PREMUR 2007 — Seminar
Week 1 Discussions — Polynomials, Varieties, and Algorithms

Note: Solutions for each problem assignment will be due on the next scheduled “class
day” (first one is due Wednesday). Only one write-up per group is required. You are free
to submit individual or group solutions for the “Extra Credit” problems.

Days 1 and 2: Getting started with varieties
Goals

Today, we want to start off the discussion part of the seminar by thinking about the
definition of a variety presented earlier today.

Since this is also the first of the discussion meetings of our seminar, a few words
about this way of working are probably in order. In these discussion meetings, we will be
aiming for collaborative learning — that is, for an integrated group effort in analyzing and
attacking the discussion questions. The ideal is for everyone in each of the groups to be
fully involved in the process. The idea is that, by actively participating through talking
about the ideas yourself in your own words, you can come to a better first understanding
of what is going on than if you simply listen to someone else talk about it. These meetings
will also help prepare you for your work in a research group later in the institute.

However, it must be said that to get the most out of this kind of work, you may have
to adjust some of your preconceptions. In particular:

e This is not a competition in any sense. You and your fellow group members are
working as a team, and the goal is to have everyone understand what the group does
fully.

e At different times, it is inevitable that different people within the group will have a
more complete grasp of what you are working on and others will have a less complete
grasp. Dealing with this a group setting is excellent preparation for real work in a
team; it also offers opportunities for significant educational experiences:

a) If you feel totally “clueless” at some point, you need to feel free to ask questions
and even pester your fellow group members until the point has been worked out to
your full satisfaction. (Don’t forget, the others may be jumping to unwarranted
conclusions, and your questions may save the group from pursuing an erroneous
train of thought!)

b) On the other hand, when you think you do see something, you may need to
explain it carefully to others. (Don’t forget, the absolutely best way to make
sure you really understand something is to try to explain it to someone else(!) If
you are skipping over an important point in your thinking, it can become very
apparent when you set out to explain your ideas to a team member.)

In short, everyone has important things to contribute, and everyone will contribute in
different ways at different times.



Background
Recall that given a collection of polynomials

filzy, ooy mn)y oy fs(T1, .o )

the variety V(f1,..., fs) is just the set of all points in k™ where all of the polynomials f;
are zero simultaneously. In symbols:

V(fi, ..., fs) ={(a1,...,a,) € k" : fi(ar,...,a,) = forall 1 <i<s}.

Discussion Questions

A) Sketch (or describe in words if necessary!) the following varieties:
1) V(y — 23+ 3z +1) C R?, and also in R3, with coordinates x, v, z.
) V(y? — 25) ¢ R? (what does it mean when the defining equation factors?)
) V(2?/44+y*/9 —1) C R?
) V(@*/4+y?/9+2* —1) CR?
)
)
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V(@2 +y2+22—4,2—22+1)CR?
Consider the variety

(=)

C=V(y?—z(x—1)(z—-2) c R?

(C is a curve in R? called an elliptic curve — it is not an ellipse itself, but related
curves are involved in computing arc lengths of parts of ellipses.) For which z is it
possible to solve the equation of the variety for y € R? How many y-values are there
for each of these x’s? This curve is symmetric under reflection across a line — which
line? Generate an accurate sketch of this curve.

B) The geometry of varieties has many interesting “real-world” applications. Here is a first
taste of one of them. A robot arm in R? consists of three rigid, straight segments of lengths
3,2, and 1. One end of the segment of length 3 is anchored at the origin, and the other is
attached to the segment of length 2, which is attached at its other end to the segment of
length 1. The “hand” is at the far end of the segment of length 1. The attachment of the
arm at the origin and the joints between the three segments allow rotations through any
angles.

1) Draw a picture of the robot arm in a “typical position”.

2) How many variables do you need to specify the “state” of the arm, and what are the
equations of the variety of possible states?

3) Describe the set of possible positions of the hand. For each of these positions, is there
just one configuration of the arm that places the hand there or more than one?

C) We can also ask whether a set S C k™ is a variety. That is, we can ask whether
S=V(f1,...,fs) for polynomials f; € k[x1,...,x,] as above.



1) Given a set S C k™, what does it mean to say that S is a variety? Explain in your
own words, but precisely.

2) Consider S = {(z,y) € R? : y = sin(x)} (the graph of the sine function). Suppose
that f(z,y) is a polynomial in R[x, y] that is zero at every point of S. If you substitute
a constant value yg in the range —1 < yo < 1 for y, how many roots does the resulting
equation f(z,yo) = 0 have? What does this say about f? (Be careful! Think about
writing f as a polynomial in x whose coefficients are polynomials in y:

f(z,y) = an(y)z" + -+ a1(y)x + ao(y)

Is S a variety?

3) Let M be a positive integer and let S C Z? be the set of points with integer coordinates
such that 1 < x,y < M. Is S a variety? Why or why not?

4) (“Extra Credit”) Generalizing part 3, show that every finite set S in R? is a variety.
(Hint: one method begins by showing that there is always a rotated (z’,y") coordinate
system such that the z’-coordinates of the points in S are distinct.

Day 3: Parametrizations of Varieties
Background

A portion of our work this summer will involve the relation between the following two
ways to represent geometric objects:

a) as the sets of solutions of one or more “implicit” equations
b) as the images of parametrizations.

The standard description of a variety in affine space k"

V(fi,..oo fs) ={(ar,...,an) : filar,...,a,) =0,1 <i<s}
is the implicit form. For instance, the circle of radius 2 with center at (1,2) is the variety
(1) V(z—1)*+(y—2)*—4)

given by the implicit equation (z — 1)2 + (y — 2)? — 4 = 0. But there is also another way
to describe the same circle — as the image of a parametrization mapping such as

(2) a(t) = (1 + 2cos(t), 2+ 2sin(t)).

We get the full circle, traced out once, for 0 <t < 2.

Each of these ways to describe objects is useful. If we want to program a computer
to draw the object, for instance, then a parametrization is extremely good to have. With
the parametrization (2) we could “plug in” a collection of (closely-spaced) ¢ values, then
“connect the dots” to draw the curve. (This is exactly what programs like Mathematica do
for parametric plotting of curves!) However, if we want to determine whether a given point
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is in the variety, then implicit equations are much better, since we only need to substitute
the coordinates of the point in question into the right equations to determine the answer
to our question.

Discussion Questions

A) Problem 5 of “IVA”, Chapter 1, §3. The hyperbolic functions are defined as follows:

et +et ) et —et
cosht = 5 sinht = 5

B) Problem 8 of “IVA”, Chapter 1, §3.

C) Problem 13 of “IVA”, Chapter 1, §3. (Note: Try to work out the implicit equation
both ways from the Hint to check your work. If you don’t recall the vector cross
product and the way it can be used to get a normal vector for a plane, we will show
that to you.)

D) Problems 14, 15 from “IVA”, Chapter 1, §3 (see the discussion of Bézier cubics in the
text).

Comment: In computer-aided geometric design (CAGD), collections of several Bezier cu-
bics are linked together to form more complex curves or shapes. You will see an example
of this one of this week’s lab meetings.

Day 4: Ideals
Background

As we saw in lecture earlier, the “defining equations” f; = 0 of a variety given as
V =V(f1,..., fs) are never the only polynomial equations that are satisfied at all points
of the variety. We can always look at other polynomials of the form

(3) f=agifi+-+9gsfs

(where the g; are arbitrary polynomials in the same set of variables), and we get other
polynomials that vanish at all points of V. The polynomials f in (3) are the elements of
the ideal

I = <f1,...,f5> C ]{?[.’L‘l,...,{l?n]
Ideals are non-empty collections I of polynomials that are

e closed under sums, and
e closed under multiplication by arbitrary polynomials g € k[z1, ..., x,].

Given a variety V', we can also produce an ideal by considering the collection of all poly-
nomials that vanish at every point of V'

I(V)={f €klz1,...,zn]: fla1r,...,a,) =0, all (a1,...,a,) € V}.



Discussion Questions
A) In this problem, we will develop a way to tell whether two ideals are equal.

1) Let’s start with an example. We ask: Are I = (222 + 3y? — 11,2? — y* — 3) and
J = (2% —4,5% — 1) equal or not? Show that both 2z + 3y% — 11 and 22 — y? — 3 are
in J by finding polynomials Ay, By and As, By such that

22% +3y? — 11 = A1 (2? —4)+ By1(y* — 1)
2 —y? -3 = AQ(.'I/'2 —4) +B2(y2 -1)

Explain why this shows I C .J. Similarly, decide whether both 22 — 4 and y? — 1 are
in I by seeing whether there exist polynomials C7, D; and C5, Dy such that

a? — 4= Cy(22° + 3y® — 11) + Dy (2% — 4> — 3)
y? — 1= Co(202 4 3y — 11) + Do(2% — y* — 3)

Are I and J equal? Why or why not?

2) Now, consider this question in general. Let I be an ideal, and ¢1, ..., g; be a collection
of polynomials. Show that (g1,...,¢:) C I if and only if g; € I for all i =1,...,t.

3) Use part 2 to develop a general “test” to perform to determine whether two ideals
I'={(f1,....,fs) and J = (g1,...,9:) are equal.

B) Let C be the curve in R3 parametrized by

aft) = (t,1°,°)

1) Show that f; =y — 23 and fo = 2z — 2%y are elements of I(C).
2) Prove that C is a variety.
3) Following what we did for the twisted cubic, determine I(C').

C) Let I be an ideal in k[z,...,2,]. Let v/T be the collection of all polynomials f such
that f™ is in I for some m > 1 (the smallest power m that “works” can be different for
different f). \/T is called the radical of I, since it consists of all polynomials that are “/-th
roots” of elements of I, for all £ > 1. In symbols,

VI={feklxy,...,x,): f™el, for some m > 1}

1) For example, explain why f = x + y is in /T for I = (z* 4 y*, 27).

2) Show that /T is closed under products by all g € k[z1, ..., z,].

3) Show that /T is closed under sums. (That is, if f € v/I and g € VI so f* € I, and
g™ € I for integers {,m > 1 (not necessarily the same), you need to show there is
some p > 1 such that (f + ¢g)? € I. What p work?)

4) What do parts 2 and 3 say about VI?



“Bxtra Credit” Problem

1) Show that V(I) = V(v/I) for all ideals I.
2) An ideal I is said to be a radical ideal if /I = I. Show that if V is variety, then I(V)
is a radical ideal.

Day 5: Algorithms
Background

In class today, we studied our first examples of algorithms, or step-by-step procedures
for performing a particular computation. The two examples we looked at were:

e the division algorithm in k[z],
e the Fuclidean algorithm for ged’s in k[x].

Today, we want to work through a few examples, following the “pseudo-code” description
of the algorithm (as if you were a computer, yourself, following a program!) Then we will
want to develop an extension of the Euclidean algorithm that, together with the ged, also
produces polynomials A and B satisfying

ged(f,g9) = Af + Bg.

Discussion Questions

A) Work through the division algorithm in Qz]| step by step (see page 38 in “IVA”),
dividing g(r) = 223 + 3z — 5 into f(z) = 2° — 2* + 22 — 22 + 1. At the start of each pass
through the main loop, what are the values of ¢,r? Show that the equation f = qg + r is
always true. (This is an example of a “loop invariant” — using these is often important in
developing an algorithm or proving that an algorithm is correct.)

B) Work through the Euclidean algorithm step by step (see page 41) to compute the ged
of f and g from part A. What are the values of h,s at the start of each pass through the
loop?

C) Do Problem 10 in Chapter 1, §5 of “IVA”. (Hint: Read the given Hint carefully and
think about the idea of “loop invariants” from above.) “Run” your algorithm on the
example from questions A and B, and check your results.

Comment: Although this “extended Euclidean algorithm” is available as a “built-in” Math-
ematica command, there is an example of coding this algorithm as a Mathematica proce-
dure in the lab materials for this week.



