
PURE Math 2012 Seminar
Week 2 Computer Laboratory Exercises

Background and Goals

This week, we will begin to work with some of the commands related to monomial
orders and computing Gröbner bases in Sage. Note: this time the lab problems you are
to submit are “sprinkled through” the discussion, marked Exercise 1, Exercise 2, and so
forth.

Days 1,2: Lists, Defining Monomial Orders, Polynomial Division

Before we start in with the division algorithm, we need to take a bit of time and look
at some of the details of lists in Sage.

Lists and Vectors

To represent points in affine space, we use coordinate vectors. The same idea is also
useful to represent any ordered collection of information. In Sage, these ordered collections
are called lists, and the elements of a list can be anything. A list is indicated by a pair of
square brackets ([,]) enclosing the items in the list, separated by commas. For instance,
the input line

list1 = [’a’,’b’,’c’,’d’,’e’]

creates a list with five items (the letters a, b, c, d, e, treated as character strings, not as
symbolic variables), and assigns the list to the name list1. We have said that lists are
ordered . What this means, for instance, is that alist above is different from the list
defined by list2 = [’a’,’d’,’c’,’e’,’b’]. You can test this by entering the definition
of list2, then the command

list1 == list2

(The == is the comparison operator – not assignment; it returns a True or False value
indicating whether the two lists are identical.)

A list can have any number of items, including no items at all – the empty list is
written as []. The same item can also occur at several places in a list (unlike the case for
a set, which is an unordered collection of information with no repetitions).

The items in a list do not all have to be items of the same type. For instance, another
perfectly OK Sage list is the following:

list3 = [[’a’,’b’,’c’],’d’,’e’]

where there are three items in all. (The first list item in list3 is the list [’a’,’b’,’c’],
and the second and third items are the character strings ’d’,’e’.)

1



Some useful list operations

• The built-in len function returns the number of items in a list. (If one of the items is
a list itself, it is counted as a single item.)

• To pick out the ith item in a named list (like list1), you can use the notation
list1[i]. Caution: Lists are always numbered starting from 0. So list1[1] is
actually the second element(!)

• You can also pick out a “slice” or consecutive sublist – the items in the slots numbered
first to last - 1 – from a list by using the format list1[first:last]. This gives
a list as output.

• The append operator inserts a new entry at the end of a list. Try list1.append(’k’)

to see the result.
• Sage has an interesting feature called “tab-completion” that can be used as a quick

reference tool. Try entering list1. and then press the TAB key. You should see a
listing of different ways the partial command could be completed.

Tuples and sets

Sage also has data types called tuples and sets. A tuple is similar to a list, but once
it is created it cannot be changed (it is immutable). A set is an unordered list. You can
find information about these in the online tutorials and manual.

Exercise 1

Explain, and give examples showing:

a) how to insert a new item at the start of a list
b) how to create a list containing the entries of a given list, followed by a second copy of

that same list
c) how to insert a new item as the third entry from the start in a list (assuming it has

at least two entries to begin with) Be careful to test your idea both on lists with two
and with more than two entries!

Note: There are other builtin list commands not discussed above. Some of these tasks
may be covered by one of them, but they can also be done using the commands above.

Matrices in Sage

If we think of a list as a row vector, then it is natural to think of a list of lists (all of
the same size) as a way to represent a matrix . We can do this in Sage as well, as a basic
way to deal with square or more general rectangular matrices. For example,

mat = [[1,2],[3,4]]

creates a list of two row vectors. This can also be thought of as a 2 × 2 matrix, but Sage
will not see it that way unless we explicitly say

2



Mat = Matrix(mat); Mat

Now you will see something like the stacked matrix format as the output.
To select the entry in row i and column j from a matrix defined this way, we could

use, for instance Mat[i,j]. Rows and columns are also numbered starting from 0. In the
list-of-lists form we would use mat[i][j] – here mat[i] is the ith row, so mat[i][j] is
the jth entry in that row.

Working in Sage/Singular

Note: From now on, we will essentially be using Sage as an interface to Singular
(a package for computational commutative algebra, algebraic geometry, and singularity
theory). There are several ways to do this, giving progressively more direct access to the
underlying functionalities of the Singular system. But by far the easiest way to get started
is to use Sage-level commands for defining polynomial rings, ideals, and then computing
Gröbner bases, etc. This has the advantage that the output of the commands will be Sage
objects of types we can predict (rather than Singular objects).

Monomial orders in Sage/Singular

To set up Sage to do computations in a polynomial ring with a specified collection of
variables, using a particular monomial order, we can use the Polynomial Ring command
seen earlier, but include an option that specifies a particular monomial order to be used
for all operations involving that information in that ring. For example, to set up a ring in
4 variables x, y, z, w with coefficients in Q and the lex order with x > y > z > w we could
say

R.<x,y,z,w> = PolynomialRing(QQ,order=’lex’)

Other builtin options for defining orders include:

• ’deglex’ for the graded lex order
• ’degrevlex’ for the graded reverse lex order
• ’wdegrevlex’ for the order >w,grevlex defined by comparing monomials with a pos-

itive integer component weight vector w first, breaking ties with graded reverse lex.
Here is an example showing the syntax for the monomial order specification using the
weight vector w = (4, 3, 2, 1) of length 4 (the number of variables):

S.<x,y,z,w> = PolynomialRing(QQ,order=TermOrder(’wdegrevlex’,(4,3,2,1)))

• Sage also has a completely general way to specify monomial orders using matrices
that we will see shortly.

Once the ring has been defined with a specified order, there are built-in operators that
select leading monomials and leading coefficients:

• f.lt() gives the leading term (including the coefficient)
• f.lm() gives the leading monomial (without the coefficient)
• f.lc() gives the leading coefficient.

3



There is also an operator that performs the multivariable polynomial division algorithm
using a given list of divisors, and returns the remainder:

• f.reduce(L)

The list L here can be any list of polynomials in the base ring containing the polynomial f .
The division is performed using an algorithm that does not always give the same results as
the one we discussed in class, though. If you want to duplicate that entirely, the following
Sage function can be used, after setting up the appropriate ring definition:

def PolyDiv(f,PList):

s = len(PList)

a = [0 for i in range(0,s)]

r = 0

p = f

while p <> 0:

i = 0

divocc = False

while (i < s) and (divocc == False):

q = p.lt()/PList[i].lt()

if q in R:

a[i] = a[i] + q

p = R(p - q*PList[i])

divocc = True

else:

i = i + 1

if divocc == False:

r = r + p.lt()

p = p - p.lt()

return(a,r)

Exercise 2

We did problem 1 from Chapter 2, §3 of “IVA” in discussion. Check your work using
Sage.

Exercise 3

Do problems 5-8 in Chapter 2, §3 of “IVA” using Sage.

Defining a Monomial Order by a Matrix

In discussion today, we saw that we can generalize the weight orders >w, to define monomial
orders on k[x1, . . . , xn] starting from any m × n matrix M with

• m ≥ n,

4



• rank(M) = n,
• all entries non-negative integers.

Namely, suppose the rows of M are the vectors w1, . . . , wn. Then we can compare mono-
mials xα and xβ by first comparing their w1-weights, then breaking ties sucessively with
the w2-weights, w3-weights, and so on until the wm-weights. In symbols:

xα >M xβ ⇔ w1 · α > w1 · β

or [(w1 · α = w1 · β) and (w2 · α > w2 · β)]

or [(w1 · α = w1 · β) and (w2 · α = w2 · β) and (w3 · α > w3 · β)]

or · · ·

or [(w1 · α = w1 · β) and · · · and (wm−1 · α = wm−1 · β) and (wm · α > wm · β)]

All monomial orders can be specified as >M orders for appropriate matrices M . In Sage,
M must be an invertible square matrix with integer entries.

To specify that we want to use the matrix order defined by a suitable square matrix wmat,
in the ring definition, we enter

order = TermOrder(wmat)

The matrix wmat itself can be specified as above using Matrix applied to the list of lists
as above, either first in a command assigning the matrix to a name, or else directly in the
TermOrder option. The list of variables in the ring definition indicates which components
in the weight vectors (the rows of wmat) apply to which variables. For example, if for some
reason we did not want to use the builtin lex order, we could define something equivalent
on Q[x, y, z] using

order = TermOrder(Matrix([[1,0,0],[0,1,0],[0,0,1]])

Exercise 4

What matrix would define the weight order on Q[x, y, z] where we compare exponents
first with the weight vector (1, 3, 7), then break ties using the lex order? Create an appro-
priate matrix term order in Sage, and repeat the division from Exercise 2a in Chapter 2,
§3 from “IVA”.

Additional Examples of Monomial Orders

Exercises 10 and 12 from Chapter 2, §5 of “IVA” contain two additional important
examples of monomial orders – the product orders, and Bayer and Stillman’s elimination
orders.

Exercise 5

Let R = Q[x1, x2, x3, y1, y2, y3, y4].

5



a) Using the matrix order setup in Sage, determine how to define a mixed order >mixed

on R where

xαyβ >mixed xγyδ ⇔ xα >lex xγ or ((xα = xγ) and (yβ >grevlex yδ)).

(Hint: Think of making the matrix from “blocks” like the ones we have seen for the
orders separately.)

b) Using Sage’s setup, determine how to define the elimination order >3 from Exercise
12.

Days 3,4: Gröbner Bases

Now, we are ready to use Sage to compute Gröbner bases of some ideals. We will use
these computations to decide ideal membership. In addition, with lexicographic Gröbner
bases we will see additional examples related to the Elimination and Extension Theorems
from Chapter 3, §1.

Exercise 6

Do parts a,b,d from Problem 5 in Chapter 2, §6 of “IVA” using lex order with x >

y > z, lex with z > y > z, and then graded lex with x > y > z. (Note: Sage doesn’t have
a directly accessible S-polynomial operator, so you will need to do this “by hand.”) What
is the answer to the following problem 6 based on the results?

Buchberger’s Criterion

Recall that Buchberger’s Criterion says G = {g1, . . . , gt} is a Gröbner basis for the
ideal it generates if and only if for all pairs i 6= j,

S(gi, gj)
G

= 0,

where f
G

is the remainder on division by G. Although we will be skipping the proof of this
fact, it is very important – it is the foundation for the algorithm for computing Gröbner
bases that we will introduce tomorrow.

Exercise 7

Using Buchberger’s Criterion, do parts a and c of problem 9 in Chapter 2, §6 of “IVA.”
The remainders can be computed via the builtin command reduce we discussed before.

Buchberger’s Algorithm

Starting from any set of generators for an ideal I, Buchberger’s Algorithm produces
a Gröbner basis for I by building up a set of polynomials in the ideal for which Buch-
berger’s Criterion is satisfied. This is done by adjoining any nonzero S-polynomials that

6



are discovered in applying the criterion to the current set of polynomials. The pseudocode
description is given on p. 87 of “IVA” and was discussed in class.

Exercise 8

Using Sage to “automate” the calculation of the S-polynomials, but controling the
current list of polynomials “by hand,” apply Buchberger’s Algorithm to find a Gröbner
basis of the ideal

〈x2 − xy + 1, xy − y + 2〉

using lex order with x > y, then lex with y > x, and finally the matrix order for

M =

(

2 5
3 1

)

.

If you are feeling really confident of your Sage skills, it would also be possible to code a
Sage function carrying out the basic Buchberger algorithm from the text.

Exercise 9

There is a builtin groebner basis() operator in Sage as well that can be applied to
an ideal (with a particular set of generators) in a polynomial ring. To apply it, you would
first define the ring, second the ideal, and then compute the Gröbner basis like this:

RR.<x,y> = PolynomialRing(QQ,order=’lex’)

I = Ideal([x^2 + 7*x*y^3 + 1, x^2*y^2 - 4*y - 1])

B = I.groebner basis()

B

What happens if you apply it to the ideal from Exercise 8 with the monomial orders given
there? Show that the bases that Sage finds generate the same ideal as your answers.
(Recall the ideal membership test based on remainders.)

Exercise 10

a) Do Problems 1 and 3 in Chapter 2, §8 using Sage.
b) Do Problem 4 in Chapter 3, §1 using Sage.

7


