
Plan for PURE Math 2012 Seminar

Week 1

Monday: Polynomials, affine space, affine varieties, parametrizations (Chapter 1,
§§1,2,3)
Tuesday: Ideals (Chapter 1, §4)
Wednesday: Polynomials in one variable, division and Euclidean algorithms (Chapter
1, §5 – motivate by determination of I(C) for twisted cubic from §4)
Thursday: Monomial orders in k[x1, . . . , xn] (Chapter 2, §2)

1



PURE Math 2012 – Seminar
Week 1 Discussions – Polynomials, Varieties, and Algorithms

Note: Solutions for each day’s problems will be due on the next scheduled “class day”.
Only one write-up per group is required.

Day 1: Getting started with varieties

Goals

Today, we want to start off the discussion part of the seminar by thinking about the
definition of a variety presented earlier in the morning.

Since this is also the first of the discussion meetings of our seminar, a few words
about this way of working are probably in order. In these discussion meetings, we will be
aiming for collaborative learning – that is, for an integrated group effort in analyzing and
attacking the discussion questions. The ideal is for everyone in each of the groups to be
fully involved in the process. The idea is that, by actively participating through talking
about the ideas yourself in your own words, you can come to a better first understanding
of what is going on than if you simply listen to someone else talk about it. These meetings
will also help prepare you for your work in a research group.

However, it must be said that to get the most out of this kind of work, you may have
to adjust some of your preconceptions. In particular:

• This is not a competition in any sense. You and your fellow group members are
working as a team, and the goal is to have everyone understand what the group does
fully.

• At different times, it is inevitable that different people within the group will have a
more complete grasp of what you are working on and others will have a less complete
grasp. Dealing with this a group setting is excellent preparation for real work in a
team; it also offers opportunities for significant educational experiences:
a) If you feel totally “clueless” at some point, you need to feel free to ask questions

and even pester your fellow group members until the point has been worked out to
your full satisfaction. (Don’t forget, the others may be jumping to unwarranted
conclusions, and your questions may save the group from pursuing an erroneous
train of thought!)

b) On the other hand, when you think you do see something, you may need to
explain it carefully to others. (Don’t forget, the absolutely best way to make
sure you really understand something is to try to explain it to someone else(!) If
you are skipping over an important point in your thinking, it can become very
apparent when you set out to explain your ideas to a team member.)

In short, everyone has important things to contribute, and everyone will contribute in
different ways at different times.
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Background

Recall that given a collection of polynomials

f1(x1, . . . , xn), . . . , fs(x1, . . . , xn)

the variety V(f1, . . . , fs) is just the set of all points in kn where all of the polynomials fi

are zero simultaneously. In symbols:

V(f1, . . . , fs) = {(a1, . . . , an) ∈ kn : fi(a1, . . . , an) = for all 1 ≤ i ≤ s}.

Discussion Questions

A) Sketch (or describe in words if necessary!) the following varieties:

1) V(y − x3 + 3x + 1) ⊂ R2, and also in R3, with coordinates x, y, z.
2) V(y2 − x6) ⊂ R2 (what does it mean when the defining equation factors as this one

does: y2 − x6 = (y − x3)(y + x3)?)
3) V(x2/4 + y2/9 − 1, xy) ⊂ R2

4) V(x2 + y2 − z2 − 4, z − 3) ⊂ R3

5) V(x2 + y2 + z2 − 9, x2 + y2 − 4, y − z) ⊂ R3

6) Consider the variety
C = V(y2 − x(x − 1)(x − 2)) ⊂ R2

(C is a curve in R2 called an elliptic curve – it is not an ellipse itself, but related curves
are involved in questions like computing arc lengths of parts of ellipses.) For which x
is it possible to solve the equation of the variety for y ∈ R? How many y-values are
there for each of these x’s? This curve is symmetric under reflection across a line –
which line? Generate an accurate sketch of this curve.

B) The geometry of varieties has many interesting “real-world” applications. Here is a first
taste of one of them. A robot arm in R2 consists of three rigid, straight segments of lengths
3, 2, and 1. One end of the segment of length 3 is anchored at the origin, and the other is
attached to the segment of length 2, which is attached at its other end to the segment of
length 1. The “hand” is at the far end of the segment of length 1. The attachment of the
arm at the origin and the joints between the three segments allow rotations through any
angles.

1) Draw a picture of the robot arm in a “typical position”.
2) How many variables do you need to specify the “state” of the arm, and what are the

equations of the variety of possible states?
3) Describe the set of possible positions of the hand. For each of these positions, is there

just one configuration of the arm that places the hand there or more than one?

C) We can also ask whether a set S ⊂ kn is a variety. That is, we can ask whether
S = V(f1, . . . , fs) for polynomials fi ∈ k[x1, . . . , xn] as above.
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1) Consider S = {(x, y) ∈ R2 : y = cos(x)} (the graph of the cosine function). Suppose
that f(x, y) is a polynomial in R[x, y] that is zero at every point of S. If you substitute
a constant value y0 in the range −1 ≤ y0 ≤ 1 for y, how many roots does the resulting
equation f(x, y0) = 0 have? What does this say about f? (Be careful! Think about
writing f as a polynomial in x whose coefficients are polynomials in y:

f(x, y) = an(y)xn + · · ·+ a1(y)x + a0(y)

Is S a variety?
2) Let M be a positive integer and let S ⊂ Z2 be the set of points with integer coordinates

such that 1 ≤ x, y ≤ M . Is S a variety? Why or why not?
3) Generalizing part 2, show that every finite set S in R2 is a variety. (Hint: one method

begins by showing that there is always a rotated (x′, y′) coordinate system such that
the x′-coordinates of the points in S are distinct.)

D) Problem 13 of “IVA”, Chapter 1, §3. (Note: Try to work out the implicit equation
both ways from the Hint in the problem to check your work. If you don’t recall the vector
cross product and the way it can be used to get a normal vector for a plane, we will show
that to you.)

Day 2: Ideals

Background

As we saw in lecture earlier, the “defining equations” fi = 0 of a variety given as
V = V(f1, . . . , fs) are never the only polynomial equations that are satisfied at all points
of the variety. We can always look at other polynomials of the form

(3) f = g1f1 + · · · + gsfs

(where the gi are any polynomials at all in the same set of variables), and we get other
polynomials that vanish at all points of V . The polynomials f in (3) are the elements of
the ideal

I = 〈f1, . . . , fs〉 ⊂ k[x1, . . . , xn].

An ideals is a non-empty collection I of polynomials that is

• closed under sums, and
• closed under multiplication by arbitrary polynomials g ∈ k[x1, . . . , xn].

Given a variety V , we can also produce an ideal by considering the collection of all poly-

nomials that vanish at every point of V :

I(V ) = {f ∈ k[x1, . . . , xn] : f(a1, . . . , an) = 0, all (a1, . . . , an) ∈ V }.
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Discussion Questions

A) In this problem, we will develop a way to tell whether two ideals are equal.

1) Let’s start with an example. We ask: Are I = 〈2x2 + 3y2 − 11, x2 − y2 − 3〉 and
J = 〈x2 − 4, y2 − 1〉 equal or not? Show that both 2x2 + 3y2 − 11 and x2 − y2 − 3 are
in J by finding polynomials A1, B1 and A2, B2 such that

2x2 + 3y2 − 11 = A1(x
2 − 4) + B1(y

2 − 1)

x2 − y2 − 3 = A2(x
2 − 4) + B2(y

2 − 1)

Explain why this shows I ⊆ J . Similarly, decide whether both x2 − 4 and y2 − 1 are
in I by seeing whether there exist polynomials C1, D1 and C2, D2 such that

x2 − 4 = C1(2x2 + 3y2 − 11) + D1(x
2 − y2 − 3)

y2 − 1 = C2(2x2 + 3y2 − 11) + D2(x
2 − y2 − 3)

Are I and J equal? Why or why not?
2) Now, consider this question in general. Let I be an ideal, and g1, . . . , gt be a collection

of polynomials. Show that 〈g1, . . . , gt〉 ⊆ I if and only if gi ∈ I for all i = 1, . . . , t.
3) Use part 1 to develop a general “test” to perform to determine whether two ideals

I = 〈f1, . . . , fs〉 and J = 〈g1, . . . , gt〉 are equal.

B) Let C be the curve in R3 parametrized by

α(t) = (t, t3, t5)

1) Show that f1 = y − x3 and f2 = z − x5 are elements of I(C).
2) Prove that C is a variety.
3) Following what the text does for the twisted cubic, determine I(C).

C) Let I be an ideal in k[x1, . . . , xn]. Let
√

I be the collection of all polynomials f such
that some power of f is in I (the smallest power that “works” can be different for different
f).

√
I is called the radical of I, since it consists of all polynomials that are “ℓ-th roots”

of elements of I, for all ℓ ≥ 1. In symbols,

√
I = {f ∈ k[x1, . . . , xn] : f ℓ ∈ I, for some ℓ ≥ 1}

1) For example, explain why f = x + y is in
√

I for I = 〈x4 + y4, xy〉.
2) Show that

√
I is closed under products by all g ∈ k[x1, . . . , xn].

3) Show that
√

I is closed under sums. (That is, if f ∈
√

I and g ∈
√

I so f ℓ ∈ I, and
gm ∈ I for integers ℓ, m ≥ 1 (not necessarily the same), you need to show there is
some p ≥ 1 such that (f + g)p ∈ I. What p work?)

4) What do parts 2 and 3 say about
√

I?
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D)
1) Show that V(I) = V(

√
I) for all ideals I.

2) An ideal I is said to be a radical ideal if
√

I = I. Show that if V is variety, then I(V )
is a radical ideal.

Day 3: Algorithms

Background

In class today, we studied our first examples of algorithms, or step-by-step procedures
for performing a particular computation. The two examples we looked at were:

• the division algorithm in k[x],
• the Euclidean algorithm for gcd’s in k[x].

Today, we want to work through a few examples, following the “pseudo-code” description
of the algorithm (as if you were a computer, yourself, following a program!) Then we will
want to develop an extension of the Euclidean algorithm that, together with the gcd, also
produces polynomials A and B satisfying

gcd(f, g) = Af + Bg.

Discussion Questions

A) Work through the division algorithm in Q[x] step by step (see page 38 in “IVA”),
dividing g(x) = 2x3 + 3x − 5 into f(x) = x5 − x4 + x2 − 2x + 1. At the start of each pass
through the main loop, what are the values of q, r? Show that the equation f = qg + r is
always true. (This is an example of a “loop invariant” – using these is often important in
developing an algorithm or proving that an algorithm is correct.)

B) Work through the Euclidean algorithm step by step (see page 41) to compute the gcd
of f and g from part A. What are the values of h,s at the start of each pass through the
loop?

C) Do Problem 10 in Chapter 1, §5 of “IVA”. (Hint: Read the given Hint carefully and
think about the idea of “loop invariants” from above.) “Run” your algorithm on the
example from questions A and B, and check your results.

Comment: Although this “extended Euclidean algorithm” is also available as a “built-in”
command in Sage and other computer algebra systems, you will also see how to code it as
a Sage procedure in a lab meeting.

6



Day 4: Monomial Orders

In class today, we introduced the definition of a monomial order in the polyomial
ring k[x1, . . . , xn]. This was an ordering > on the monomials xα (or equivalently on the
exponent vectors α) such that:

1) > is a total (linear) order on vectors with nonnegative integer components. (This
means that for every pair of monomials xα and xβ , exactly one of the following is
true: either xα > xβ, or xα = xβ , or xβ > xα.)

2) For all α, β, γ, we have
α > β ⇒ α + γ > β + γ

3) > is a well-ordering. (In other words, every non-empty subset of monomials or expo-
nent vectors has a smallest element under >).

Today, we want to think about some of the implications of this definition.

Discussion Questions

A) To practice with monomial orders, do Problems 1,2 from Chapter 2, §2 of “IVA”.

B) Show that in k[x, y], the graded lexicographic and graded reverse lexicographic orders
are the same. Is this true for n > 2?

C) Suppose we try to define an order > by omitting the first part of the definition of the
graded lexicographic order, so that α > β if the rightmost entry in α − β is negative. Do
we get a monomial order? Why or why not?

D) We could also try to define an order >w by comparing the “total weights” of two
monomials with respect to a given weight vector w on the variables. That is, for a monomial
xα, we think of the variable xi as having weight wi (from the vector w). We compute
α · w = α1w1 + · · ·+ αnwn and say xα >w xβ if α · w > β · w.

1) Let n = 2 and w = (3, 5). Is >w a monomial order? Why or why not?
2) Let n = 2 again and w = (1,

√
2). Same question.

3) What property of the components of the vector w ∈ Rn would imply that >w does

define a monomial order on k[x1, . . . , xn]? (The fact that
√

2 is not a rational number
in part 2 is an important clue, but it is not the whole story!)
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