
PREMUR 2007 - Seminar
Week 3 Discussions – Elimination theory and applications

Day 1: First applications, elimination of variables

Today, we want to begin looking at some of the (mathematical) applications of Gröbner
bases. Applications to other real world problems are often made by translating the ques-
tion under consideration into a question about systems of polynomial equations, then
proceeding as below.

Discussion Questions

A) (“warmup”) Show that if G = {g1, . . . , gt} is a Gröbner basis for I = 〈f1, . . . , fs〉, then

V(g1, . . . , gt) = V(f1, . . . , fs)

in kn.

B) Using Mathematica, I computed a Gröbner basis for the ideal I = 〈x2+y2+z2−4, xz−
y, y2 − z2 + 1〉 with respect to the lex order, x > y > z, and found:

[2z4 − 4z2 − 1, y2 − z2 + 1, x− 2yz3 + 4yz].

1) Using the Elimination Theorem, give Gröbner bases for the elimination ideals I1 =
k[y, z] and I2 = k[z].

2) What does the Extension Theorem say about the number of points in the variety
V(I) ∈ R2? What are those points?

C) Let V be a finite set in Rn (or Cn, and let I = I(V ) = 〈f1, . . . , fs〉 ⊂ R[x1, . . . , xn] be
the ideal of all polynomials that are zero at all the points of V .

1) Show that for each i, 1 ≤ i ≤ n, I must include a nonzero polynomial pi that depends
only on the variable xi.

2) Explain why if we compute a Gröbner basis G for I with respect to a lex order >i

with xi as the last - i.e. smallest variable, then a polynomial pi(xi) as in part 1 must
appear in that Gröbner basis G. (Hint: If cxα

i = LT>i(pi(xi)) is the leading term
of pi(xi), then some Gröbner basis element g in G must have a leading term (with
respect to this special lex order >i which divides cxα

i . What does that say about the
form of g?

“Extra Credit” Question

Let V be a finite set in R3 which is in “general position” in the sense that the z-coordinates
of the points of V are distinct . Let I = I(V ). What does the Gröbner basis for I = I(V )
with respect to the lex order, x > y > z look like?
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The answer is a result sometimes called the “Shape Lemma”. Some suggestions: First note
that the “general position” hypothesis is not satisfied, for instance, for the Gröbner basis
from question B above(!) (Why not?) Then think about what part 2 of Question C from
above tells you here. You will get one of the Gröbner basis elements that way. Then, what
do the others look like? For instance, is there a polynomial of the form y − f(z) in the
ideal (hence in the first elimination ideal I ∩R[y, z]? Must it appear in the lex Gröbner
basis? If so, why? Then, what about polynomials involving x?

Day 2: The Implicitization Problem

Today, we will reconsider the implicitization problem for polynomial parametric curves
and surfaces. Our goal is to show that any such curve or surface is (at least) contained in
a variety.

Discussion Questions

We consider parametric curves in the plane, given as x = f(t), y = g(t), where
f(t), g(t) ∈ R[t].

A) Show that for all m ≥ 0, the total number of monomials xayb of total degree a+ b ≤ m
is equal to the binomial coefficient

(
m+2

2

)
.

B) Show that if we substitute x = f(t) and y = g(t) into all of the monomials xayb

with a + b ≤ m, then for m sufficiently large, we obtain a linearly dependent collection of
polynomials in k[t].

C) Deduce from question B that every parametric curve in R2 defined by x = f(t),
y = g(t) for some polynomials f(t), g(t) ∈ R[t] is contained in V(F ) for some nonzero
F (x, y) ∈ R[x, y] (that is, F (f(t), g(t)) = 0 as a polynomial in t).

D) Show that if
I = 〈x− f(t), y − g(t)〉 ⊂ R[t, x, y],

then F (x, y) from part C is an element of the elimination ideal

I1 = I ∩R[x, y].

E) Generalize your arguments in questions A,B,C,D to show that every surface in R3 with
a polynomial parametrization

x = f(t, u), y = g(t, u), z = h(t, u)

is contained in V(F ) for some nonzero F (x, y, z) ∈ R[x, y, z], and if

I = 〈x− f(t, u), y − g(t, u), z − h(t, u)〉 ⊂ R[t, u, x, y, z],

then
F ∈ I2 = I ∩R[x, y, z].
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Day 3: Unique factorization and resultants

We have now introduced notion of irreducible polynomials, irreducible factorizations,
and the Sylvester resultant of two polynomials, whose original purpose was to detect
common irreducible factors of two polynomials.

Discussion Questions

A) In this problem you will develop a proof of the uniqueness of irreducible factorizations
from Theorem 5 on page 149 of the text. The existence of the irreducible factorization
follows from Proposition 2.

1) Show that if f is irreducible and f divides a product g1g2 . . . gs, then f divides gj for
some i.

2) The key step in the proof of uniqueness of factorizations is the following. Assume

(1) f1f2 · · · fr = g1g2 · · · gs,

where all the fi and gj are irreducible. Show using part 1 that f1 = cgj for some
constant c and some j.

3) Show how the idea in part 2 leads to a proof by induction on the total degree of f .
(Note: We cannot do induction on the numbers of factors r, s because part of what
we are trying to show is that r = s, so we cannot assume that.)

B) Another interesting formula for the resultant involves the roots of the polynomials f, g.

1) Compute the resultant of f = (x− a1)(x− a2) and g = (x− b1)(x− b2).
2) It can be shown in general that if f, g are monic, f has degree n and has roots

a1, . . . , an (possibly in some field containing k), then

Res(f, g, x) =
n∏

i=1

g(ai).

Assuming this, show that if g of degree m also has roots b1, . . . , bm in some field
containing k, then

Res(f, g, x) =
n∏

i=1

m∏

j=1

(ai − bj).

(Note that this gives another proof of Corollary 2 in §6 of Chapter 3.

C) One important application of resultants is determining when polynomials have multiple
roots. For the purposes of this problem, assume that k ⊂ Q. Under this assumption, it
is true that f is constant ⇔ f ′ = 0. (Note: This is not true for fields of characteristic
p – fields containing Z/pZ. The polynomial xp has derivative identically zero, but is not
constant.)
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1) Let f ∈ k[x], and assume that f has the irreducible factorization

f = fr1
1 · · · frs

s ,

where no fi is a constant multiple of fj for j 6= i. Show that

gcd(f, f ′) = fr1−1
1 · · · frs−1

s .

2) Let f = a0x
n + · · · + an−1x + an ∈ k[x], where a0 6= 0 (that is, f has degree exactly

n). The discriminant of f is

disc(f) =
(−1)n(n−1)/2

a0
Res(f, f ′, x).

Show that f has a multiple root (that is f is divisible by h2 for some irreducible h) if
and only if disc(f) = 0.

3) Does f(x) = 6x4 − 23x3 + 32x2 − 19x + 4 have a multiple root? If so, what is it?
4) Compute the discriminant of f(x) = a0x

2 + a1x + a2. How does this relate to the
quadratic formula?

Day 4: More on resultants

Background

The Sylvester determinant formula for Res(f, g, x) is not an efficient way to compute
the resultant when f and g have large degrees in x. In today’s problems, you will see
that there is actually another, much more efficient, way to compute the resultant in these
cases by following the Euclidean algorithm for the gcd. The idea is that by considering
properties of determinants, we can show that if f has degree ` in x, g = b0x

m + · · ·+ bm

has degree m in x, and if the result of dividing g into f is

f = qg + r, deg(r) < deg(g),

then
Res(f, g, x) = (−1)m(`−deg(r))b

`−deg(r)
0 Res(r, g, x)

(see problem 16 below). Then we can reverse r, g (which changes the resultant by a sign)
and apply the same formula again, dividing r into g as in the Euclidean algorithm!

Discussion Questions

Do problems 14, 15, 16, 17 from Chapter 3, §6 of “IVA”. Some comments:
1) Problem 14 deals with the case where either f or g is constant. This will be needed

at the end of the procedure for the case where gcd(f, g) = 1.
2) Problem 16 gives the proof of the key formula above.
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3) Problem 17 assembles the various pieces discussed above into an algorithm for resul-
tants. When programs like Mathematica or Maple compute resultants, they are using
this method rather than the Sylvester determinant formula.

Day 5: Resultants and the proof of the Extension Theorem

Background

We have seen the definition of the generalized resultants of f1, f2, . . . , fs with respect
to x1: If we write

Res(f1, u2f2 + · · ·+ usfs, x1) =
∑
α

hα(x2, . . . , xn)uα,

then the generalized resultants are the hα ∈ k[x2, . . . , xn].

Discussion Questions

A) Let f, g1, . . . , gs ∈ k[x]. Prove that f is a common divisor of g1, . . . , gs if and only if f
divides u1g1 + · · ·+ usgs in k[x, u1, . . . , us].

B) Let
f1 = x4 − 2xy2 + zw

f2 = wx2 − w2z + y

f3 = x3 + 3w

Compute the generalized resultants of f1, f2, f3 with respect to w (that is follow the defini-
tion above to find Res(f1, u2f2 +u3f3, w). In the lab today, you will be able to check your
work. You will also see that the generalized resultants do not generate the elimination
ideal

〈f1, f2, f3〉 ∩ k[x, y, z].

C) Exactly how many generalized resultants with respect to x1 are there when f1 has
degree m1 in x1, and f2, . . . , fs have degrees m2 ≥ m3 ≥ · · · ≥ ms with respect to x1?
Prove your assertion.

D) Show that the generalized resultants are always elements of the elimination ideal

〈f1, f2, . . . , fs〉 ∩ k[x2, . . . , xn].

(Note: This shown in the text, but try to work out a proof yourself using Proposition 1
on page 158 before looking for it.)
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