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Leading terms, etc.

Last week, we introduced monomial orders so that we can
select a leading term from each polynomial.

For instance, if f (x , y , z) = 2x3y2 + 1
3xy2z + 4z5 and we

use >lex (with x > y > z), then
LT>lex (f ) = 2x3y2 (including the coefficient)
LM>lex (f ) = x3y2 (without the coefficient)
LC>lex (f ) = 2
In text: multideg(f ) = α if LT (f ) = cxα

If order is clear from context we’ll often omit it

John B. Little PURE Math 2012 Residents’ Program Week 2



Leading terms, etc.

Last week, we introduced monomial orders so that we can
select a leading term from each polynomial.
For instance, if f (x , y , z) = 2x3y2 + 1

3xy2z + 4z5 and we
use >lex (with x > y > z), then

LT>lex (f ) = 2x3y2 (including the coefficient)
LM>lex (f ) = x3y2 (without the coefficient)
LC>lex (f ) = 2
In text: multideg(f ) = α if LT (f ) = cxα

If order is clear from context we’ll often omit it

John B. Little PURE Math 2012 Residents’ Program Week 2



Leading terms, etc.

Last week, we introduced monomial orders so that we can
select a leading term from each polynomial.
For instance, if f (x , y , z) = 2x3y2 + 1

3xy2z + 4z5 and we
use >lex (with x > y > z), then
LT>lex (f ) = 2x3y2 (including the coefficient)

LM>lex (f ) = x3y2 (without the coefficient)
LC>lex (f ) = 2
In text: multideg(f ) = α if LT (f ) = cxα

If order is clear from context we’ll often omit it

John B. Little PURE Math 2012 Residents’ Program Week 2



Leading terms, etc.

Last week, we introduced monomial orders so that we can
select a leading term from each polynomial.
For instance, if f (x , y , z) = 2x3y2 + 1

3xy2z + 4z5 and we
use >lex (with x > y > z), then
LT>lex (f ) = 2x3y2 (including the coefficient)
LM>lex (f ) = x3y2 (without the coefficient)

LC>lex (f ) = 2
In text: multideg(f ) = α if LT (f ) = cxα

If order is clear from context we’ll often omit it

John B. Little PURE Math 2012 Residents’ Program Week 2



Leading terms, etc.

Last week, we introduced monomial orders so that we can
select a leading term from each polynomial.
For instance, if f (x , y , z) = 2x3y2 + 1

3xy2z + 4z5 and we
use >lex (with x > y > z), then
LT>lex (f ) = 2x3y2 (including the coefficient)
LM>lex (f ) = x3y2 (without the coefficient)
LC>lex (f ) = 2

In text: multideg(f ) = α if LT (f ) = cxα

If order is clear from context we’ll often omit it

John B. Little PURE Math 2012 Residents’ Program Week 2



Leading terms, etc.

Last week, we introduced monomial orders so that we can
select a leading term from each polynomial.
For instance, if f (x , y , z) = 2x3y2 + 1

3xy2z + 4z5 and we
use >lex (with x > y > z), then
LT>lex (f ) = 2x3y2 (including the coefficient)
LM>lex (f ) = x3y2 (without the coefficient)
LC>lex (f ) = 2
In text: multideg(f ) = α if LT (f ) = cxα

If order is clear from context we’ll often omit it

John B. Little PURE Math 2012 Residents’ Program Week 2



Leading terms, etc.

Last week, we introduced monomial orders so that we can
select a leading term from each polynomial.
For instance, if f (x , y , z) = 2x3y2 + 1

3xy2z + 4z5 and we
use >lex (with x > y > z), then
LT>lex (f ) = 2x3y2 (including the coefficient)
LM>lex (f ) = x3y2 (without the coefficient)
LC>lex (f ) = 2
In text: multideg(f ) = α if LT (f ) = cxα

If order is clear from context we’ll often omit it

John B. Little PURE Math 2012 Residents’ Program Week 2



Division in k [x1, . . . , xn]

First major difference with 1-variable case – we’ll allow
more than one divisor f1, . . . , fs (reason: not every ideal is
principal). So there will be as many quotients as divisors.

There can be several LT (fi) that divide LT of the dividend.
If so, we’ll go down the list of the fi from the start and use
the first one found.
Second major difference with 1-variable case – when a
term is not divisible by any of the LT (fi), it goes into the
remainder, but division is not necessarily finished.
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The algorithm

Input: f_1,...,f_s,f, monomial order >
Output: a_1,...,a_s,r
a_1 := 0; ... a_s := 0; r := 0; p := f;
while p <> 0 do

divocc := false; i := 1;
while i <= s and divocc = false do

if LT(f_i) divides LT(p) then
a_i := a_i + LT(p)/LT(f_i)
p := p - (LT(p)/LT(f_i)) f_i
divocc := true

else
i := i + 1

if divocc = false
r := r + LT(p)
p := p - LT(p)
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Division theorem

Theorem 1
Given any input f1, . . . , fs, f , and a monomial order, the
algorithm above terminates and yields an expression

f = a1f1 + · · ·+ asfs + r

where
i. If ai fi 6= 0, then LT (ai fi) ≤ LT (f )
ii. If r 6= 0, then no monomial in r is divisible by LT (fi) for any

i, 1 ≤ i ≤ s.

(Note: there is a sense in which this expression is unique too,
but it’s more subtle than in the 1-variable case. See Exercise 11
in Chapter 2, §3.)

John B. Little PURE Math 2012 Residents’ Program Week 2



Example

Here’s a first example. Suppose f1 = xz − y2, f2 = x3 − yz and
use lex order with x > y > z so the first term in each is the
leading term. Say f = x4 + x3z. (Work out on board).

Result is

x4 + x3z = (x2 + y)(xz − y2) + (x)(x3 − yz) + (x2y2 + y3)
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More examples

Let f1 = xy + x + 1, f2 = y2 − x , f = x2y2, and use >grlex
with x > y .

(Work out on board)
Note how the term x2 went into the remainder r , but
division continued for one more step:

x2y2 = (xy −x −1) · (xy +x +1)+0 · (y2−x)+(x2 +x +1)

If we reorder the divisors we get different quotients and
remainder(!)

x2y2 = (x2)(y2 − x) + 0 · (xy + x + 1) + (x3)
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Observations

The quotients and remainder can change if we just reorder
the divisors(!)

Also, if r = 0, it follows that f ∈ 〈f1, . . . , fs〉.
But the converse fails. Here is an example:
Say fi are as above: f1 = xy + x + 1, f2 = y2 − x . If we take
f = yf1 − xf2 = xy + y + x2, and divide by (f1, f2) in that
order, we get

xy +y +x2 = (1)(xy +x +1)+(0) ·(y−x2)+(x2 +y−x−1)

Doesn’t seem especially useful!
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Key idea

In k [x ], we could tell whether f (x) ∈ I by finding the
(monic) generator g(x) such that I = 〈g(x)〉.

Then f (x) ∈ I ⇔ r(x) = 0 in f (x) = q(x)g(x) + r(x) from
the division algorithm
In k [x1, . . . , xn], to “fix” the apparent undesirable properties
we saw in the examples above, we have to find “good” sets
of generators with the same properties as the g(x) of
minimal degree.
Analogy will be {g(x)} ↔ a Gröbner basis
Euclidean algorithm ↔ Buchberger’s algorithm
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Motivation for definition of Gröbner bases

In examples like this: f1 = xy + 1, f2 = y2 − x ,
f = yf1 − xf2 = y − x2 ∈ I = 〈f1, f2〉

If we use >grlex , then LT (f1) = xy , LT (f2) = y2, but
LT (f ) = −x2

If we divide f by (f1, f2), then r 6= 0, even though f ∈ 〈f1, f2〉
The leading terms of the given generators f1, f2 don’t
account for all possible leading terms of elements of I
Goal: “good” generating sets satifying f ∈ I ⇔ r = 0 on
division
Equivalently, we want generators {g1, . . . , gt} for I such
that for every f ∈ I, LT (f ) is divisible by LT (gi) for some i .
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Questions

Given an arbitrary ideal I ⊂ k [x1, . . . , xn], does there
always exist G = {g1, . . . , gt} ⊂ I such that for every f ∈ I,
LT (f ) is divisible by LT (gi) for some i?

If so, how do we find them?
For instance, starting from an arbitrary set of generators for
I, how compute a set G with the property above?
Can also ask: To what extent G depends on the choice of
monomial order?
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The ideal of leading terms

Start from a given ideal I and a given monomial order >

For each f ∈ I, we have LT (f )
Define 〈LT (I)〉 = 〈LT (f ) | f ∈ I〉
That is 〈LT (I)〉 is the ideal generated by the leading terms
of all elements of I according to the given monomial order.
An example of a monomial ideal – an ideal generated by a
collection of monomials.
These have some nice properties, as we’ll see next
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A technical result

Lemma 2
Let M be a monomial ideal generated by some collection of
monomials {xα | α ∈ A} (possibly infinite). Let xβ ∈ M. Then
xβ is a multiple of xα for some α ∈ A.

Proof.

By definition xβ =
∑

α hαxα (where hα are some polynomials,
only finitely many of which are nonzero). But then xβ = xγxα

for some xγ appearing in one of the hα.

John B. Little PURE Math 2012 Residents’ Program Week 2



Dickson’s Lemma

Theorem 3 (Dickson’s Lemma)

Let M be a monomial ideal in k [x1, . . . , xn]. Then M is
generated by a finite collection of monomials.

Proof.
By induction on n

If n = 1, then by what we did last week, we know M is
principal and hence M = 〈xa〉 where a is the smallest
nonnegative integer such that xa ∈ M.
Now assume that the result is known for all monomial
ideals in k [x1, . . . , xn−1] and consider
M ⊂ k [x1, . . . , xn−1, y ].
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Proof of Dickson, continued

Write monomials as xαyb

The projection M ′ = 〈{xα | xαyb ∈ M for some b ≥ 0}〉 is a
monomial ideal in k [x1, . . . , xn−1]

So induction hypothesis applies, and
M ′ = 〈xα(1), . . . , xα(s)〉 for some s.
This means that for each 1 ≤ i ≤ s, there is some bi such
that xα(i)ybi ∈ M.
Let b = maxi{bi} so xα(i)yb ∈ M for all 1 ≤ i ≤ s
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Proof of Dickson, continued

For each 0 ≤ c < b, take the “horizontal slice” of M at
height c and project that to get M ′

c = 〈xα | xαyc ∈ M〉

The M ′
c are also monomial ideals in k [x1, . . . , xn−1] so

induction ⇒ M ′
c = 〈xα(c,1), . . . , xα(c,sc)〉

Claim is: The xα(c,1), . . . , xα(c,sc) for 0 ≤ c < b and the
xα(1)yb, . . . , xα(s)yb generate M
That follows fairly easily from the construction. QED

John B. Little PURE Math 2012 Residents’ Program Week 2



Proof of Dickson, continued

For each 0 ≤ c < b, take the “horizontal slice” of M at
height c and project that to get M ′

c = 〈xα | xαyc ∈ M〉
The M ′

c are also monomial ideals in k [x1, . . . , xn−1] so
induction ⇒ M ′

c = 〈xα(c,1), . . . , xα(c,sc)〉

Claim is: The xα(c,1), . . . , xα(c,sc) for 0 ≤ c < b and the
xα(1)yb, . . . , xα(s)yb generate M
That follows fairly easily from the construction. QED

John B. Little PURE Math 2012 Residents’ Program Week 2



Proof of Dickson, continued

For each 0 ≤ c < b, take the “horizontal slice” of M at
height c and project that to get M ′

c = 〈xα | xαyc ∈ M〉
The M ′

c are also monomial ideals in k [x1, . . . , xn−1] so
induction ⇒ M ′

c = 〈xα(c,1), . . . , xα(c,sc)〉
Claim is: The xα(c,1), . . . , xα(c,sc) for 0 ≤ c < b and the
xα(1)yb, . . . , xα(s)yb generate M

That follows fairly easily from the construction. QED

John B. Little PURE Math 2012 Residents’ Program Week 2



Proof of Dickson, continued

For each 0 ≤ c < b, take the “horizontal slice” of M at
height c and project that to get M ′

c = 〈xα | xαyc ∈ M〉
The M ′

c are also monomial ideals in k [x1, . . . , xn−1] so
induction ⇒ M ′

c = 〈xα(c,1), . . . , xα(c,sc)〉
Claim is: The xα(c,1), . . . , xα(c,sc) for 0 ≤ c < b and the
xα(1)yb, . . . , xα(s)yb generate M
That follows fairly easily from the construction. QED

John B. Little PURE Math 2012 Residents’ Program Week 2



Consequences of Dickson

Return to the monomial ideal 〈LT (I)〉 for a given I and a
given monomial order.

By Dickson, we know that 〈LT (I)〉 = 〈xα(1), . . . , xα(t)〉 for
some finite collection of monomials.
Every monomial in 〈LT (I)〉 is LT (g) for some g ∈ I (why?)
(Reason is Lemma 2 from before implies if xβ ∈ 〈LT (I)〉,
then xβ = xγLT (f ) for some f ∈ I. But then
xγLT (f ) = LT (xγ f ) by properties of monomial orders and
xγ f ∈ I by definition of an ideal.)
Consequence: There exist gi ∈ I such that LT (gi) = xα(i)

for all 1 ≤ i ≤ t .
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Gröbner bases defined

This leads to

Definition 4
Let I be a nonzero ideal and > be a monomial order. A Gröbner
basis for I with respect to > is a finite set of polynomials
G = {g1, . . . , gt} ⊂ I such that 〈LT (I)〉 = 〈LT (g1), . . . , LT (gt)〉.

Dickson’s Lemma ⇒

Theorem 5
If I is a nonzero ideal and > is a monomial order, then Gröbner
bases of I with respect to > exist.

Not unique, though, since as we saw, generating sets for
the monomial ideal 〈LT (I)〉 are not unique.
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Consequences of Dickson, continued

We have

Theorem 6
A Gröbner basis G = {g1, . . . , gt} for I generates I.

Proof.
Let f ∈ I and use the division algorithm. At every stage, the
polynomial p is in I, so its leading term is divisible by LT (gi) for
some i . The algorithm reduces p to 0 without putting any terms
into r , so r = 0 and f = a1g1 + · · ·atgt .

This also proves an unexpected “big theorem!”

Theorem 7 (Hilbert Basis Theorem)

Every ideal in k [x1, . . . , xn] is finitely generated.
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The ACC

No, not the Atlantic Coast Conference(!)

ACC = “Ascending Chain Condition”

Theorem 8
Let I1 ⊆ I2 ⊆ I3 ⊆ · · · be an ascending chain of ideals in
k [x1, . . . , xn]. Then there exists an index m such that
Im = Im+1 = Im+2 = · · · .

That is, an ascending chain of ideals cannot strictly
increase forever – it must stabilize after finitely many steps.

Proof.
The union I = ∪i≥1Ii is also an ideal (why?) By the HBT,
I = 〈f1, . . . , fs〉 for some fi . Each fi “comes from” some Ij ; after
some number m of steps, Im contains all fj , so equals I.

John B. Little PURE Math 2012 Residents’ Program Week 2



The ACC

No, not the Atlantic Coast Conference(!)
ACC = “Ascending Chain Condition”

Theorem 8
Let I1 ⊆ I2 ⊆ I3 ⊆ · · · be an ascending chain of ideals in
k [x1, . . . , xn]. Then there exists an index m such that
Im = Im+1 = Im+2 = · · · .

That is, an ascending chain of ideals cannot strictly
increase forever – it must stabilize after finitely many steps.

Proof.
The union I = ∪i≥1Ii is also an ideal (why?) By the HBT,
I = 〈f1, . . . , fs〉 for some fi . Each fi “comes from” some Ij ; after
some number m of steps, Im contains all fj , so equals I.

John B. Little PURE Math 2012 Residents’ Program Week 2



The ACC

No, not the Atlantic Coast Conference(!)
ACC = “Ascending Chain Condition”

Theorem 8
Let I1 ⊆ I2 ⊆ I3 ⊆ · · · be an ascending chain of ideals in
k [x1, . . . , xn]. Then there exists an index m such that
Im = Im+1 = Im+2 = · · · .

That is, an ascending chain of ideals cannot strictly
increase forever – it must stabilize after finitely many steps.

Proof.
The union I = ∪i≥1Ii is also an ideal (why?) By the HBT,
I = 〈f1, . . . , fs〉 for some fi . Each fi “comes from” some Ij ; after
some number m of steps, Im contains all fj , so equals I.

John B. Little PURE Math 2012 Residents’ Program Week 2



The ACC

No, not the Atlantic Coast Conference(!)
ACC = “Ascending Chain Condition”

Theorem 8
Let I1 ⊆ I2 ⊆ I3 ⊆ · · · be an ascending chain of ideals in
k [x1, . . . , xn]. Then there exists an index m such that
Im = Im+1 = Im+2 = · · · .

That is, an ascending chain of ideals cannot strictly
increase forever – it must stabilize after finitely many steps.

Proof.
The union I = ∪i≥1Ii is also an ideal (why?) By the HBT,
I = 〈f1, . . . , fs〉 for some fi . Each fi “comes from” some Ij ; after
some number m of steps, Im contains all fj , so equals I.

John B. Little PURE Math 2012 Residents’ Program Week 2



Comments on ACC

In fact ACC ⇔ every ideal is finitely generated (HBT for the
polynomial ring). Can you see how the other implication
might go?

Hint: Argue by contraposition. If there exists an ideal that is
not finitely generated, then ACC cannot hold!
The class of commutative rings in which ACC holds, and in
which all ideals are finitely generated is known as the class
of Noetherian rings, after Emmy Noether.
The ACC might seem like a rather arcane theoretical
statement, but as we’ll see shortly, it has a big practical
implication for our story(!)
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Background for Buchberger’s algorithm

Recall the example we discussed earlier: f1 = xy + 1,
f2 = y2 − x , f = yf1 − xf2 = y + x2 ∈ I = 〈f1, f2〉

If we use >grlex , then LT (f1) = xy , LT (f2) = y2, but
LT (f ) = x2 /∈ 〈LT (f1), LT (f2)〉
In other words, {f1, f2} is not a Gröbner basis for I with
respect to >grlex .
Note that we “found” a new leading term by forming a
polynomial combination of f1, f2 that was constructed to
cancel leading terms
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S-polynomials

A general form of this:

Definition 9
Let f , g ∈ k [x1, . . . , xn] and > be a monomial order. The
S-polynomial of f , g is

S(f , g) =
lcm(LM(f ), LM(g))

LT (f )
f − lcm(LM(f ), LM(g))

LT (g)
g

This is defined to make the leading terms cancel.
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A more elaborate example

Another example: f = 2x2y + xy , g = xy2 + 2x + y , using
lex order x > y :

S(f , g) =
x2y2

2x2y
(2x2y + xy)− x2y2

xy2 (xy2 + 2x + y)

= x2y2 +
1
2

xy2 − (x2y2 + 2x2 + xy)

=
1
2

xy2 − 2x2 − xy

In this case, the leading term of the S-polynomial is a
multiple of LT (g).
But we would get something “new” if we subtracted 1

2g
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Idea of Buchberger algorithm

When we find a “new” leading term like this, we will just
append the new polynomial to our list of generators(!)

Even if the S-polynomial itself does not have a “new”
leading term, we can still try to “strip away” terms we
already know by computing the remainder on division of
the S-polynomial by the generators of the ideal we already
have.
Note that if

S(fi , fj) = a1f1 + · · ·+ asfs + r

then by definition r ∈ I = 〈f1, . . . , fs〉 so if r 6= 0, then its
leading term will be something we want to know(!)
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Buchberger’s algorithm – basic form

Input: F = {f_1,...,f_s}
Output: G containing F
G := F
repeat

G’ := G
for each pair p <> q in G’ do

S := remainder of S(p,q) on division by G’
if S <> 0 then

G = G union {S}
until G = G’
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Comments and questions

To understand what this is doing note that G′ stores a copy
of the collection of polynomials at the start of each pass
through the repeat loop. The pairs p, q are selected from
this copy, which is not changing.

Any nonzero S-polynomial remainders are adjoined to the
original collection of polynomials, which is in G.
The algorithm will terminate the first time G = G′ (that is
when all S-polynomial remainders are zero, so no new
polynomials are adjoined to G)
Question 1: How do we know this process will ever stop?
Question 2: If it does stop, is G a Gröbner basis?
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Answers to the questions

Question 2 is answered by the main technical result of
Buchberger’s theory:

Theorem 10 (Buchberger’s S-polynomial Criterion)

Let G = {g1, . . . , gt} be a collection of polynomials. Then G is a
Gröbner basis for the ideal it generates if and only if the
remainder on division of S(gi , gj) by G is zero for all pairs i 6= j .

One implication is easy; the other one says the answer to
Question 2 is yes! This is Theorem 6 in Chapter 2, §6 of
IVA – a “hard slog of a proof if there ever was one”
We won’t discuss this in “class”
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Termination of Buchberger’s algorithm

The remaining question is: Does this always terminate?

Note that if the algorithm does not terminate, it is because
the new G strictly contains G′

That means 〈LT (G′)〉 ⊂ 〈LT (G)〉 (strict containment)
The ACC implies this cannot go on forever. Eventually this
increasing chain of monomial ideals must stabilize.
When it does, the algorithm terminates.
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An example, by hand

Let f1 = xy + 1, f2 = y2 − x , use grlex order. We start with
G = {f1, f2}.

S(f1, f2) = x2 + y , with leading term x2, and this is its own
remainder on division by f1, f2. So we update to
G = {f1, f2, f3 = x2 + y}
Now, the S-polynomial S(f1, f2) reduces to zero, so we
consider S(f1, f3) = x(xy + 1)− y(x2 + y) = x − y2 = −f2.
This reduces to a remainder of 0 because we have f2.
Next, S(f2, f3) = x2(y2 − x)− y2(x2 − y2) = −x3 + y4.
Dividing by G = {f1, f2, f3} (in that order), we find

y4 − x3 = (y + 1)f1 + y2f2 + (−x)f3 + (−y − 1)

After cleaning up the signs, we adjoin f4 = y + 1 to G and
continue.
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Example, continued

We have S(f1, f4) = x − 1 and that is its own remainder on
division by {f1, f2, f3, f4}, so that polynomial must also be
adjoined to G.

At this point, it can be checked that
G = {xy + 1, y2 − x , x2 + y , y + 1, x − 1} satisfies
Buchberger’s Criterion, so it is a Gröbner basis for
I = 〈f1, f2〉 with respect to the grlex order.
Note that LT (f1), LT (f2), LT (f3) are multiples of LT (f4) or
LT (f5) or both.
This says that 〈LT (I)〉 is generated by 〈LT (f4), LT (f5)〉.
Hence {f4, f5} is also a Gröbner basis for I.
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Reduced Gröbner bases

A useful theoretical result:

Theorem 11
Each nonzero ideal I has a unique reduced Gröbner basis with
respect to each monomial order – a Gröbner basis
G = {g1, . . . , gt} such that

i. LC(gi) = 1 for all i , and
ii. No term in gi is divisible by LT (gj) for any j 6= i .
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Elimination

In elementary algebra, linear algebra, etc., a standard
method for solving simultaneous equations in several
variables is to form polynomial combinations that eliminate
variables.

Example: In the system

2x − 3y = 1
4x + 5y = 3

second equation minus 2× first equation yields 11y = 1,
so y = 1

11 , and then x = 7
11
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Elimination ideals

In our terms,

(−2)(2x − 3y − 1) + (1)(4x + 5y − 3) = 11y − 1

is in I = 〈2x − 3y − 1, 4x + 5y − 3〉, and contains no x .

Generalizing this,

Definition 12
Let I ⊂ k [x1, . . . , xn] be an ideal. If 1 ≤ ` ≤ n − 1, we define the
`th elimination ideal of I to be

I` = I ∩ k [x`+1, . . . , xn]

(in which the variables x1, . . . , x` have been eliminated).

For example, 11y − 1 ∈ I1 = I ∩Q[y ].
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Geometry of elimination

If I ⊂ k [x1, . . . , xn], then we have the geometric object
V (I) ⊂ kn

If we then eliminate the first ` variables, we can ask, what
is the corresponding variety V (I`)?
Partial answer – it’s very closely related to the projection of
V (I) into the coordinate space kn−` of the variables
x`+1, . . . , xn.
Projection of a variety is not always a variety, but over C at
least, V (I`) is the smallest variety containing the projection
of V (I).
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Lex Gröbner bases and elimination

A special property of lex order: Say the variables are
ordered x1 > x2 > · · · > xn. If a monomial contains any
positive power of x1, then it is larger in lex order than all
monomials that contain only x2, . . . , xn. Similarly, any
monomial that contains a positive power of x2 is larger than
all monomials containing only x3, . . . , xn, etc.

Suppose I is an ideal for which I` 6= {0}, and let f 6= 0 be
an element of I`
If G is a lex Gröbner basis for I, there must be some gi ∈ G
such that LT (gi) divides LT (f ), hence LT (gi) contains only
x`+1, . . . , xn.
But then the observation above shows
gi ∈ I ∩ k [x`+1, . . . , xn] = I`
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Elimination Theorem

This is the key idea in the proof of:

Theorem 13 (Elimination Theorem)

Let I be an ideal in k [x1, . . . , xm] and let G be a Gröbner basis
for I with respect to lex order with x1 > x2 > · · · > xn. For all `
let G` = G ∩ k [x`+1, . . . , xn]. Then G` is a Gröbner basis for the
elimination ideal I`.

(Note: If G` = ∅, this says I` = {0}.)
In other words, lex Gröbner bases systematically eliminate
variables “as much as possible”
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A first example

Let
I = 〈x2y + y2 + 2, xy − 3y + 1〉 ⊂ Q[x , y ]

If we compute a (reduced) lex Gröbner basis for I with
x > y , we get Gy =

{y3 + 9y2 − 4y + 1, x − y2 − 9y + 1}

Note that the first polynomial depends only on y . It is the
monic generator for I1 = I ∩Q[y ].
The second polynomial contains x too.
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Example, continued

Note the form of

Gy = {y3 + 9y2 − 4y + 1, x − y2 − 9y + 1}

To find the points in V (I) = V (x2y + y2 + 2, xy − 3y + 1),
we could solve the one-variable equation
y3 + 9y2 − 4y + 1 = 0 (numerically),
Then, substitute the values into the other equation and
determine x .
There are three points in V (I) over C, one with coordinates
in R, approx.

(−3.10598633669341,−9.43517845033930)
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Example, continued

If we reverse the order of the variables (i.e. look at lex
order with y > x), then the reduced Gröbner basis changes

Get Gx =

{x3 − 5x2 + 12x − 19, y + x2 − 2x + 6}

Now, the first basis element generates I ∩Q[x ], and the
second contains x , y .
This other basis could be used in the same way to
determine V (I) (and would yield the same results!)
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“Implicitization” = elimination

In the first week, we briefly discussed how some varieties
can be given in parametric form as well as by implicit
equations

The process of deriving implicit equations from a
parametrization is called “implicitization”
This can also be performed by means of elimination and
lex Gröbner bases, when the coordinate functions are
polynomial (or rational) functions
Example: A parametric surface in R3:

x = u2

y = u + v
z = u − v2
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Implicitization example, continued

The ideal I = 〈x − u2, y − u − v , z − u + v2〉 defines the
graph of the parametrization map (a subset of R5).

Geometrically, we want to project that into the
x , y , z-coordinate space to find the image of the
parametrization map
In algebraic terms, we want to order the variables with u, v
bigger than x , y , z (for instance as u > v > x > y > z) and
find the elimination ideal I2 = I ∩ R[x , y , z].
Computing a lex Gröbner basis we find 5 polynomials in
all; only the last contain no u, v terms:

I2 = 〈−x + z2 + 2xz − 4yx + x2 + 2zy2 − 2xy2 + y4〉

This defines a surface in R3 that contains the image of the
parametrization.
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Implicitization example, continued

The rest of the Gröbner basis is an “illustrated book” of
exactly the way this parametrization works.

For instance, the next three polynomials in the basis have
x , y , z, v , but no u, so I1 = I ∩ R[v , x , y , z] has lex Gröbner
basis consisting of the generator for I2 above, plus

(1 + 2y)v + x − y + z − y2

(1 + 4z + 4x)v + 5x − y + z + 2yx + y2 − 6zy − 2y3

v − y + z + v2

Final polynomial is u − y + v
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Interpreting the basis elements

The polynomials v − y + z + v2 and u − y + v show that
given (x , y , z) ∈ V (I2), there are never more than 2 pairs
(u, v) that yield that (x , y , z).

The polynomials (1 + 2y)v + x − y + z − y2 and
(1 + 4z + 4x)v + · · · show that for “most” (x , y , z), there is
only one pair (u, v).
The only possible “different” points would come from
places on V (I2) where 1 + 2y = 0 and 1 + 4z + 4x = 0.
Those equations define a straight line that lies on the
surface V (I2).
Precise statement of all this comes from the Extension
Theorem in text.
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