arithmetic and

music, 22, 23 ; employed definitions,

23 ; measures and weights introduced

by, 23 ; theorem of, 25, 26 ; Pytha-

gorae figura, 26 ; services of, 50.

Pythagoras and Pythagoreans, mathe

matical work of, 3, 22-28, 32-51,

88, 108, 143, 171, 213, 214; in ref.

to Elements of Euclid, see Elements ;

in relation to Egyptians, 28, 29, 37,

38, 78, 176; difficulties in treating

of, 20, 21 ; intimate connection be

tween science and philosophy of, 21,

22 ; did not commit their doctrines

to writing, 21, 99 ; doctrines of, pre

served secret, 21, 22, 43; disclosure

of ditto, 25, 43, 58, 60, 61, 143;

publication of, first made by Philo-

laus, 22, 100, 144; signs and sym

bols used by, 26, 42, 51, 143, 144;

oath of, 28 ; quadrivium, 23, 48 ;

cosmology of, 38, 40, 86, 87, 204,

205 ; maxim of, 51 ; silent meditation

enjoined by, 89, 99 ; aKovarutol,

fiadiifiarMoi, 99 ; Pythagorean num

bers, 209 ; ref. passim.

Quadrant, 181, 184, 186.

Quadratrix, 92-94, 171, 180-184, 186-

193-

Quadrature, of the circle, see Circle ;

of lunes, see Lune ; of the parabola,

25. 133-

Quadrivium, 48.

Quantity, discrete and continuous, 23,

48.

Ramus, 204, 220.

Ratio (see Proportion), extreme and

mean (sectio aurea, proportio divina),

40, 42, 45, 135, 137, 138, 143, 201.

Rectangle, 43, 44, 210.

Rectification, of the circle, 186, 187.

Reductio ad absurdum, 43, 139, 186,

188.

Reduction (see also 01070/7^), 87, 88,

92, 97, 98.

Reimer, 85, 165.

Rhabdas, 206.

Rhind, papyrus, 16, 47, 70.

Ritter, 19.

Root, 208, 213.
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Saint-Hilaire, 208.

Schiaparelli, 142, 153, 157.

Schmidt, 153, 154, 158.

Science, I, 3, 7, 8, 22, 148-150.

Section, 4, 132, 135.

Segment, 67, 75, 76.

Segments, similar, 69-76.

Seneca, 133.

Serenus, 154.

Sextus, 28.

Ship at sea, determination of distance

of, 9, 14.

Signs, secret, 26, 42, 144.

Simplicius, on Hist. Geom. of Eudemus,

21, 62-64, 69-75, KH. I23, 2o8, 223 ;

on gnomons, 33 ; on quadrature of

circle and of lunes, 62-75, 221, 222 J

on hippopede, 133 , on atpcupai ave-

\lrrovaai, 160, 172; term Swifiei

used by, 208 ; ref., 28, 60, 62, 77, 78.

Smith, 3, 22, S3, 130, 147, 212, 219.

Socrates, 22, 61, 62, 77, 92, 100, 124-

126, 147, 206.

Socrates the younger, 208-210.

Solids, measurement of, in papyrus

Rhind, 16 ; Plato on study of, 125,

126.

Solids, regular, construction of by Py

thagoras, 3, 22, 25, 28, 38, 39, 40, 47

204 ; final aim of Euclid's Elements,

6,204, 2 '3; in Egyptian architecture,

28, 39 ; in Pythagorean cosmology,

38, 86-88, 204 ; Aristaeus on, I98,

201-205; Apollonius on, 198; Pap

pus on, 202, 203 ; in relation to vege

table structure, 205 ; treated of by

Theaetetus, 212, 213.

Sophists, 55, 101.

Sotion, 128, 130, 177.

Speusippus, 118, 155, 209, 211.

Kpaipai ave\lrrovaai, 160, 1 72.

a<paipiK$i, 23.

Sphere, most beautiful solid, 28, 46 ;

contact of, 80, 83 ; solids inscribed

in, 198, 201-204, 213.

Spheres, in triplicate ratio of diame

ters, 96, 134, 139; concentric, 142,

149, 160 ; deferent and restituent,

160.

Spiral, 92.

Spirics, 93, 143, 156.

Sporus, 184, 185, 187, 188, 191, 220.

Square, carpenter's (see also Gnomon),

12, 15, 30 ; generation of, 32, 33 ; do

and that of oblong distinguished,

32 ; dissection of, 36-38 ; incom

mensurability of side and diagonal

of, 43, 56, 144. See also Circle,

quadrature of.

Squares, round a point, 12, 24, 38;

law of three [theorem of Pythagoras),

2S. 28, 35-38. 43, 44; problems

and theorems concerning, 43, 44, 76,

137. 138, 201, 202.

<rr«peol, 211. See also t6iroi.

Stereometry, 84, 88, 125-127.

Stesichorus, 3.

Stobaeus, 32, 33, 154.

aroix^a Kavutd, 199, 200.

aroixeiov, 154-

Suidas, 106, 107, 153, 211.

<rvfifierpa, 208.

aifiinwfia, 176.

awayaylj, Tlimov, 2O0.

awcSpia, 53, 103.

aivSeroi, 209.

Superficies, 24.

Surfaces, see Areas.

Suter, 2, 93.

Synthesis, 4, 123, 136, 195, 203.

Tannery, on projections in Archytas'

solution of Delian Problem, 121 ; on

Kufnrv\ai ypawiai, 141 ', on incom

mensurability, 144 ; on construction

of curves, 171; on Sporus, 185; on

Hippias in reference to quadratrix,

189-193 ; on polyhedra inscribed in

sphere, 202, 203 ; on Swapus and

Svvafievri, 208; works by, 150-152,



236 Index.

206, 217; on passage in Iamblichus,

221 ; on fragment of Eudemus, 222,

223 ; ref., 210, 212, 218.

Taylor, Thomas, 10, 51.

Taylor, Charles, 53, 60, 100.

Tennulius, 23.

Terms, Greek mathematical, 65, 69, 70,

155. 'S6, I59. 165, 166, 171, 177,

180, 181, 208-21 1.

rerpayuvifffi6sy tov K6K\ov, 79-

rerpayuvifavffa, 181.

rerpdyuvov, 32, 33, 65, 209.

rerpdyuvos api6fi6s, 209.

rerpdir\evpov, 65.

Tetrahedron, 38, 39, 86. See Pyramid.

Thales, founder of Greek philosophy

and science, 1 ; practical geometryand

astronomy introduced from Egypt

by, 3, 7 ; geometry of lines created

by, 7, I5 ; notices regarding life and

work of, 7, 8, 9; discussion on geome

try of, 10-17; theorems of, 8, 10,

14 ; foundations of algebra laid by,

16, 48 ; ref., 19, 45, 49, 50, 57, 72,

II5, II6-

Theaetetus, 4, 5, 107, 206-214.

Themistius, 62, 77.

Theodorus of Cyrene, disclosure of

Pythagorean secrets and expulsion of,

58, 60, 61 ; relations with Plato, 41,

61, 124, 125, 207; with Theaetetus

206, 207 ; on geometrical conception

of numbers, 207-210; on incommen-

surables, 208, 213; ref., 4, 58, 215.

Theodorus of Samos, 15.

Theodosius, 3.

Theologumena Arithmetica, 28, 210.

Theomedon, 128, 131.

Theon of Alexandria, 220.

Theon of Smyrna, 21, 52, 109, 153,

160, 209.

Theophrastus, 21.

Theudius, 5.

Thucydides, 102, 105.

8»ieprifia ti)s vvfiipris, 218.

tvpeit, 155, 156.

Thurii, 103, 105.

Tiedemann, 33.

Tiled Pavement, 12, 29, 30, 33.

Timaeus, 38.

W»i 69, l59-

rb i<p' o5, K, 72.

toiUewS, 69.

r6iroi arepeoi, 119, 195, 196, 199, 20O,

203.

t<iiroj (see Locus), ava\vifievos, 118,

194i '95, 203 I affrpovonovnevos

194.

Tore, 119, 121, 122, 141.

Trapezium, 70, 77.

Triangle, isosceles, 8, 10-12, 30, 38,

40, 42, 76, 164, 214; inscribed in

circle, 8, 10, 13, 77; right-

angled, 8, 10-13, I5, 42, 114; ditto

with sides expressible by numbers

{Pythagorean), 26, 27, 29, 33-35,

42, 108, 109, 214; squares on sides

of (theorem of Pythagoras), 25, 26,

35-38, 214; determined by base

and base angles, 9, 13 ; dissection of,

10, 12, 38 ; sum of angles in, 10-13,

24, 164 ; equilateral, 10-12, 24, 38,

39, 76, 164, 202; scalene, II, 38,

164, 214 ; equiangular, 14, 35, 76,

143 ; triple interwoven, see Penta

gram ; perfect, 28 ; most beautiful,

29, 38, 214; obtuse-angled, 76; of

icosahedron inscribed in sphere, 198,

201, 203, 204.

Triangles, similar, 9, 14, 15, 35, 40,

74. "4, H3-

Triangular numbers, 28.

Trisection of angle, 88-92, 191.

Tschimhausen, 188.

byie (a, 26.

Ueberweg, 19, 104.

{mevavria, 27, 44-

inrep$o\ii, 24, 1 66, 1 7 1.
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viroreivovaa, 75-

Usener, 222.

Valckenaer, 85.

Valerius Maximus, no.

Vegetables, mathematical connection

between parts of, 205.

Vieta, 92.

Villoison, 58, 61.

Vitruvius, 26, 79.

Volumes, 16, 83, 134.
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