
Plan for PURE Math 2012 Seminar

Week 3

Monday and Tuesday: The Kepler problem
Wednesday and Thursday: Background on AC
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PURE Math 2012 - Seminar
Week 3 Discussions - Background on Celestial Mechanics, Central Configurations

Days 1 and 2: The Kepler Problem

Background

Today we want start to retrace the steps of Isaac Newton (but using modern calculus
notation!) to show how Kepler’s Laws of planetary motion follow from the inverse square
law of gravitation. This will involve mostly calculus and the geometry and algebra of
vectors, rather than algebraic geometry. But every (future) mathematician should see
this chain of reasoning (at least) once because it is truly a landmark in the application of
mathematics to our understanding of the natural world!

The setting is this: place the large star mass M at the origin. We will assume that this
is fixed – the mass of the orbiting planet is so much smaller than the star’s mass that the
planet’s gravitational force on the star will be ignored. We will will use polar coordinates
since they are better adapted to the geometry and represent the position of the moving
mass m (the planet) by

q = rur,

where

ur = i cos θ + j sin θ

is the unit vector in the direction of q. We will also use

uθ = −i sin θ + j cos θ

which is another unit vector making a right angle with ur.
We want to think of (r, θ), the polar coordinates of the moving planet, as functions of

time, t throughout the following. Hence ur and uθ are also functions of t.

Discussion Questions

A) Show that
dur

dθ
= uθ and

duθ

dθ
= −ur

and hence by the chain rule

dur

dt
= uθ

dθ

dt
and

duθ

dt
= −ur

dθ

dt
.

B) Use the formulas from part A to show that the velocity and acceleration of the moving
planet are as follows:

v =
dq

dt
= r

dθ

dt
uθ +

dr

dt
ur
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and

a =
d2q

dt2
=

(

r
d2θ

dt2
+ 2

dr

dt

dθ

dt

)

uθ +

(

d2r

dt2
− r

(

dθ

dt

)2
)

ur

The formulas from part B and the F = ma law give the equations of motion in this
coordinate system: If the force acting on the planet is written as F = Frur + Fθuθ, then
we have

(1) m

(

r
d2θ

dt2
+ 2

dr

dt

dθ

dt

)

= Fθ

and

(2) m

(

d2r

dt2
− r

(

dθ

dt

)2
)

= Fr

C) The force exerted by the star on the planet is a central force, which means that Fθ = 0.
Show that this implies

(3) r2
dθ

dt
= h

is constant. Hint: Multiply through by r in (1) after setting the right hand side equal
to zero.

D) In calculus, you may have seen that the area inside a parametric polar curve r(t) =
f(θ(t)) for t ∈ [t1, t2] is given by

A =

∫ t2

t1

r(t)2
dθ(t)

dt
dt

(If not, can you see why this is true? Think of chopping the region into a large number
of “wedges” by lines through the origin, and approximating each wedge by a circular
sector.) Deduce Kepler’s Second Law (equal areas swept out in equal times) from part
C.

E) Now assume that the central force exerted by the star on the planet has the form
given in Newton’s gravitional law:

Fr =
−km

r2

(where k = GM), so (using (3))

(4)
d2r

dt2
−

h2

r3
=

−k

r2
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F) We want to solve this differential equation. Show that if we let w = 1

r
+ k

h2 (and
express r as a function of θ), then (4) is equivalent to

d2w

dθ2
+ w = 0

which has general solution
w = A cos θ + B sin θ

for constant A, B.
G) By rotating the coordinate system, we can take A = 0 and B > 0. Show that then

(5) r =
h/k2

1 + e cos θ

where e = Bh2/k > 0. Show also that (5) is the equation of an ellipse with one focus
at the origin (the constant c is the eccentricity of the ellipse). This is Kepler’s First
Law(!)

H) Note that the minimum distance to the star (like (perihelion for the Earth) occurs for
θ = 0 and the maximum distance (like aphelion) occurs for θ = π. Use this observation
show that the semimajor axis is

a =
1

2

(

h2/k

1 + e
+

h2/k

1 − e

)

=
h2

k(1 − e2)

The semimajor axis, semiminor axis, and eccentricity of an ellipse are related by
b2 = a2(1 − e). Deduce that

b2 =
h2a

k
.

I) The area is the ellipse is πab. From part D, deduce that the period of the orbit of the
planet (its “year”) is T = 2πab

h
. Then use this and part H to deduce Kepler’s Third

Law (T 2 is proportional to a3).

Days 3 and 4: Mutual Distances, Cayley-Menger, Albouy-Chenciner

Background

We have now seen the way the
(

n
2

)

mutual distances rij can be used to describe
configurations of points in a Euclidean space, and the Albouy-Chenciner form of the central
configuration equations.

Discussion Questions

A) Show that the Cayley-Menger determinant for a configuration of n = 3 points is a
constant multiple of the square of the area of the corresponding triangle if the points
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are not collinear. Also, what happens if the points are collinear? Hint: Heron’s
Formula. Look this up if you have not seen it before.

B) What is the corresponding statement for the Cayley-Menger determinant of n = 4
points? Prove your assertion.

C) Work through the derivation of the symmetrized Albouy-Chenciner equations from
pages 3 and 4 of the Hampton-Moeckel article “Finiteness of Relative Equilibria of
the Four-Body Problem” and write up the argument in your own words, filling in
necessary details.

D) How does the asymmetric form of the Albouy-Chenciner equations as we have defined
them follow from this?
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