PURE Math 2012 Seminar
Week 1 Computer Laboratory Exercises

Background and Goals

A part of our work this summer will be carrying out calculations of Grébner bases for
solving systems of equations and other computations within the computer algebra system
Sage, using its connection with Singular. This week, we will want to get familiar doing
mathematics in this context.

General Information about Sage
Launching Sage

If you are running Sage on a Mac, you can just launch it by XXX. On a PC, you
will need to launch the VirtualBox, "power on” Sage, open a web browser and launch
http://localhost:8000 to access the Sage notebook server.

Sage worksheets

Worksheets are integrated text/graphics/mathematics documents where any or all of
the following can be done:

1) you can type in commands from the keyboard to ask Sage to perform many different
kinds of calculations, read data from external files, store work in files, etc.

2) output generated by Sage from your input commands (numerical values, symbolic
formulas, and graphics) will be displayed,

3) you can modify commands, generating new output, store your results for use later,
etc.

4) you can enter text to annotate and explain the results of computations.

Some of your interactive “management” of a in progress will take place through the pull-
down menus across the top the “scroll bar” on the right that you can use to move around
within the worksheet, to see previous input and output lines, etc.

When you start a new worksheet, Sage will ask you immediately for a name. This can
be almost anything, but it will be good to use descriptive names so that you can tell what
is in a worksheet from its name.

Input and output in a worksheet

After you name a new worksheet, or open an existing one, you will see a collection of
outlined boxes, with spaces between them for output, etc. All Sage input is entered in these
boxes; there can be any number of input lines within each box. Clicking on a box highlights
the frame, makes that box “active” for input, and generates a link marked evaluate below
the box. Typically a session will consist of you entering new input commands, evaluating,
checking the results, correcting errors if necessary, and repeating the process until you have

1

what you are looking for. Worksheets are saved periodically automatically; there is also a
Save button at the top that you can use at any time.

If you want to enter a new input box, note that moving the cursor over the region
below the output from an existing box produces a heavy blue horizontal line above the
next input box. This is an insertion point. If you left click on that line, you will insert a
new input box at that point in the worksheet.

Caution: You can enter new commands in any box in a worksheet at any time. The
current values of variables and the sequence of commands performed, though, is determined
by the order of the evaluations you have done. To keep things straight, it is probably better
(at least at first) not to “jump around” too much.

As we mentioned before, Sage worksheets can contain text as well as commands and
output. After you have generated the output you want, you can bring up the insertion
point as above. If you shift-left click now (not just left click), Sage will generate a text
input box for you). Note: If you anticipate adding stuff to one of these boxes over several
input/output cycles, don’t save it right away. Once you save, you cannot go back and edit
the text(!) But with that caveat, you can enter text almost anywhere in the worksheet to
annotate your work.

Saving and reloading your Sage worksheets

When you open the localhost:8000 web page in your browser, you will see a list of
active worksheets (if you have any). Clicking on the name of one will lauch that worksheet.

Getting Out

The Home link at the top of the Sage worksheet will take you back to the list of active
worksheets. From there you can stop (the most common operation), archive, or delete any
of the active worksheets. The download and upload options there make it easy to share
worksheets, store them remotely, etc.

Days 1, 2: First Sample Sage Sessions, Plotting Commands

Let’s get right down to work and walk through a first sample session! First, you will
need to launch a Sage worksheet as described in the General Information section above.

Sage commands

Sage commands typically create a new object, perhaps assign it a name, and/or per-
form one or more operations on it. The basis for Sage is the programming language Python,
and Sage has builtin interfaces to a number of very powerful open-source packages, which
makes Sage a very flexible system for performing calculations of various kinds. For in-
stance we will be using the Sage interface to Singular (one of the most powerful packages
packages for Grobner basis calculations) extensively this summer.

The assignment operator =

A Sage command of the form
name = expression;

assigns the result of evaluating the right hand side to the name on the left. Usually, the
right hand side will involve a known expression, or performing some operation on some
information we already know. We want to take the result of the operation and give it an
abbreviated “name” for later use. For instance,

var(’x’)
cube = (x"2 - 16)°3

Then later on, we could “reuse” the value of cube in other expressions, just by putting in
the name cube at the appropriate place (e.g. cube + x"4).

Getting Help On-Line

The exact format Sage is expecting for each type of command is specified in the pro-
gramming of the Sage system. Usually, there are several different ways to do any particular
operation, but there is little or no freedom in the ordering of what has to go where and in
what format. Much useful information on this for all the built-in commands, and LOTS
of instructive examples are contained in the Sage on-line documentation. (Unfortunately,
there is often much more in the documentation than you are probably looking for, so you
will often need to sift through the pages for the exact information you want!) For example
try looking at the on-line help page for 2D Plotting. We'll see some other examples in a
moment.

Sage Ezrpressions

Formulas or expressions are entered in something like usual mathematical notation:

1) The symbols for addition, subtraction, multiplication and division are +, —, %, / re-
spectively.
2) The caret (") is the symbol for raising to a power.

Everything must be entered in one linear string of characters, so you will need to use
parentheses to group terms to get the expressions you want. The rule to keep in mind is:
Sage always evaluates expressions by doing powers first, then products and quotients, then
sums and differences, all left to right, unless parentheses are used to override these built-in
rules. For example, the expression a + b ¢~2/d + e is the same as the mathematical

formula:
bc?

a—|—7+e.

If you really want
a + bc?
d+e

3

you will need to enter the expression (a + b c¢"2)/(d + e). What if you really wanted:

(a+bc)2?
d+e

3) Sage “knows” all the usual elementary functions from calculus. The names of the most
common ones are sin, cos, tan, exp, log, sqrt. To use one of these functions in
a Sage formula, you put the name, followed by the “argument” (that is, the constant
or expression you are applying the function to) in parentheses.

4) If you have any question about whether a formula has been entered correctly (i.e. the
way you wanted it to be), Sage can “pretty-print” it in mathematically-typeset form,
which should make it easier to read. For instance, in an input box enter

var(’x?)
f=(x-7)/E2+ 4*xx + 12)
f

and then click the evaluate link under the active box. This should generate the formula
you entered for f in the same form you entered it. If you want to see the “pretty-print”
version, you can edit the content of the input box to make the last line

show (f)

You should see an output formula like this:

r—"7
2 +4x + 12

Notes:

e The first line in the original input lines is necessary here unless you have done some-
thing else previously in your Sage session to tell it that z is the name of a symbolic
variable. Without it you will get one of Sage’s (unfortunately cryptic) error messages.

e Unless you put in print or show commands, only the output produced by the last
line of an input box is normally displayed. (This is because it is frequently the case
that you don’t need to see intermediate results in multi-step computations.)

e The show(f) line can also be entered as f.show(). This illustrates the Python lineage
of Sage. Many Sage operations can either be specified using something like mathe-
matical function notation (the show(f) form) or using a postfix operator form (the
f.show()) form. You will get to like the second form the more you use it, mainly
because it allows a nice way to compose operators while editing your input lines only
at their ends(!)

Some practice

How would you enter each of the following formulas as Sage expressions? First, declare
x,vy,a, b, c as symbolic variables with an input command

var(°x,y,a,b,c’)

4

Enter commands to assign these expressions to the given names, and “pretty-print” the
results.

1)
f=day? — 223 +3y—7

2)
1 T+ 2
3
S N I S el
g=aHow +x2 xzt + 8z
3) (Note: sqrt(x) is the Sage syntax for /z.)

_ —b+Vb* —dac

2a

q
2D plotting

The most basic Sage command for 2D plotting, used for graphs of the form y = f(x)
among other things, is called plot. The format is

plot(function,range,options)

where
1) function is the function to be plotted — the simplest way to specify one is via a
formula for f(x) (an expression in Sage)
2) range is the range of z-values you want to see plotted, entered in the form

(x, low, high)

3) options can be used to control the form of the plot if desired. No options need be
specified however if you don’t want to. More on this later.

Ezxample 1

To plot y = x* — 223 + 2 — 5sin(2?) for —2 < z < 1, you could use the Sage plot
command with no options:

plot(x™4 - 2 x°3 + x - 5 sin(x"2),(x,-2,1))

From the formula y = 2% — 223 + x — 5sin(2?), you might guess that there is at least
one other x-intercept for this graph for x > 2 (why?). To see that part of the graph as
well, edit your previous command line to change the right hand endpoint of the interval
of x values (do not retype the whole command). Click the evaluate link to have Sage
execute the command again. Experiment until you are sure that your plot shows all the
x-intercepts of this graph. (You can repeat this process of editing a command and re-
running it as often as you want; the previous output is replaced by the new output each
time.)

Ezxample 2

Next, let’s move to another 2D plotting command, to see the parametric curve a(t) =
(t2 — 1,#3 — t). The basic format for parametric curves a(t) = (z(t),y(t)) is

parametric_plot ([x-comp,y-comp],t-range,options)
where

1) x-comp and y-comp are the z- and y-component functions of the curve to be plotted
(each of these can be an expression involving the variable (parameter) t,

2) t-range is the range of t-values you want to see plotted, and

3) options can be used to control the form of the plot if desired. No options need be
specified however if you don’t want to.

Use this parametric_plot command to display a plot of the curve a(t) = (t2 — 1,3 — t)
for t € [-3, 3]:

parametric_plot([t~"2 - 1, t°3 - t],(t,-3,3))

(Did you get an error message? Look at it carefully and figure out what needs to be done
to fix it.)
Ezxzample 3

Frequently, it’s the relationship between two or more different graphs that you want
to understand by looking at a plot. Sage has a very straightforward method for combining
plots. Basically, you can use the plot or parametric_plot commands as above to generate
the component plots, but you assign the output to names instead of displaying them. (The
input lines given below also illustrate some plotting options we have not discussed before.)
Then you can enter a command that combines the plots and displays them together like
this:

spl = plot(sin(x), (x,0,4%*pi),color="red’)
sp2 = plot(sin(x+2), (x,0,4%pi),color="blue’,linestyle=’dashed’)
spl + sp2

Implicit 2D plotting

The 2D plots above are all either graphs of functions y = f(x), or parametric curves.
In addition to these, we will also want to be able to plot the affine variety

V(g(z,y)) = {(z,y) € R*: g(z,y) = 0}

for a general polynomial g(x,y) in two variables. The technical name for this in Sage is im-
plicit curve plotting. To plot these curves, we need a new command called implicit_plot.
The format for the implicit_plot command is

implicit_plot(expression,x-range,y-range)

The expression should be the equation g(x,y) (Sage assumes you mean to plot g(z,y) = 0.)
This command generates a plot of the part of the variety V(g(z,y)) in the rectangular box
in the plane defined by the z- and y-ranges.

Ezxzample 4

For instance, try the following command:
implicit_plot(x~3 - 3 x y°2 - 3,(x,-3,3),(y,-3,3))

to plot the variety V(2% —3zy? —3). (Both and y must be declared as symbolic variables
for this to work(!)) Some questions to think about as you look at this: If you set = = ¢
(a constant), how many points (¢, y) are there on the curve? How many points (x,d) are
there for y = d? Do your answers depend on ¢,d? How?

3D curve and surface plotting

Now we move up a dimension and consider plotting curves and surfaces in R3. The
parametric_plot3d command can be used to draw parametric curves and parametric
surfaces in R3. To use it to draw a parametric curve, you would enter a command of the
form

parametric_plot3d([x-comp,y-comp,z-comp], (t,low,high))
where x-comp = x(t), y-comp = y(t), z—comp = 2(t) are the parametric equations of the
curve and the range of parameter values to be plotted is low <t < high.

Ezxample 5

For instance, try entering
parametric_plot3d([t,t"2,t"3],(t,-2,2))

to plot a portion of the twisted cubic curve from class. The first plot you see here might
be rather uninformative. Fortunately, Sage also lets you look at a 3D plot from different
viewpoints, by dragging and dropping the viewing box in the worksheet output. Hold
down the left mouse button and move the cursor to rotate the graph. Experiment with
this until you feel comfortable.

Parametric surface plotting

The parametric_plot3d command is also used for plotting parametric surfaces in R3.
The differences between this use of the command and that above is that the component
functions will depend on two parameters, say u, v, and you will need to (define and) specify
plotting ranges for each one.

Plotting a graph z = f(x,y).

The command for plotting graphs of functions of two variables is called plot3d (nat-
urally enough!) Its format is similar to, but not exactly the same as, the format of plot.
To draw a graph with plot3d, you use a command of the format:

plot3d(function,xrange,yrange,options)

7

The function is the function f(x,y), entered in the usual Sage syntax for expressions. The
xrange and yrange specify a rectangular box in the plane that the plot will be constructed
over; the options can be used to specify how the plot is drawn. Look at the online help for
plot3d if you want to see what things are possible. You can change viewpoint (rotate the
graph); The method is the same as that for the parametric_plot3d command described
above.

Implicit surface plots

To plot an surface defined as a variety V(g(z,y, 2)), you use the implicit_plot3d
command. Look up the on-line help listing for this command.

Assignment on Plotting

Prepare and submit a Sage notebook showing the plots asked for in the following
questions. Answer any questions posed here with text annotations.

A) Generate a plot of the variety V(2% — 3z + 2xy? — y* — 1) € R?. Add a text region
answering the following questions: How many intersections of this variety are there with
vertical lines (z = a) and horizontal lines (y = b) in R?? Does the answer depend on the
values of a, b? Is it possible to “see” these numbers from the form of the equation g(z,y)?
Explain.

B) What happens if you look at the twisted cubic curve from Example 5 above, from
viewpoints that are located along the three coordinate axes ("far out” from (0,0,0))?
Show each of these plots and explain their shapes. (Hint: If we look at the curve from a
point far out on the z-axis, what are we seeing?)

C) Generate a plot of the following variety in R3:
S=V(* = (16 —2® —y*)((z +2)° +y* = 1)((z — 2)* +y* — 1)/50)

and explain the shape you see. You will want to “walk around” this one a lot by rotating
and looking at it from different viewpoints (For example, for which (x,y) € R? are there
points (z,y,z) on S and why (that is, what is the projection of S into the (z,y) plane?
You will also need to think about how you choose the x-, y-, and z-ranges. Be sure you
take the z- and y- ranges big enough to see all the points on the variety.)

Choose either one of the following two problems, or both if you are really up for a challenge!
D) The line segment from (a, b, c) to (d, e, f) can be parametrized as follows
a(t) = (a+t(d—a),b+tle—b),c+t(f—c))

for 0 <t < 1. The points P = (0,0,0), Q = (2,0,0), R = (0,v/3,1), S = (0,—1,/3)
are four corners of a cube in R? with edges PQ, PR, and PS, because the vectors @ =

8

Q—Pv=R— P,w=S5— P all have magnitude 2, and « - v =4 -w = v - @ = 0. Your
assignment, should you decide to accept it (just kidding!), is to create a picture of this
cube by drawing the 12 edges together on the same set of axes in R? (begin by drawing
the line segments from P to @), P to R, and P to S). To plot several parametric curves
together on the same set of axes, I suggest generating each line segment separately (one
at a time), and then combining them as discussed above. Also explain how you found the
other 4 corners of the cube. This can be done in a text region.

E) One very interesting and useful class of parametric curves are the Bezier curves discussed
in Chapter 1, §3 of our book. A single Bezier cubic is a plane parametric curve

B(t) =t3Py + 3t3(1 — t)Py + 3t(1 —)’ Py + (1 — t)* Py

where the P; are called the control points — they control the location and the shape of the
curve. In Sage, a single Bezier cubic, and its control points, can be plotted via commands
like this:

points = [(0,0),(1,-1),(1,3),(3,0)]
BP = bezier_path([points])
SP = scatter_plot(points)
BP + SP

Try varying the locations of the control points and redrawing the curve to see how
this works, that is how the endpoints of the curve and the tangent directions at the end
points are determined by the points Py, Py, Ps, Ps.

Sage also lets you define piecewise Bezier curves linked together in a very particular
way. You can list any number of points in lists like the list points above. The curves
that are generated use the control points in a similar fashion to the basic Bezier cubics,
but as you will see, the curve passes through every other point, and the intermediate
points control the tangent directions. Curves like this are a major tool in computer-aided
geometric design. (They were originally invented by an engineer at the Renault automobile
works in France to help specify shapes involved in manufacture of auto parts.) They can
be used to specify curved shapes appearing in many objects. In this problem your goal
will be to construct a composite Bezier curve (that is determine a suitable collection of
control points) that has the shape of the outline of the letter “c” in the typeface used for
this document. Try match the overall shape, proportions, and details as closely as you
can. In particular, note

e the small “knob” at the upper end,

e the gradual increase in thickness (distance between left and right boundaries) in the
vertical portion, and

e the different curvature on the bottom end.

Designing typefaces is one “real-world” application of this mathematical idea.

Days 3, 4: Symbolic computation in Sage

Much of our work starting next week will consist of symbolic computations in Sage —
mainly various operations on polynomials in several variables. Today, we will look at some
first examples of this sort of computation, with polynomials in one variable.

Polynomials versus expressions

Even though some of the formulas we have run into in examples above look to us like
polynomials, Sage would not recognize them that way. Sage makes a distinction between
general symbolic expressions and polynomials. This means, for instance, that there are
operations permitted on one type of object that are not defined on the other. This is
somewhat annoying at times, but fortunately, there are ways to get Sage to display what
type of thing a given object is and to change that if necessary.

Defining the ring of polynomials with coefficients in a specific ring

Say we want to perform computations with polynomials in the ring R = Q[z]. Sage
lets us define this structure in several different ways. Here is the most direct:

R.<x> = PolynomialRing(QQ)

This makes the name of the polynomial ring R, the coefficient ring Q (the QQ on the right),
and it defines the name of the variable as x). There is also a short-hand form that does
the same thing:

R.<x> = QQI[]

(Other possibilities for the coefficient ring would be ZZ — the ring of integers, Inte-
gers(n) for the integers mod n (fill in the specfic integer n, of course!), GF (p) for the finite
field of order p, and many, many others.)

If you need to determine whether something (say f) is really a polynomial (for example,
if it is causing an error message), you can enter a command like this:

f.parent)

The output will indicate the “parent structure” in which f is defined. It should be some-
thing like Univariate Polynomial ring over x over Rational Field for some of the
following commands to work. If the out is something like Symbolic Ring, then the object
1$ not a polynomial; it is just a general symbolic expression.

All is not lost, though. If you have a symbolic polynomial expression that contains
only the variable z, you can “force” Sage to treat it it as an element of the ring R defined
above with a command like this:

fR = R(f)

(you could also use the same name if you wanted to).
Operations on polynomials
Sage has built-in commands:

10

e factor to factor a polynomial. This gives the factorization over the specified co-
efficient ring. For instance, if we defined Q[z] as above, then the factor command
does not know about radicals, complex numbers, etc. Formats: factor(poly) or
poly.factor(). This works on polynomials in any number of variables.

e quo_rem() to compute the quotient and remainder on division of one polynomial
f(x) by another g(z). This has a slightly strange format: f.quo_rem(g) Note: the
polynomial g in the parentheses is used as the divisor; the polynomial being acted on
(the f) is the dividend. If f or g contain other variables besides x, this will fail. The
output from this is a Sage list — the quotient is the first element and the remainder is

the second element. If you want to assign names to the outputs, you can do something
like this:

(g,r) = f.quo_rem(g)

This divides ¢ into f, assigns the quotient to the name ¢, and the remainder to
r. (You can also extract the two components of the output by a sort of subscript
notation. But caution — Sage lists are always numbered starting from 0 (another
“Python thing!” This means that if you want to extract the quotient from a division
and use it separately you would say

QR = f.quo_rem(g)
q = QR[O]

e gcd to compute the greatest common divisor of two polynomials f(z) and g(x). For-
mat: f.gcd(g) The greatest common divisor of a set of several polynomials can be
computed by nested ged’s (see p. 43 of “IVA”). For example gcd(f, g, h) can be com-
puted by f.gcd(g) .gcd(h).

e diff (f,x) computes the formal derivative of f with respect to z.

Here is a sample sequence of Sage input lines illustrating some of these commands. Try
entering and executing them in sequence. Look carefully at the output and make sure you
understand what happened in each case:

R.<x> = PolynomialRing(QQ)
cube = (x°2 - 16)73
print cube
s = (x"2-x+D)*x(x - 4)

print s
(q,r) = cube.quo_rem(s)
print "9 =", q," , r =", r
g*s + r == g
(Note the double equals sign == in the last input line — this is different from the assignment

operator =. What does it do?) Also try

print cube.gcd(s)
print s.gcd(cube)

Assignment on polynomial computations

11

Using Sage and the commands above, do problems 8, 9, 15 b from Chapter 1, §5 of
“IVA”. For 15 b, use the formula in 15 a.

A First Taste of Sage Programming

In addition to a having large collection of built-in commands for performing various
mathematical computations, Sage is also a programming language that you can use to
code and implement your own new commands or procedures. Here is a first example of a
Sage procedure which takes as input two polynomials in one variable, f(x) and g(z), and
computes their ged h(x), together with polynomials A(x) and B(z) satisfying

hz) = A(x) f(x) + B(x)g(x)

(recall this is question 10 from Chapter 1, §5 of “IVA” from today’s discussion). Here is
Sage code for one way to do this:

def ExtEuc(f,g):
A=1,B=0;C=0; D=1; s=g; h=f£;
while s <> O:
(9,r) = h.quo_rem(s)

h=s

s =r

Csave = C
Dsave = D
C=A- gxC
D =B - g*D
A = Csave

B = Dsave

return (A,B,h)

Note that the syntax here is very similar to our pseudocode for algorithms. The indenta-
tion, though, is not optional. It determines how far the body of the while loop extends (so
that the return at the end is not in the body). To use the procedure to compute the ged
and the polynomials A, B, you would enter a command like this:

ExtEuc (fpoly,gpoly)

where fpoly and gpoly are the two polynomials. The output from the procedure consists
of the polynomials A and B and the ged (last value of h). Use this to check your work
from this morning.

12

