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Overview

Our work this summer will be concerned mostly with
polynomials in several variables, and

techniques for solving systems of polynomial equations
understanding geometric objects defined by polynomial
equations
algorithmic and computational techniques for working with
polynomials
applications to some interesting questions from celestial
mechanics (central configurations)
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Polynomials

A polynomial in two variables x , y is just a finite sum of terms of
the form cxayb, where

c is a constant coefficient, for us always coming from some
field of constants (e.g. Q, R, C, etc.)
a, b are integers ≥ 0 (we sometimes write a, b ∈ Z≥0)

For example,

p(x , y) = 5x3y4 − 3
2

xy2 − 3

is a polynomial in x , y with coefficients in Q.
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Multiindex notation

If there are more than two or three variables, then we might
want to number them as x1, x2, . . . , xn.

A monomial is a product xα1
1 xα2

2 · · · xαn
n where αi ∈ Z≥0 for

all i .
Abbreviate as xα where α ∈ Z≥0 is the vector of exponents
Examples: x3

1 x2
2 x4

3 corresponds to α = (3, 2, 4) and x7
1 x3

corresponds to α = (7, 0, 1) if those are the only variables
A general polynomial can be compactly written as∑

α cαxα, where cα = 0 for all but finitely many of the
α ∈ Z≥0.
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Polynomial algebra

In high school algebra, calculus, etc. you probably remember
working with expressions of this form. Recall that we can
combine them

by addition, for instance:

(3x2y + 2x + 3) + (−2x2y + y + 4) = x2y + 2x + y + 7

by multiplication, for instance:

(x2y − x) · (x + xy) = x3y − x2 + x3y2 − x2y

Note that both of these come down to rules:
1. cxα + dxα = (c + d)xα, and
2. xαxβ = xα+β where α + β means add the exponent vectors

coordinate-wise in Z≥0
3. Multiplication distributes over addition as in arithmetic with

ordinary rational or real numbers
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Some notation

Definition 1
The set of all polynomials in the variables x1, . . . , xn with
coefficients in the field k is denoted

k [x1, . . . , xn]

So, for example we can say

p(x , y) = 5x3y4 − 3
2

xy2 − 3 ∈ Q[x , y ]
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Ring properties for polynomials

It is not difficult to show that the addition and multiplication
operations on k [x1, . . . , xn] have the following properties:

1. For all f , g, h ∈ k [x1, . . . , xn], (f + g) + h = f + (g + h)
(addition is associative)

2. There is a zero polynomial 0 ∈ k [x1, . . . , xn] such that
f + 0 = 0 + f = f for all f ∈ k [x1, . . . , xn]

3. For each f ∈ k [x1, . . . , xn], there is a −f ∈ k [x1, . . . , xn] such
that f + (−f ) = (−f ) + f = 0 (the zero polynomial from 3)

4. For all f , g ∈ k [x1, . . . , xn], f + g = g + f (addition is
commutative)

(Together properties 1-4 say that k [x1, . . . , xn] is an abelian
group under addition.)
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Ring properties for polynomials, cont.

5. For all f , g, h ∈ k [x1, . . . , xn], (fg)h = f (gh) (multiplication is
associative)

6. There is a polynomial 1 ∈ k [x1, . . . , xn] such that
f · 1 = 1 · f = f for all f ∈ k [x1, . . . , xn]

7. For all f , g ∈ k [x1, . . . , xn], fg = gf (multiplication is
commutative)

8. For all f , g, h ∈ k [x1, . . . , xn], f (g + h) = fg + fh and
(f + g)h = fh + gh (multiplication distributes over addition)

Together 1-8 say that k [x1, . . . , xn] is an commutative ring with
(multiplicative) identity.
Note: A field is an algebraic structure in which all of these
properties hold, and in which every nonzero element has a
multiplicative inverse. k [x1, . . . , xn] is not a field. (For example,
is there a polynomial f such that x1 · f = 1? Why or why not?)
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Polynomial functions

Up to now the f ∈ k [x1, . . . , xn] are essentially formal
expressions, but

Each such f also defines a function f : kn → k
defined by evaluation (a1, . . . , an) 7→ f (a1, . . . , an)

For example f (x , y) = x2y − 3x ∈ R[x , y ] defines a
function from R2 to R with f (0, 0) = 0, f (1, 1) = −2, etc.
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Polynomial functions, continued

Can two different polynomials define the same polynomial
function?

Answer is yes, if k is a finite field(!)
For instance, k = Zp is a field if p is prime. With n = 1, the
polynomials f (x) = xp and g(x) = x actually define the
same function since ap = a for all a ∈ Zp.
But, if k is infinite (e.g. k = Q, R, C, etc.) then
f , g ∈ k [x1, . . . , xn] define the same polynomial function if
and only if f = g. (Note: the ⇐ implication is always true)
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Proof of the ⇒ implication

We argue by induction on n, the number of variables.

When n = 1, recall from high school algebra that a nonzero
polynomial of degree n in one variable has at most n roots.
So if f (a) = g(a) for all a ∈ k , the polynomial f − g is zero
at all a ∈ k . This implies f − g is the zero polynomial, so
f = g.
Now assume the result is true for polynomials in n − 1
variables, and consider f , g ∈ k [x1, . . . , xn] defining the
same polynomial function.
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Proof, concluded

Write f = fk (x1, . . . , xn−1)xk
n + · · ·+ f0(x1, . . . , xn−1) and

similarly for g.

By assumption, for all f (a1, . . . , an−1) ∈ kn−1,
f (a1, . . . , an−1, xn) = g(a1, . . . , an−1, xn) define the same
function of xn.
By the base case, this implies that
fi(a1, . . . , an−1) = gi(a1, . . . , an−1) for all i and all
(a1, . . . , an−1).
But then, the induction hypothesis implies fi = gi all i , and
hence f = g. QED
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Geometric objects from polynomials

We can use polynomials f ∈ k [x1, . . . , xn] to define geometric
objects as subsets of kn as follows.

Definition 2
Let f1, . . . , fs ∈ k [x1, . . . , xn]. Then V (f1, . . . , fs) (called the
variety defined by the fi ) is the subset of kn given as the
common zero locus of all the fi :

V (f1, . . . , fs) = {(a1, . . . , an) | fi(a1, . . . , an) = 0, i = 1, . . . , s}
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Examples

To draw pictures, we will almost always take k = R
V (y − g(x)) is the usual graph of the polynomial function
g(x)

V
(

x2

9 − y2

4 − 1
)

is a hyperbola in the plane

V
(
x2 + y2 − 1, x − y + 1

2

)
consists of the two intersection

points of the circle defined by x2 + y2 − 1 = 0 and the line
defined by x − y + 1

2 = 0. [Sage demo]
V (y − x2, z − x3) is the twisted cubic curve in R3. [Sage
demo]
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Some observations

Since V (f1, . . . , fs) is the set of solutions of the
simultaneous system of equations f1 = 0, . . . , fs = 0, we
have

V (f1, . . . , fs) = V (f1) ∩ · · · ∩ V (fs)

Since our polynomial functions take values in a field, a
product f (a1, . . . , an)g(a1, . . . , an) = 0 if and only if
f (a1, . . . , an) = 0 or g(a1, . . . , an) = 0. So,

V (fg) = V (f ) ∪ V (g)

In fact if V = V (f1, . . . , fs) and W = V (g1, . . . , gt) are
varieties, then so are V ∩W and V ∪W :
V ∩W = V (f1, . . . , fs, g1, . . . , gt) and
V ∪W = V (figj | 1 ≤ i ≤ s, 1 ≤ j ≤ t).
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Parametrizations

Some varieties can also be described as the images of
parametrization mappings

F : km → kn,

(t1, . . . , tm) 7→ (F1(t1, . . . , tm), . . . , Fn(t1, . . . , tm)

For instance, the circle V (x2 + y2 − 1) can be
parametrized by F (t) = (cos(t), sin(t)) (not polynomial
functions, of course!)
The twisted cubic V (y − x2, z − x3) is the image of
F (t) = (t , t2, t3)
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To Ideals

The set of defining equations f1 = 0, . . . , fs = 0 defining a
variety V = V (f1, . . . , fs) is never unique.

First notice that if g, . . . , gs are any polynomials at all and
(a1, . . . , an) ∈ V (f1, . . . , fs), then f = g1f1 + · · ·+ gsfs
satisfies

f (a1, . . . , an) = g1(a1, . . . , an) ·0+ · · ·+g1(a1, . . . , an) ·0 = 0

Hence f also vanishes at every point of V = V (f1, . . . , fs),
and
It follows that V (f1, . . . , fs, f ) = V (f1, . . . , fs)
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More motivation

The polynomial f is above superfluous

If we turn this around though, we see a way for detecting
extra, unneeded equations in some cases: If
V = V (f1, . . . , fs) and fs = g1f1 + . . . + gs−1fs−1 for some
polynomials g1, . . . , gs−1, then V = V (f1, . . . , fs−1) also.
Finding polynomials f = g1f1 + . . . + gsfs with “special”
features like factorizations can also be useful.
Example: Consider W = V

(
x2 + y2 + z2 − 1, x2 + y2 − 1

4

)
in R3. Notice:

(1)(x2 + y2 + z2 − 1) + (−1)(x2 + y2 − 1
4
) = z2 − 3

4
= (z −

√
3/2)(z +

√
3/2)

What does this tell us about the variety W?
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Ideal generated by f1, . . . , fs

Definition 3
Let f1, . . . , fs ∈ k [x1, . . . , xn]. The ideal generated by the
f1, . . . , fs is the subset of k [x1, . . . , xn] defined by

〈f1, . . . , fs〉 = {g1f1 + · · ·+ gsfs | gi ∈ k [x1, . . . , xn]}

For instance the example on the last slide shows

z2 − 3
4
∈

〈
x2 + y2 + z2 − 1, x2 + y2 − 1

4

〉
.
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Ideals

Note that I = 〈f1, . . . , fs〉 has the following properties:
a. If f , g ∈ I, then f + g ∈ I
b. If f ∈ I and h ∈ k [x1, . . . , xn], then h · f ∈ I

Definition 4
A nonempty subset I of a k [x1, . . . , xn] is said to be an ideal if

a. f , g ∈ I implies f + g ∈ I, and
b. f ∈ I and h ∈ k [x1, . . . , xn] implies h · f ∈ I.

Given any f1, . . . , fs, 〈f1, . . . , fs〉 satifies this definition. But are
there other ideals too in k [x1, . . . , xs] (ones with n finite
generating set?
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Other examples of ideals

The answer is not so clear at first, because of examples like
these:

Let S ⊂ kn be any subset and define

I(S) = {f ∈ k [x1, . . . , xn] | f (a) = 0 all a = (a1, . . . , an) ∈ S}

Easy to check this satisfies the definition. (Why?)

Let I be an ideal in k [x1, . . . , xn] and let
√

I (the radical of I)
be

√
I = {f ∈ k [x1, . . . , xn] | f k ∈ I for some k ≥ 1}.

Theorem 5

Let I be an ideal in k [x1, . . . , xn]. Then
√

I is an ideal.
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Proof of the theorem

For part b of the definition, if f ∈
√

I, then f k ∈ I for some
integer k ≥ 1. If h is an arbitrary polynomial,
(hf )k = hk f k ∈ I, since f k ∈ I. Hence hf ∈

√
I.

For part a, if f , g ∈
√

I, then f k ∈ I and gm ∈ I for some k , m
(not necessarily the same). By looking at the binomial
expansion

(f + g)k+m−1 =
k+m−1∑

`=0

(
k + m − 1

`

)
f `gk+m−1−`

we can see that each term contains either f ` for ` ≥ k or gp

for p ≥ m. Hence (f + g)k+m−1 ∈ I, which says f + g ∈
√

I.
QED
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An observation

Theorem 6
Let V = V (f1, . . . , fs) be a variety, and let
〈g1, . . . , gt〉 = 〈f1, . . . , fs〉. Then V = V (g1, . . . , gt) also.

In other words, varieties are “really” defined by ideals, not
particular sets of equations – we’ll write V (I).

Proof: V ⊂ V (g1, . . . , gt) is more or less clear since each
gi = hi1f1 + · · ·+ hisfs for some polynomials hij .
The reverse inclusion follows in the same way since each
fj = pj1g1 + · · ·pjtgt for some polynomials pji . QED
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An example

Consider V = V (x2 + y2 − 1, x2 − x + y2 − 3/4).

We have

x − 1/4 = (1)(x2 + y2 − 1) + (−1)(x2 − x + y2 − 3/4)

Hence

〈x2 + y2 − 1, x − 1/4〉 = 〈x2 + y2 − 1, x2 − x + y2 − 3/4〉

(why?)
The theorem implies that

V = V (x2 + y2 − 1, x − 1/4).

The same sort of thing happens for all pairs of circles in
R2. The variety is also defined by one of the circles and a
linear polynomial in x , y . (What happens if the circles don’t
intersect?)
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I(V (I))

Suppose we start with an ideal and look at the variety V (I).
Is I(V (I)) = I?

One inclusion is always true. Which one?
Answer to first question: not always! Example: Let I = 〈x2〉
in R[x , y ]. Then V (I) is the y -axis in the plane, and it’s not
too hard to show I(V (I)) = 〈x〉 6= I.
In fact, it follows directly that

√
I ⊂ I(V (I)): If f ∈

√
I, then

f k ∈ I for some k ≥ 1. At any point a in V (I),
(f k )(a) = (f (a))k = 0, which implies f (a) = 0. Therefore,
f ∈ I(V (I)).
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I(V (I)), continued.

On the other hand, here is another example where
I(V (I)) = I is true. As above I ⊂ I(V (I)) always holds.

Say I = 〈y − x2〉 in R[x , y ]. Then V (I) is the usual
parabola.
Given any f (x , y) we can substitute
f (x , y) = f (x , (y − x2) + x2) expand out and collect terms
to obtain:

f (x , y) = q(x , y)(y − x2) + r(x)

If f ∈ I(V (I)) (that is if f vanishes at every point of the
parabola y − x2), then we must have r(x) = 0 for all x ∈ R.
But that implies r(x) is the zero polynomial, so f ∈ 〈y − x2〉.
This shows I(V (I)) ⊂ I in this case, so they are equal.
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Division in k [x ]

There is a basic operation in the polynomial ring in one variable
over a field that has extremely strong implications for ideals in
this case. This is the polynomial division algorithm. You
probably saw this in high school algebra at some point. [Recall
idea with an example on the board] The precise results of what
we’re doing here can be stated like this:

Theorem 7
Let f (x), g(x) be polynomials in k [x ]. Then there exist unique
polynomials q(x) and r(x) such that

1 f (x) = q(x)g(x) + r(x), and
2 either r(x) = 0 or deg r(x) < deg g(x).
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Division algorithm

Hand process to produce quotient q(x) and remainder r(x) can
be described using pseudocode like this:

Input: f,g
Output: q,r
q := 0; r := f
while r <> 0 and LT(g) divides LT(r) do

q := q + LT(r)/LT(g)
r := r - (LT(r)/LT(g))g

(Here LT (f ) denotes the “leading term” or term of highest
degree in a polynomial f .)
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Idea of proof

Proof.
The full details of the proof are given in the text. The key idea is
that the equation f = qg + r holds after the initial assignments,
and if it holds at the start of one pass through the while loop,
then it also holds and the end of the pass because we have just
“rearranged the terms” like this:

f = (q + LT (r)/LT (g))g + r − (LT (r)/LT (g))g

Hence it will also be true at the conclusion of the while loop.
The loop terminates because the degree of r is reduced by at
least one on each pass through the while loop. On termination,
r(x) = 0 or deg r(x) < deg g(x) because if not, then LT (g)
would still divide LT (g).
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Theorem 8
Let I be an ideal in k [x ]. Then I = 〈g(x)〉 for some g(x) ∈ I.

In other words, every ideal in k [x ] is principal (generated by a
single polynomial. Abstract algebra: k [x ] is a PID.

Proof.
If I = {0}, then take g(x) = 0. Otherwise, let g(x) be a nonzero
polynomial in I of minimal degree. We claim that I = 〈f (x)〉.
The ⊃ inclusion is clear. To show ⊂: let f (x) ∈ I be an arbitrary
polynomial. Using the division algorithm, write
f (x) = q(x)g(x) + r(x). If r(x) 6= 0, then deg r(x) < deg g(x).
But r(x) = f (x)− q(x)g(x) ∈ I. This is a contradiction to the
way we chose g(x). Hence r(x) = 0, so
f (x) = q(x)g(x) ∈ 〈g(x)〉. It follows that I = 〈g(x)〉.
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Ideal membership test

If we know the generator polynomial g(x), we can also test
for membership in the ideal I = 〈g(x)〉 using division:

Given f (x), compute f (x) = q(x)g(x) + r(x) by division
Then by uniqueness, f (x) ∈ I ⇔ r(x) = 0
Example: Let g(x) = x2 − 5x + 6, and
f (x) = x3 + 25x + 30.
f (x) = (x + 5)(x2 − 5x + 6) + 0 ⇒ f (x) ∈ 〈g(x)〉.
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Polynomial gcd’s

An example: Consider I = 〈x4 − 16, x2 − 2x − 8〉 in Q[x ].
By the theorem, there must be some single polynomial
g(x) such that 〈g(x)〉 = I.

Note that g(x) must divide each of
x4 − 16 = (x − 2)(x + 2)(x2 + 4) and
x2 − 2x − 8 = (x + 2)(x − 4).
Hence we can see that g(x) = x + 2, the gcd of the two
polynomials.
In general g(x) = gcd(f (x), h(x)) can be defined as the
monic generator of the ideal 〈f (x), h(x)〉 using the
theorem, or it can be characterized by its properties (see
Definition 5 in Chapter 1, §5 in IVA).
“Ideally,” we would like a way to compute gcd(f (x), h(x))
without factoring.
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The Euclidean Algorithm

The method here goes all the way back to the Elements of
Euclid (although he discussed the corresponding procedure for
integers, not polynomials). In the following, remainder means
compute the remainder using the division algorithm above:

Input: f,g
Output: h
h := f; s := g
while s <> 0 do

rem := remainder(h,s)
h := s
s := rem
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Euclidean algorithm, step-by-step

If we give separate names to the remainders obtained at each
step, we get something like:

f = q1g + r1

g = q2r1 + r2

r1 = q3r2 + r3
...

rk−1 = qk rk−1 + rk

The algorithm terminates the first time a zero remainder rk is
found. (This must happen after a finite number of steps since
the degrees of the remainders form a strictly decreasing
sequence.)
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An example

We will carry this out for f = x4 − 16, g = x2 − 2x − 8 as above:

x4 − 16 = (x2 + 2x + 12)(x2 − 2x − 8) + 40x + 80

x2 − 2x − 8 =

(
1

40
x − 1

10

)
(40x + 80) + 0

Note that the loop terminates here since s = 0. The gcd is the
final nonzero remainder – that is 40x + 80, or x + 2 if we
require a monic polynomial. This agrees with our earlier results
obtained by factorization.
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Another example

Now say f = x5 + x + 1, g = x4 + x2 + 1. What is gcd(f , g)?

x5 + x + 1 = x(x4 + x + 1) + (−x2 + 1)

x4 + x + 1 = (−x2 − 1)(−x2 + 1) + (x + 2)

−x2 + 1 = (−x + 2)(x + 2) + (−3)

x + 2 = (x/3 + 2/3)(3) + 0

Up to a constant multiple, the final nonzero remainder is 1. We
say the polynomials f , g are relatively prime in this case.
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Leading terms

Since division is so useful for revealing properties of ideals
in k [x ], can ask whether there is a generalization to
k [x1, . . . , xn].

You may have seen a naive version (“pseudo-division”) in
two variables
For instance, say g(x , y) = yn + g1(x)yn−1 + · · ·+ gn(x)

We can divide g into any f (x , y) as for polynomials in y
alone, but doing arithmetic in k [x ] for the coefficients.
Do an [example on board]
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But, ...

Not a complete analog of division in k [x ] for several
reasons:

The variable y plays a special role and note that leading
coefficient of g must be 1 as above, or else we start
introducing denominators (remainder is of degree < n in y
with coefficients rational functions in x , or zero)
More seriously, not every ideal in k [x1, . . . , xn] has form
〈g(x)〉 if n ≥ 2.
Example: I = 〈x , y〉 ⊂ k [x , y ]

Why is there no g(x , y) such that 〈g(x , y)〉 = 〈x , y〉 ?
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Leading terms

If we want to try to generalize division, we need a way to
select a leading term from each polynomial

But that is not so clear in general! For instance, which
should be the leading term in

f (x , y) = x3y3 + x5 + xy4?

(Surprising?) answer: There are many possible ways, and
each of the three terms could be the leading term,
depending on how we order monomials!
What properties do we want?
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Desired properties

We should be able to put the terms in any nonzero
polynomial into a unique (say decreasing) order

Then the leading term will the largest term (leading term of
0 is undefined)
If we multiply f =

∑
α cαxα by a monomial xγ , then the

terms in xγ f =
∑

α cαxα+γ should not “switch around” –
that is,

xα > xβ ⇒ xα+γ > xβ+γ .

(Not so obvious at first, maybe): There should be no
infinite descending chains starting from a fixed xα(1):

xα(1) > xα(2) > · · · > xα(n) > · · ·

(otherwise processes like division could go on forever(!))
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Monomial orders

Definition 9
A monomial order is a relation > on the set of monomials xα in
k [x1, . . . , xn] (or on the α ∈ Zn

≥0 such that
i. > is a total order relation (that is, for every pair of

monomials xα and xβ, exactly one of the statements:
xα > xβ, xα = xβ, or xβ > xα is true)

ii. For all α, β, γ, if xα > xβ, then xα+γ > xβ+γ

iii. > is a well-ordering (every nonempty set of monomials has
a smallest element, or equivalently, there are no infinite
descending chains of monomials starting from any xα )
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Monomial orders on k [x ]

Consider the pair of monomials 1, x . Since 1 6= x , then
property i in the definition implies either x > 1, or 1 > x .

If 1 > x , then by property ii in the definition, x > x2,
x2 > x3, etc. So we get an infinite descending chain
starting from 1(!)
Hence, the only monomial order on k [x ] has x > 1, and
then · · · x3 > x2 > x > 1 is just the usual degree ordering
Note that this is just the order used in division in k [x ](!)
Leading term in a nonzero polynomial in k [x ] is the term of
highest degree
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The lexicographic order

In k [x1, . . . , xn], let’s start out by assuming
x1 > x2 > · · · > xn. Then we get a first example of a
monomial order by the following:

Definition 10

We say xα >lex xβ if the leftmost nonzero entry in α− β ∈ Zn is
positive.

Example: In k [x , y , z], let xα = x3y4z and xβ = x2yz8.
Then α = (3, 4, 1), β = (2, 1, 8), α− β = (1, 3,−7)

So x3y4z >lex x2yz8 (with x > y > z).
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Another lex example

Consider the polynomial f (x , y) = x3y3 + x5 + xy4 from
before

Which is the lex leading term (taking x > y )?
The exponent vectors are (3, 3), (5, 0), (1, 4).
In lex order, we have (5, 0) >lex (3, 3) >lex (1, 4)

Note: lex order is analogous to dictionary order for words(!)
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Showing lex satisfies the definition

Property i follows from properties of integers

Property ii is easy since (α + γ)− (β + γ) = α− β

Property iii is the “interesting” and subtle one here
Idea is that the usual order on Z≥0 is a well-order.
So in any descending chain of monomials in the lex order,
eventually the exponent of x1 must “stabilize,” then the
exponent of x2 must “stabilize,” etc. But the way this works
is a bit subtle – arbitrarily long chains exist:
Example x3y > x2y2 > xy5 > xy4 > xy3 > xy2 > xy
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Graded lex order

For α ∈ Zn
≥0, let |α| = α1 + · · ·+ αn

Definition 11

We say xα >grlex xβ if |α| > |β| or if |α| = |β| and xα >lex xβ.

Easy to see satisfies definition; grlex compares by total
degree first, then “break ties” with >lex

Examples: x3y2z >grlex x4z since
|(3, 2, 1)| = 6 > 5 = |(4, 0, 1)|. x3y2z >grlex x3yz2 since
|(3, 2, 1)| = 6 = |(3, 1, 2)| but
(3, 2, 1)− (3, 1, 2) = (0, 1,−1).
grlex leading term of f (x , y) = x3y3 + x5 + xy4 ?
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Graded reverse lex order

Definition 12

We say xα >grevlex xβ if |α| > |β| or if |α| = |β| and in α− β the
rightmost nonzero entry is negative.

Example: x3y2z >grevlex x4z as for grlex

Example: x4yz >grevlex x3y2z since total degrees are both
6, but (4, 1, 1)− (3, 2, 1) = (1,−1, 0)

Note that f (x , y , z) = x2y2z2 + xy4z + x5 has three
different leading terms depending on which of the orders
lex, grlex, grevlex we use
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Why different monomial orders?

Best answer is that, when we introduce Gröbner bases
next week, we’ll see that a monomial order is built into the
definition

GB’s with respect to different monomial orders do different
(and all useful) things!
lex order GB’s systematically eliminate variables (good for
direct approach to solving systems of equations, but
computationally “expensive”)
GB’s with respect to graded orders (including grlex,
grevlex, are usually less “expensive” computationally
There are also conversion algorithms to go from a GB with
respect to one order to a GB with respect to another order
– may “get into” some of that in projects(!)
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