
Applications of Computational Commutative

Algebra in Statistics

Jocelyn Baker
Cidmarie Odiott

Alex Simao
PREMUR 2007

August 6, 2007

Abstract

Recently, the application of computational commutative algebra
and algebraic geometry in statistics has played an important role in
bioinformatics and genomics. One application is through maximum
likelihood estimation of parameters in discrete probability models. One
of the most basic, but most important, questions is how many critical
points the likelihood function has, and whether there is an efficient way
of counting them. The focus of this project was centered around an
example of a mixture model with three unknown parameters. Through
this project we were able to apply techniques of computational commu-
tative algebra such as Gröbner bases with those of algebraic geometry
to form a procedure to solve the maximum likelihood equations, and
then developed a symbolic method to count the number of critical
points.

1 Our Mixing Problem

A large part of this paper is focused on solving a mixing problem dealing
with the probability of picking and flipping two coins in a series of four flips.
This mixing problem was taken directly from [2].

Suppose a man has two biased coins, one in each of his sleeves, and he
picks the coin to be used at random with probabilities π and 1− π.

The model of the above scenario is the mixture of a pair of four-times
repeated Bernoulli trials. The mixing parameter π is the probability that
the man picks the coin in his left sleeve. The bias of the left coin is s, and

1

the bias of the right coin is t. The model stipulates that the probabilities of
the five outcomes are given by the parametric equations:

p0 = π(1− s)4 + (1− π)(1− t)4,
p1 = 4πs(1− s)3 + 4(1− π)t(1− t)3,
p2 = 6πs2(1− s)2 + 6(1− π)t2(1− t)2,
p3 = 4πs3(1− s) + 4(1− π)t3(1− t),
p4 = πs4 + (1− π)t4.

Let ~u = (u0, u1, u2, u3, u4) ∈ N5, where the ui is the number of trials that
had i heads as the outcome. The overall goal, therefore, is to figure out the
best way to predict values for π, s, and t given a weight vector ~u. The best
way of doing this is by finding the maximum of the likelihood function. The
likelihood function can be defined as the following:

Definition 1 Given any weight vector ~u = (u0, u1, u2, u3, u4), and its cor-
responding ~p = (p0, p1, p2, p3, p4), let the likelihood function L be defined
as,

L = pu0
0 pu1

1 pu2
2 pu3

3 pu4
4 (1)

Then the maximum of L is simply the critical point ~p that results in the
maximum value for L.

After successfully setting up the parametric equations that represent
this mixing model, the computations involved using the parametric equa-
tions were too large for Mathematica to complete. The system of equations
contained eight different variables, slowing down the process to the point
where a Gröbner basis for the parametric model could not be computed.
In order to alleviate the problem, it is beneficial to look at the elimination
ideal J = I ∩ C[p0, ..., p4], where I is the ideal generated by the system of
parametric equations. J is generated by two polynomials g1 and g2 given
below. This turns the focus on p0, . . . , p4, making the computations more
manageable. We then must solve the following constrained optimization
problem.
Constrained Optimization Problem

Maximize (1) subject to

g1 = p0 + p1 + p2 + p3 + p4 − 1 = 0

and
g2 = det (P) = 0,

2

where P is the implicit matrix that models the parametric equations:

P =




12p0 3p1 2p2

3p1 2p2 3p3

2p2 3p3 12p4


 .

We use the method of Lagrange Multipliers to find the critical points,
while using lnL to simplify the system of equations in the following form:

0 = ui + piλ1
∂g1

∂pi
+ piλ2

∂g2

∂pi
, i = 0, ..., 4. (2)

By computing the Gröbner Basis of the elimination ideal, it is possible to
eliminate λ1 and λ2, and find critical points of the form ~p = (p0, p1, p2, p3, p4)
that solve (2). The only critical points of interest are those in which all pi’s
are positive, real numbers in the range [0, 1]. For any ~u, if ~p is a solution of
(2), then ~p is also a solution of (1). Thus ~p is the critical point of L.

After setting up this new method of finding the critical points of (1),
it was worthwhile to write a package in Mathematica that used this new
implicit model method. The package Compute takes in any ~u as input and
returns all real critical points in the range [0, 1]. This code can be used to
efficiently look at how different weight vectors affect the critical points of the
likelihood equation. This package led to the generation of several theorems
regarding the critical points of the likelihood equation which are to follow.

2 Theorems Related to the Critical Points of the
Likelihood Equation

Let L = pu0
0 pu1

1 ...pun
n be the likelihood function. It is necessary to solve the

constrained optimization problem for L with the two constraints g1 and g2

where

g1 = p0 + p1 + . . . + pn − 1
g2 = det(P).

Theorem 1 (Effect of Scalar Multiplication) For the constrained op-
timization problem for L as above, the critical points derived from the weight
vector ~u are the same as the critical points for the weight vector c~u, where
c ∈ N. Moreover, If ~p gives the maximum likelihood for L, then ~p gives the
maximum likelihood for Lc.

3

Proof. Use the method of Lagrange Multipliers to solve, while using lnL to
simplify the system of equations. The application of these techniques lead
to a system of equations in the following form:

0 = ui
1
pi

+ λ1
∂g1

∂pi
+ λ2

∂g2

∂pi
∀i ∈ [0, n] (3)

and for some λ1, λ2 ∈ R.
It is equivalent to say that a solution to (3) is a critical point of L. This

implies ~p solves (3).
Consider the same problem, replacing ~u by c~u, where c ∈ N. So

0 = c

(
ui

1
pi

+ λ1
∂g1

∂pi
+ λ2

∂g2

∂pi

)
∀i ∈ [0, n]. (4)

Since ui, λ1, λ2 ∈ R, λi = cλi for some λi, so (4) becomes

0 = c

(
ui

1
pi

+ λ1
∂g1

∂pi
+ λ2

∂g2

∂pi

)
∀i ∈ [0, n]. (5)

Furthermore, since ~p is a solution of (1), ~p is a solution of (2), which
implies ~p is a critical point of Lc. Now assume ~p is a critical point of L such
that ~p makes L a maximum. Consider Lc. By the algebraic property that
x > y ⇒ xc > yc and the assumption that ~p is a critical point of L such
that ~p maximizes L, it is clear that ~p maximizes Lc. ¤

Theorem 2 For any ~u in the form (u0, u1, u2, u3, u4) with critical points
~pi in the form (p0, p1, p2, p3, p4), if ~u′ = (u4, u3, u2, u1, u0) (~u in the reverse
order), then ~u′ has critical points of the form ~p′i = (p4, p3, p2, p1, p0) for all
critical points of ~u.

Proof. Consider u0, the number of times zero heads occur in a series of
four coin flips. If ~u is inverted, then u0 becomes the last element of ~u′. So in
the new case, u0 now shows the number of times four heads in a row occur.
There is another way to look at the problem. Instead of looking at ~u′ as
being ~u inverted, look at ~u′ as being the vector for the corresponding ‘tail’
values for the likelihood function. So u0 not only displays how many times
zero heads appeared, it also shows how many times four tails appeared.
This correspondance with the entire vector can be continued, resulting in
the same likelihood function, but this time for tails. This problem can also
be thought about in terms of the system of parametric equations seen earlier.

4

Again the idea of corresponding ‘tail’ values can be used to see how it affects
the system of equations. Recall, initial system:

p0 = π(1− s)4 + (1− π)t4

p1 = 4πs(1− s)3 + 4(1− π)t(1− t)3

p2 = 6πs2(1− s)2 + 6(1− π)t2(1− t)2

p3 = 4πs3(1− s) + 4(1− π)t3(1− t)
p4 = πs4 + (1− π)t4.

Now to switch these equations to be in terms of tails, replace s by 1− s and
replace t by 1− t. The resulting equations are

p′0 = πs4 + (1− π)t4 = p4

p′1 = 4πs3(1− s) + 4(1− π)t3(1− t) = p3

p′2 = 6(1− π)t2(1− t)2 + 6πs2(1− s)2 = p2

p′3 = 4πs(1− s)3 + 4(1− π)t(1− t)3 = p1

p′4 = π(1− s)4 + (1− π)t4 = p0.

This results in the same critical points, which can then be inverted to get
them in terms of ‘heads’. ¤

Theorem 3 If ~u has the form (n, 0, 0, 0, 0) where n ∈ N, then L has exactly
one critical point ~p = (1, 0, 0, 0, 0).

Proof. Using the previously outlined procedure to determine the critical
points given any ~u, compute a Gröbner Basis for the ideal generated by
polynomials in the Lagrange Multiplier equations, eliminating λ1 and λ2.
Because Theorem 1 has been proved, it is sufficient to show that this theorem
works for ~u′ = (1, 0, 0, 0, 0). So using the Gröbner basis, create a Gröbner
basis for the elimination ideal that contains only the variable p0, which gives

1 + 14p0 + 44p2
0 − 38p3

0 − 45p4
0 + 24p5

0. (6)

Solving for all the roots of (6) gives all possible values of p0. The only
solutions for p0 that are of interest are positive, real, solutions that are less
than or equal to one. Those conditions follow as a direct result of p0 itself
being a probability. Upon solving, we get the following values for p0:

p0 = −1.,−0.154701,−0.125, 1., 2.1547.

5

The only solution that satisfies the needed conditions is when p0 = 1. This
automatically implies that the rest of the p values must be zero. Scalar
multipication by n can then be applied to ~u′ giving ~p as the only solution
for our ~u. ¤

Theorem 4 Given a ~u = (u0, u1, u2, u1, u0), then there always exists a crit-
ical point ~p, such that ~p = (p0, p1, p2, p1, p0).

Proof. Given the symmetric weight vector ~u, the system of Lagrange Mul-
tiplier equations can be constructed in the form of:

−λ1p0 − λ2p0(−108p2
3 + 288p2p4) + u0 (7)

−λ1p1 − λ2p1(36p2p3 − 216p1p4) + u1 (8)
−λ1p2 − λ2p2(−24p2

2 + 36p1p3 + 288p0p4) + u2 (9)
−λ1p3 − λ2p3(36p1p2 − 216p0p3) + u1 (10)
−λ1p4 − λ2p4(−108p2

1 + 288p0p2) + u0 (11)

Subtract equations (7) - (11) and (8) - (10). Then remaining are the three
following equations which only contain u2:

λ1p0 − 108λ2p0p
2
3 − λ1p4 + 108λ2p

2
1p4

λ1p1 − λ1p3 + 216λ2p0p
2
3 − 216λ2p

2
1p4

−λ1p2 − λ2p2(−24p2
2 + 36p1p3 + 288p0p4) + u2

Evaluate the Gröbner basis for elimination ideal to eliminate λ1 and λ2, to
get the following polynomial:

2p2
0p

2
3u2 + p0p1p

2
3u2 − p0p

3
3u2 − 2p0p

2
1p4u2 −

p3
1p4u2 + p2

1p3p4u2 − 2p0p
2
3p4u2 + 2p2

1p
2
4u2.

Next it is necessary to find the roots of this equation in order to find the
critical points for ~u. First, factor out u2, which leaves:

u2(2p2
0p

2
3 + p0p1p

2
3 − p0p

3
3 − 2p0p

2
1p4 − p3

1p4 + p2
1p3p4 − 2p0p

2
3p4 + 2p2

1p
2
4)

So if u2 = 0 then there is always a symmetric solution. Now, look at the
case where u2 6= 0 and see if a symmetric ~p is a root of the equation.

2p2
0p

2
3 + p0p1p

2
3 − p0p

3
3 − 2p0p

2
1p4 − p3

1p4 + p2
1p3p4 − 2p0p

2
3p4 + 2p2

1p
2
4. (12)

If p0 = p4,p1 = p3, then (12) is always equal to zero. Thus there is a
~p = (p0, p1, p2, p1, p0), a symmetric critical point, for any symmetric ~u. ¤

6

Theorem 5 If ~u = (m,n, 0, 0, 0) for m, n ∈ N, then the critical point ~p =
(m

n+m , n
n+m , 0, 0, 0) results in a maximum for L.

Proof. First to prove a critical point of the form ~p = (m
m+n , n

m+n , 0, 0, 0)
exists, use the method of Lagrange Multipliers to compute the Gröbner
basis of the ideal generated by the polynomials from the Lagrange Multiplier
equations. Substituting into the Gröbner basis p0 = m

m+n , p1 = n
m+n , p2 = 0,

p3 = 0 and p4 = 0 results in zeros for all equations of the Gröbner basis. This
shows that there is always a solution of the form ~p = (m

m+n , n
m+n , 0, 0, 0).

Now it is necessary show that ~p = (m
m+n , n

m+n , 0, 0, 0) is always the max-
imum of L. Recall that p0 + p1 + p2 + p3 + p4 = 1 so either p0 + p1 = 1
if p2 = p3 = p4 = 0 or p0 + p1 < 1 if any p2, p3, p4 6= 0. Since ~u =
(m, n, 0, 0, 0), the values of p2, p3, p4 have no effect on the likelihood func-
tion, L = pm

0 pn
1p0

2p
0
3p

0
4 because they are raised to the zero power and therefore

p0
2p

0
3p

0
4 = 1. Therefore, the best way to maximize the likelihood equation is

to let p2 = p3 = p4 = 0 so that the largest possible values can be given to p0

and p1 to maximize L. So p0 + p1 = 1 since we have let p2 = p3 = p4 = 0.
Again using the method of Lagrange Multipliers, compute the Gröbner basis
of the ideal generated by (2). This time, substitute in p2 = p3 = p4 = 0.
This results in a Gröbner basis of two equations

0 = −1 + p0 + p1

0 = −n + mp1 + np1 = 0.

Solve for p0 and p1 to find that p0 = m
m+n and p1 = n

m+n . Thus it is true
that ~p = (m

n+m , n
m+n , 0, 0, 0) is always the maximum of L. ¤

3 A Better Way to Count

Although the computations for the critical points are successful, they rely
heavily upon decimal approximations when computing roots of the gener-
ators for each univariate elimination ideal. It would be very beneficial to
have a symbolic way of determining the number of critical points for any
given weight vector ~u. The process of symbolically counting critical points
involves many steps, but luckily, it starts with the important fact that we
are only concerned about V(I) when it is finite. From here, a few additional
facts can be applied to set up our case.

7

3.1 Application of Ring Theory

Knowing that it is only important to consider V(I) when it is finite, the
following statement can be applied.

Let G be a Gröbner basis for I with respect to any monomial order,
then:

Theorem 6 ([3], Theorem 6 of Chapter 5, §3) V(I) is finite in Cn if
and only if for each i, there exists g ∈ G such that LT (g) = xmi

i for some
mi ≥ 0.

Thus the number of xα that are not in 〈LT (I)〉 is in fact finite. Next it
is necessary to look at the vector space spanned by those xα. Looking at
a Gröbner basis G = {g1, . . . , gn} of the ideal I, note that any remainder
upon division by G results in polynomials that only contain xα’s. Define
the remainder upon division by G on a polynomial f to be f

G. It can be
seen that the set of f

G has naturally defined addition and multiplication
operations, in which remainders are the result.

The above remainders are closely related to the idea of quotient rings
from abstract algebra. Recall that for a quotient ring k[x1, . . . , xn]/I, the
coset, [f], for some f ∈ k[x1, . . . , xn] can be defined as:

[f] = f + I = {f + h : h ∈ I}.

From the idea of cosets, a very important one-to-one correspondence between
the cosets and the remainders can be seen. This means that one can think
of f

G as a representation of the coset [f]. Again looking at the quotient
rings, recall that k[x1, . . . , xn]/I also has the structure of a vector space, or
is an algebra.

It follows that one can consider the set of xα as a basis of the algebra.
So it is possible to denote the basis B as

B = {xα : xα /∈ 〈LT (I)〉}.

Given any Gröbner basis G, the first step is to find the basis of non-
leading terms, B. Once this basis exists, it is easy to compute a multipli-
cation table for the elements of B. Before continuing, look at the following
example from [4].

8

Example Let G be the Gröbner basis, and let B be the basis formed by
the non-leading term monomials of G, such that

G = {x2 + 3xy/2 + y2/2− 3x/2− 3y/2, xy2 − x, y3 − y}
B = {1, x, y, xy, y2}.

Then the multiplication table that results for the elements of the basis B is:

˙ 1 x y xy y2

1 1 x y xy y2

x x α xy β x
y y xy y2 x y
xy xy β x α xy
y2 y2 x y xy y2

where

α = −3xy/2− y2/2 + 3x/2 + 3y/2
β = 3xy/2 + 3y3/2− 3x/3− y/2.

3.2 Multiplication Matrices and Sh Function

Since a one to one correspondence exists between cosets and the remainders
upon division, the multiplication table can be used to form multiplication
matrices, mf for f ∈ B. Each matrix is a n by n matrix, where n is the
number of elements of the basis B. The entries of each matrix are the
coefficient values from the entries of the multiplication table we developed
earlier. Now to continue the above example:

Example cont. Using G and B from before, a multiplication matrix can
be constructed for x, mx, by taking the coefficients from the second row (or
column). This gives:

mx =




0 0 0 0 0
1 3/2 0 −3/2 1
0 3/2 0 −1/2 0
0 −3/2 1 3/2 0
0 −1/2 0 3/2 0




.

Now given any two multiplication matrices, define the function S as

S(f, g) = Tr(mf ·mg) = Tr(mfg)

9

Next, define a different polynomial h ∈ k[x1, . . . , xn], and note that S
can be modified to take into account h

Sh(f, g) = Tr(mhf ·mg) = Tr(mhfg).

Since Sh(f, g) is simply the trace of a matrix, it is always a numerical value,
so it is possible to denote Sh as a matrix whose entries are Sh(f, g) for all
combinations of f, g ∈ B. Furthermore, this implies that the matrix form of
Sh is symmetric. This is the final condition needed to apply the following
theorem.

Theorem 7 ([4], Chapter 2, Theorem (5.2)) Let I be a zero-dimensional
ideal generated by polynomials in k[x1, . . . , xn] where k ⊂ R, so that V(I) ⊂
Cn is finite. Then, for h ∈ k[x1, . . . , xn], the signature (σ) and rank (ρ) of
the bilinear form Sh satisfy:

σ(Sh) = #{a ∈ V(I) ∩ Rn : h(a) > 0} −#{a ∈ V(I) ∩ Rn : h(a) < 0}
ρ(Sh) = #{a ∈ V(I) : h(a) 6= 0}.

So given h, one can determine the number of points that fall within a
specific region. The next consideration is how to determine a value for h or
a system of hi’s that would isolate the regions containing the critical points
of interest.

4 Finding h

The goal is to construct h in such a way that the region that satisfies the
conditions of the original mixing problem (the coin flipping problem)is iso-
lated. Since the original mixing problem is in 5-dimensions, it is a good idea
to first look at a simplified version of the problem in 2-dimensions.

4.1 Two-Dimensional Case

Let the conditions of the two-dimensional problem be that 0 ≤ x ≤ 1 and
0 ≤ y ≤ 1. To satisfy this condition, let h1 = x(x − 1) and h2 = y(y − 1).
Define C∗∗ to be the number of solutions within each region where ∗ =
0,+,−. For example,

C−− = #{a ∈ V(I) ∩ Rn : h1(a) ≤ 0 and h2(a) ≤ 0}.
In this case, it is desired to find the number of solutions in the area where

0 ≤ x ≤ 1 and 0 ≤ y ≤ 1, so one should solve for C−−, C−0, C0−, C00. In

10

Figure 1: 2-D Regions

general, it is possible to find any C∗∗ in terms of the signatures because
recall that σ(Sh) = (# of times h(a) > 0) − (# of times h(a) < 0). Using
this theorem, the signatures can be written in terms of the C∗∗’s.

σ(S1) =
∑
∗

C∗∗

σ(Sh1) =
∑
∗

C+∗ −
∑
∗

C−∗

σ(Sh2) =
∑
∗

C∗+ −
∑
∗

C∗−

σ(Sh1h2) = C++ + C−− − C+− − C−+

σ(Sh2
1
) =

∑
∗

C+∗ +
∑
∗

C−∗

σ(Sh2
2
) =

∑
∗

C∗+ +
∑
∗

C∗−

σ(Sh2
1h2

) = (C++ + C−+)− (C−− + C+−)

σ(Sh1h2
2
) = (C++ + C+−)− (C−− + C−+)

σ(Sh2
1h2

2
) = C++ + C−− + C−+ + C+−

One method to solve for the C∗∗ is to manipulate the above signatures to
isolate the C∗∗ of interest. For example, σ(Sh2

1h2
2
) + σ(Sh1h2) − σ(Sh2

1h2
) −

σ(Sh1h2
2
) equals

2C++ + 2C−− − 2C++ + 2C−− = 4C−−.

11

However, there is a more efficient way to find any C∗∗. Let M be a
matrix whose entries represent the coefficients of the signatures of all possible
combinations of h1 and h2, then it is true that

M ~C = σ(Sh∗1h∗2)
~C = M−1σ(Sh∗1h∗2)




C−−
...

C++


 =

(
M−1

)



σ(S1)
...

σ(Sh2
1h2

2
)


 .

So the inverse of the matrix M can be used to find any C∗∗. Using
the depiction of the signatures as the combination of the C∗∗’s, for the two
dimensional case the coefficient matrix M can be developed of the following
form.

M2D =




1 1 1 1 1 1 1 1 1
1 0 1 1 0 1 1 0 1
−1 0 1 −1 0 1 1 0 1
0 0 0 −1 −1 −1 1 1 1
0 0 0 1 0 −1 −1 0 1
0 0 0 −1 0 1 −1 0 1
0 0 0 1 1 1 1 1 1
0 0 0 −1 0 −1 1 0 1
0 0 0 1 0 1 1 0 1




4.2 Three-Dimensions and Generalization

The above example can be extended to the three-dimensional case and then
a generalization can be used to extend to the five-dimensional case which
corresponds to the original mixing problem. Let the new system of hi’s for
the three-demensional case be h1 = x(x−1), h2 = y(y−1) and h3 = z(z−1).
Much like in the two-dimensional case, we are interested in solving for C−−−,
which can be expressed in terms of the signatures.

Using the same approach as before, a matrix can be formed by the
coefficients (-1, 0, or 1) that describes the signatures as polynomials of the
different C∗∗∗s. Again, the matrix is invertible and any C∗∗∗ can be written
in terms of different signature combinations. The most valuable result from
the three-dimensional example is a generalized way to form the coefficient
matrix.

12

In the three-dimensional case, the coefficient matrix is a 27 by 27 matrix,
and by arranging the rows and columns, it can be written in the form:

M3D =




M2D M2D M2D

0 M2D −M2D

0 M2D M2D


 ,

where “0” is a nine by nine matrix containing all zeros.

This arrangement led to the realization of the proper ordering of the
rows and columns to write the coefficient matrix for any dimension n ≥ 3.

Theorem 8 (Coefficient Matrix) For any dimension n ≥ 3 the coeffi-
cient matrix MnD for all possible signatures and C∗···∗’s will always have the
form of:

MnD =




M(n−1)D M(n−1)D M(n−1)D

0 M(n−1)D −M(n−1)D

0 M(n−1)D M(n−1)D




Proof It is easy to achieve a matrix of this form for n-dimensions provided
that one maintains the same ordering for the rows and columns. In the case
of the C∗···∗, the columns, one must maintain the ordering that 0 < + < −.
As for the rows, one always needs the ordering of hn < hn−1 < · · · < h1

and where the powers of the hi’s go from zero to two. When this ordering
is maintained the coefficient matrix will always have the form of MnD. ¤

Now that the coefficient matrix has been generalized, the next step is
to look at the signature combinations that led to the desired C∗···∗ to find a
generalization.

5 h-Polynomial Equations

Using the matrices developed for the 2-D and 3-D cases, and the proper
ordering of the C∗···∗ and signatures, a trend appears amongst the C∗···∗ of
importance. The number of critical points that are not on the boundary
are of the most interest (those on the boundary are easy enough to find), so
consider the example where all the hi’s are positive. Using the matrix, each
C+···+ can be expressed as a linear combination of the different signature
combinations. This can be represented as a polynomial of the different

13

combinations of the hi’s needed. So for example, for the 2-D and 3-D cases,
the polynomials are:

C++ =
1
4

(
σ(Sh1h2) + σ(Sh2

1h2
) + σ(Sh1h2

2
) + σ(Sh2

1h2
2
)
)

C+++ =
1
8

(
σ(Sh1h2h3) + σ(Sh2

1h2h3
) + σ(Sh1h2

2h3
) + σ(Sh2

1h2
2h3

)+

σ(Sh1h2h2
3
) + σ(Sh1h2

2h2
3
) + σ(Sh2

1h2h2
3
) + σ(Sh2

1h2
2h2

3
)
)

From those two examples and some simple factorization, we concluded
that for a system with n ∈ N number of hi’s, then one can always write out
the hi pairings needed as the terms of the polynomial H:

H = (h1 + h2
1)(h2 + h2

2)...(hn + h2
n)

So in other words, C+···+ can always be expressed as a polynomial of
signatures of the S matrices for all combination of hi where the power of hi

is at least one (no zero powers). Then C+···+ will always have the form:

C+···+ =
1
2n

(
σ(Sh1···hn) + σ(Sh2

1···hn
) + ... + σ(Sh2

1···h2
n
)
)

(13)

Before this can be used, it must be proven that this pattern will always
simplify to C+...+ for any n.

Theorem 9 For any n ∈ N and any h1, . . . , hn, the number of critical points
C+···+ is given by the equation (13).

Proof To see that the polynomial equation always simplifies to just the
C+···+ region, refer to the 2-D case. Recall that the polynomial equation for
2-D is,

C++ =
1
4

(
σ(Sh1h2) + σ(Sh2

1h2
) + σ(Sh1h2

2
) + σ(Sh2

1h2
2
)
)

To see that this works, evaluate the signatures for each monomial pairing in
the equation. This results in:

(C++ + C−− − C+− − C−+) + (C++ + C−+ − C+− − C−−) +
(C++ + C+− − C−+ − C−−) + (C++ + C−+ + C+− + C−−)

14

C−−−−− C−−−−+

None − + 1 + −
5 + + 1, 5 − −
4 + − 1, 4 − +

4, 5 − − 1, 4, 5 + +
3 + − 1, 3 − +

3, 5 − − 1, 3, 5 + +
3, 4 − + 1, 3, 4 − +

3, 4, 5 + + 1, 3, 4, 5 − −
2 + − 1, 2 − +

2, 5 − − 1, 2, 5 + +
2, 4 − + 1, 2, 4 − +

2, 4, 5 + + 1, 2, 4, 5 − −
2, 3 − + 1, 2, 3 + −

2, 3, 5 + + 1, 2, 3, 5 − −
2, 3, 4 + − 1, 2, 3, 4 − +

2, 3, 4, 5 − − All + +
(#+)/(#−) 16/16 16/16

Figure 2: The figure above shows the sign of the coefficient for both C−−−−−
and C−−−−+ as they appear in the signature of the S matrix for each com-
bination of hi’s. The columns of numbers represent which, if any, hi values
are squared.

From this form, it can be seen that for any n, there will always be 2n C+···+’s
in the equation, since C+···+ will always be positive for any combination of
hi’s. This justifies the coefficient 1

2n , and that C+···+ will always be in the
solution. Now it must be shown that the rest of the C∗···∗’s cancel out.

Since the equation yields only powers of hi greater than zero, then it is
true that each signature combination will contain the same C∗···∗’s; the only
difference between them will be the coefficient values (1 or -1). So one way
to show that the other C∗···∗’s cancel is by showing that the equation results
in the same number of positive and negative coefficients for each C∗···∗. In
fact, this does work out for the 2-D, 3-D, and 5-D cases, and will in fact
work for any case. Since the coefficient is dependent upon the number of
squares and the number of negative signs, this can easily be represented for
every C∗···∗. Figure 2 looks at our 5-D case for C−−−−− and C−−−−+. ¤

This process can be continued this for all C∗···∗s to see that this holds
true. This means that the polynomial (13) is sufficient to count the number
of critical points. Now that we have this, we can implement a procedure to
determine the number of points for a given weight vector ~u.

15

6 Examples of Mathematica Coding

For all of the operations we have discussed above, it was advantageous to
create commands in Mathematica that aided the computations in finding the
critical points, the number of critical points, and then to solve for the param-
eters of π,s, and t. This section will feature some example outputs of this
coding package. For further detail on the coding, one can see the Appendix
following the paper for the complete writeup of the coding procedures. Many
of the following codes rely upon the use of another Mathematica package,
the Mathematica Gröbner Basis Package (MGBP) [5]. This package is used
in operations which are necessary to determine leading terms and to form
the monomial basis B of non-leading term monomials.

<< "/MGPB.m"
<< "/Implicit.m"

6.1 Compute Command

For any weight vector ~u = (u0, u1, u2, u3, u4), this command returns the
solutions to the original mixing problem.

In[1]:= u={11,31,0,31,11}
Out[1]:={11,31,0,31,11}

In[2]:=Compute[u]
Out[2]:={{0.032738095238095238095238095238095238095238095,

0.36904761904761904761904761904761904761905,
0.1964285714285714285714285714285714285714286,
0.36904761904761904761904761904761904761905,
0.032738095238095238095238095238095238095238095},
{0.1954699706847629190265005772927253743395242,
0.2218106497231094059155694354665987490838,
0.1654387591842553501158599744813517531533826,
0.2218106497231094059155694354665987490838,
0.1954699706847629190265005772927253743395242}}

6.2 Critical Point Test

This command returns all ~u that have critical points that meet the con-
straints, for any given n ∈ N value where, n = u0 + u1 + u2 + u3 + u4.

16

In[1]:=CPTest[1]
Out[1]:=

{1,0,0,0,0} {{1.,0.,0.,0.,0.}}

{0,1,0,0,0} {{0.,1.,0.,0.,0.},
{0.314459,0.42265,0.211325,0.0515668,0.},
{0.,0.5,0.,0.5,0.},
{0.329505,0.414214,0.21967,0.,0.0366117}}

{0,0,1,0,0} {{0.25,0.,0.75,0.,0.},
{0.,0.242641,0.514719,0.242641,0.},
{0.125,0.,0.75,0.,0.125},
{0.,0.,0.75,0.,0.25}}

{0,0,0,1,0} {{0.,0.5,0.,0.5,0.},
{0.,0.,0.,1.,0.},
{0.,0.0515668,0.211325,0.42265,0.314459},
{0.0366117,0.,0.21967,0.414214,0.329505}}

{0,0,0,0,1} {{0.,0.,0.,0.,1.}}

6.3 Finding π, s, t

Given any weight vector ~u, this command produces the estimates for the
three coin probabilities (here expressed as r, s, and t).

In[1]:=U={2,4,5,3,2}
Out[1]:={2,4,5,3,2}

In[2]:=FindRST[U]

Out[2]:={0.0832709,0.22943,0.412121,0.216885,0.0582932}
{{s -> 0.484656,r -> 0.999902,t -> -2.37445},
{s -> -2.37445,r -> 0.0000982976,t -> 0.484656}}

{0.110711,0.28244,0.288948,0.194439,0.123462}
{{s -> 0.387052,r -> 0.783215,t -> 0.835989},
{s -> 0.835989,r -> 0.216785,t -> 0.387052}}

17

6.4 Multiplication Matrix for Grevlex Order

Given any Gröbner basis G for the ideal I, this command returns all of the
multiplication matrices for all f ∈ V , the basis formed by the non-leading
term monomials of G.

In[1]:=G={x^2+3x y/2+y^2/2-3x/2-3y/2, x y^2-x, y^3-y}
Out[1]:={x^2+3x y/2+y^2/2-3x/2-3y/2, x y^2-x, y^3-y}

In[2]:=MultMatrixGrevlex[G, {x, y}]
Out[2]:=

{




1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1







0 0 0 0 0
1 3

2 0 1 −3
2

0 3
2 0 0 −1

2
0 −1

2 0 0 3
2

0 −3
2 1 0 3

2







0 0 0 0 0
0 0 0 0 1
1 0 0 1 0
0 0 1 0 0
0 1 0 0 0







0 0 0 0 0
0 1 0 0 0
0 0 1 0 0
1 0 0 1 0
0 0 0 0 1







0 0 0 0 0
0 −3

2 1 0 3
2

0 −1
2 0 0 3

2
0 3

2 0 0 −1
2

1 3
2 0 1 −3

2



}

6.5 Shf Multiplication Matrix

Given the non-leading term basis V , command returns the Sfh matrix for
any f ∈ V and for any polynomial h ∈ k[x1, . . . , xn].

In[1]:=V={1,x,y,x y,y^2}
Out[1]:={1,x,y,x y,y^2}
In[2]:=h=x
Out[2]:=x
In[3]:=f=y
Out[3]:=y
In[4]:=hfMultMatrixGrevlex[h,f,V,G,{x,y}]
Out[4]:={{0, 0, 0, 0, 0}, {0, -3/2, 1, 3/2, 0},

{0, -1/2, 0, 3/2, 0}, {1, 3/2, 0, -3/2, 1},
{0, 3/2, 0, -1/2, 0}}

18

6.6 Sh Matrix

Using the applications above for the multiplication matrices, and the func-
tions for S, the ShMatrix command repeats the S function for a given h
for all combinations f, g ∈ V .

In[1]:=G={x^2 + 3 x y/2 +y^2/2 -3 x/2 - 3y/2, x y^2-x, y^3-y};
In[2]:=VD=VSDimension[G, {x,y}];
In[3]:=V=VD[[1]]
Out[3]:={1, x, y, y^2, xy}
In[4]:=h=x^2+1;
In[5]:=M=shMatrix[V,G,h,{x,y}];
In[6]:=MatrixForm[M]
Out[6]:=




12 12 −3 11 −12
12 26 12 −12 18
−3 −12 11 −3 12
11 12 −3 11 −12
−12 −18 12 −12 26




6.7 Number of Solutions

Given a weight vector, ~u, NumSols[~u] returns the number of real solutions
in the range (0, 1) to the likelihood function.

In[1]:=u = {3, 0, 4, 0, 5};
In[2]:=NumSols[u]
Out[2]:=1

7 Summary and Future Goals

Overall the initial goals of the project were successful. We were able to
understand both how to count and solve for the critical points of L, by
using methods from algebra and algebraic geometry. Furthermore, we were
able to take this logic and actually apply it using our programming package
from Mathematica. With this package, it is now fairly simple to examine
all aspects of our original mixing problem. Beyond this, it gives us a good
framework in which we can now apply these techniques to more complex
mixing problems, and hence problems more closely related to those witnessed
in bioinformatics.

19

8 Appendix

8.1 Tes[n]

Given a set of real numbers, n, Tes[n] returns a set where the entry i is true if ni ≥ 0 and
false if ni < 0.

Tes[n_]:=Module[

{M,i},

M={};

For[i=1, i<=Length[n],

If[n[[i]]==0 ||Positive[n[[i]]]==True, AppendTo[M,True], AppendTo[M,False]];

i++];

Return[M];

];

8.2 Compute[~u]

Given a weight vector ~u = (u0, u1, u2, u3, u4), Compute[~u] uses the method of Lagrange
Multipliers to compute the critical point(s) ~p = (p0, p1, p2, p3, p4) of the likelihood equa-
tion, L = pu0

0 pu1
1 pu2

2 pu3
3 pu4

4 .

Compute[u_] := Module[

{g1, g2, Id,GB, GB0,GB1,GB2,GB3,GB4,A0,A1,A2,A3,A4,A00,A11,A22,A33,A44,SS,

MXT,UU,i,j,k},

Clear[p0,p1,p2,p3,p4];

M ={{12p0, 3 p1, 2 p2}, {3 p1, 2 p2, 3 p3}, {2 p2, 3 p3, 12 p4}};

g2=Det[M];

g1=p0+p1+p2+p3+p4-1;

Id= {u[[1]]- C*p0*D[g1,p0]- D*p0*D[g2, p0], u[[2]]- C*p1*D[g1,p1]-

D*p1*D[g2,p1],u[[3]]-C*p2*D[g1,p2]- D*p2*D[g2, p2], u[[4]]-C*p3*D[g1,p3]-

D*p3*D[g2,p3], u[[5]]-C*p4*D[g1,p4]- D*p4*D[g2, p4], g1, g2};

GB= GroebnerBasis[Id,{p0,p1,p2,p3,p4},{C, D}, MonomialOrder-> EliminationOrder];

GB0=GroebnerBasis[GB,p0,{p1,p2,p3,p4},MonomialOrder->EliminationOrder];

A0=NSolve[GB0[[1]], 45];

GB1=GroebnerBasis[GB,p1,{p0,p2,p3,p4},MonomialOrder->EliminationOrder];

A1=NSolve[GB1[[1]],45];

GB2=GroebnerBasis[GB,p2,{p0,p1,p3,p4},MonomialOrder->EliminationOrder];

A2=NSolve[GB2[[1]],45];

GB3=GroebnerBasis[GB,p3,{p0,p1,p2,p4},MonomialOrder->EliminationOrder];

A3=NSolve[GB3[[1]],45];

GB4=GroebnerBasis[GB,p4,{p0,p1,p2,p3},MonomialOrder->EliminationOrder];

A4=NSolve[GB4[[1]],45];

A00={};

A11={};

A22={};

A33={};

A44={};

For[i=1,i<=Length[A0],If[Head/@{p0/.A0[[i]]}=={Real},

20

AppendTo[A00,p0/.A0[[i]]]];i++];

For[i=1,i<=Length[A1],If[Head/@{p1/.A1[[i]]}=={Real},

AppendTo[A11,p1/.A1[[i]]]];i++];

For[i=1,i<=Length[A2],If[Head/@{p2/.A2[[i]]}=={Real},

AppendTo[A22,p2/.A2[[i]]]];i++];

For[i=1,i<=Length[A3],If[Head/@{p3/.A3[[i]]}=={Real},

AppendTo[A33,p3/.A3[[i]]]];i++];

For[i=1,i<=Length[A4],If[Head/@{p4/.A4[[i]]}=={Real},

AppendTo[A44,p4/.A4[[i]]]];i++];

SS={};

MXT=Flatten[Table[Table[Table[Table[

Table[{A00[[i]],A11[[j]],A22[[k]],A33[[l]],

A44[[m]]},{i,1,Length[A00]}],{j,1,Length[A11]}],{k,1,Length[A22]}],

{l,1,Length[A33]}],{m,1,Length[A44]}],4];

For[i=1, i<=Length[MXT],

If[Abs[MXT[[i,1]]+MXT[[i,2]]+MXT[[i,3]]+MXT[[i,4]]+MXT[[i,5]]

-1]<=(1*10^-11), AppendTo[SS,MXT[[i]]]];i++];

TT={};

For[k=1,k<=Length[SS], If[Tes[SS[[k]]]==

{True,True,True,True,True},

AppendTo[TT,SS[[k]]]];k++];

UU={};

For[i=1,i<=Length[TT],{p0,p1,p2,p3,p4}=TT[[i]];

If[Det[M]<=(1*10^-11), AppendTo[UU,TT[[i]]]];i++];

If[Length[UU]!=0,Return[UU],Return[{}]];

];

8.3 CPTest[n]

Given n ∈ N, CPTest[n] returns the critical point(s) ~p = (p0, p1, p2, p3, p4) for each ~u =
(u0, u1, u2, u3, u4) such that u0 + u1 + u2 + u3 + u4 = n.

CPTest[n_]:=Module[

{MM, KK,i,h},

Clear[i,j,k,l,m,KK,MM];

MM = Flatten[Table[Table[Table[Table[Table[{i, j, k, l, m},

{i, 0, n}],

{j, 0, n}], {k, 0, n}], {l, 0, n}], {m, 0, n}], 4];

KK = {};

For[i = 1, i <= Length[MM],If[MM[[i,1]]+MM[[i,2]]+MM[[i,3]]+

MM[[i, 4]]+MM[[i, 5]] == n, AppendTo[KK, MM[[i]]]]; i++];

For[h = 1, h <= Length[KK], L = Compute[KK[[h]]];

If[L != {}, Print[KK[[h]], L]]; h++];

];

8.4 FindRST[~u]

Given a weight vector, ~u, FindRST[~u] solves for π, s, t in the original parametric equations
for each critical point, ~p.

21

FindRST[u_]:=Module[

{SS, Eq,m},

SS=Compute[u];

For[m = 1, m <= Length[SS],

Clear[r,s,t,p0,p1,p2,p3,p4];

Eq = {r (1 - s)^4 + (1 - r) (1 - t)^4 - p0,

4 r s (1 - s)^3 + 4 (1 - r) t (1 - t)^3 - p1,

6 r s^2 (1 - s)^2 + 6 (1 - r) t^2 (1 - t)^2 - p2,

4 r s^3 (1 - s) + 4 (1 - r) t^3 (1 - t) - p3,

r s^4 + (1 - r) t^4 - p4}//.

{p0->SS[[m,1]],p1->SS[[m,2]],p2->SS[[m,3]],p3->SS[[m, 4]],

p4->SS[[m,5]]};

Print[NSolve[Eq, {r, s, t}]];

m++];

];

8.5 Remainders[V, G, vlist]

Given the basis, V , the Grob̈ner Basis, G, and the variable(s), vlist, the procedure call
Remainders[V, G, vlist] returns the remainder upon division of V by G with respect to the
variable(s) vlist.

Remainders[V_, G_, vlist_]:=Module[

{T, l,k,i,j},

l={};

m={};

For[j=1, j<=Length[V],m={};

For[i=1, i<=Length[V],

Clear[T];

T=V[[j]]*V;

k=PRemainder[T[[i]],G,vlist];

AppendTo[m, k];

i++];

AppendTo[l, m];

j++];

Return[l];

];

8.6 MultMatrixGrevlex[G, vlist]

Let V be the basis formed by all the non-leading term monomials in the Gröbner Basis
G, and let f be any element in V . Given the Gröbner Basis, G, and the variable(s),
vlist, MultMatrixGrevlex[G, vlist] returns multiplication matrices with respect to f, whose
terms are the coefficents of the remainders of fV divided by G. This division follows the
monomial order Graded Reverse Lexicographic.

MultMatrixGrevlex[G_, vlist_]:=Module[

{V, J, M,LT, subs, k, LC, LM,q,j,i,m},

MonOrder[Grevlex];

22

V=VSDimension[G,vlist];

V=V[[1]];

R=Remainders[V, G, vlist];

J={};

For[q = 1, q <= Length[R], M = Table[Table[0, {i, 1, Length[V]}] 0,

{j, 1, Length[V]}];

For[i = 1, i <= Length[R],

LT = {};

subs = {};

While[R[[q, i]] =!= 0,

AppendTo[LT, k = GrevlexLT[R[[q, i]], vlist]];

R[[q, i]] = R[[q, i]] - k;];

For[j = 1, j <= Length[vlist],

subs = AppendTo[subs, vlist[[j]] -> 1]; j++];

LC = LT //. subs;

LM = LT/LC;

For[j = 1, j <= Length[LT],

For[m = 1, m <= Length[V],

If[LM[[j]] == V[[m]], M[[i, m]] = LC[[j]]];

m++];

j++];

i++];

AppendTo[J, Transpose[M]];

q++];

Return[J];

];

8.7 hfMultMatrixGrevlex[h, f, V, G, vlist]

Given a Gröbner Basis, G, a basis, V , an element f in the basis V , a polynomial, h, and
variables, vlist, hfMultMatrixGrevlex[h, f, V, G, vlist] computes the multiplication matrix
with respect to fh. It follows the monomial ordering Graded Reverse Lexicographic.

hfMultMatrixGrevlex[h_,f_,V_,G_,vlist_]:=Module[

{P,NN,J,LT,LC,LM,M,k, subs,j,m,i},

subs = {};

For[j = 1, j <= Length[vlist],

subs = AppendTo[subs, vlist[[j]] -> 1];

j++];

P = Expand[h*f*V];

NN={};

For[i = 1, i <= Length[P],

AppendTo[NN, PRemainder[P[[i]], G, vlist]];

i++];

J = {};

M = Table[Table[0, {i, 1, Length[V]}] 0, {j, 1, Length[V]}];

For[i = 1, i <= Length[NN],

LT = {};

While[NN[[i]] =!= 0,

23

AppendTo[LT, k = GrevlexLT[NN[[i]], vlist]];

NN[[i]] = NN[[i]] - k;];

LC = LT //. subs;

LM = LT/LC;

For[j = 1, j <= Length[LT],

For[m = 1, m <= Length[V],

If[LM[[j]] == V[[m]],

M[[i, m]] = LC[[j]]];

m++];

j++];

i++];

Return[Transpose[M]];

];

8.8 shTr[f, g, h, V, G, vlist]

Given a Gröbner basis, G, a basis V , two elements, f and g, in the basis V , a polynomial,
h, and variable(s), vlist, the procedure call shTr[f, g, h, V, G, vlist] returns the trace of
the multiplication matrix with respect to fh multiplied by the multiplication matrix with
respect to g.

shTr[f_,g_,h_,V_,G_,vlist_]:=Module[

{M1, l},

M1=hfMultMatrixGrevlex[h,f*g,V,G,vlist];

l=Tr[M1];

Return[l];

];

8.9 shMatrix[V,G, h, vlist]

Given a Gröbner basis, G, a basis, V , a polynomial, h, and variable(s), vlist, the pro-
cedure call shMatrix[V, G, h, vlist] returns a matrix whose entries are the traces of the
multiplication matrices with respect to hfg, where f, g are any two elements in the basis
V .

shMatrix[V_,G_,h_,vlist_]:=Module[

{T,MM,LL,i,j},

T=Flatten[Table[Table[{V[[j]],V[[i]]},{i,1,Length[V]}],

{j,1,Length[V]}],1];

MM=Table[Table[0,{i,1,Length[V]}]0,{j,1,Length[V]}];

LL={};

While[T=!={},

Clear[f,g];

{f,g}=T[[1]];

AppendTo[LL,shTr[f,g,h,V,G,vlist]];

T=Drop[T,1]];

For[i=1,i<=Length[MM],

For[j=1,j<=Length[MM[[1]]],

MM[[i,j]]=LL[[1]]; LL=Drop[LL,1]; j++]; i++];

24

Return[MM];

];

8.10 Rank[m]

Given a matrix, m, Rank[m] returns the rank of the matrix m.

Rank[m_]:=Length[Transpose[m]]-Length[NullSpace[m]];

8.11 Sig[m]

Given a matrix, m, Sig[m] returns the signature of the matrix m.

Sig[m_]:=Module[

{nc,r,i,subs,LT,k,DD,LC},

DD = Expand[Det[m - x IdentityMatrix[Length[m]]]];

subs = {x -> 1};

LT = {};

While[DD =!= 0,

k = GrevlexLT[DD,{x}];

AppendTo[LT, k];

DD = DD - k;];

LC = LT //. subs;

nc=0;

For[i=2,i<=Length[LC],

If[Sign[LC[[i]]] != Sign[LC[[i-1]]], nc=nc+1];

i++];

r = Rank[m];

Return[2*nc-r];

];

8.12 NumSols[~u]

Given a weight vector, ~u, NumSols[~u] returns the number of critical points of the likelihood
function L = pu0

0 pu1
1 pu2

2 pu3
3 pu4

4 .

NumSols[u_]:=Module[

{Combo,H,M,g1,g2,Id,GB,vlist,mV,V,Mh,k,S,MM,T,i,j,l,m,a},

Combo = {};

H={p0,p1,p2,p3,p4};

For[i = 1, i <= 2,

For[j = 1, j <= 2,

For[k = 1, k <= 2,

For[l = 1, l <= 2,

For[m = 1, m <= 2,

AppendTo[Combo,

H[[1]]^i*H[[2]]^j*H[[3]]^k*

H[[4]]^l*H[[5]]^m];

25

m++];

l++];

k++];

j++];

i++];

M = {{12p0, 3p1, 2p2}, {3p1, 2p2, 3p3}, {2p2, 3p3, 12p4}};

g1 = Det[M];

g2 = p0 + p1 + p2 + p3 + p4 - 1;

Id = {u[[1]] - C p0 D[g1,p0] - D p0 D[g2,p0],

u[[2]] - C p1 D[g1,p1] - D p1 D[g2,p1],

u[[3]] - C p2 D[g1,p2] - D p2 D[g2,p2],

u[[4]] - C p3 D[g1,p3] - D p3 D[g2,p3],

u[[5]] - C p4 D[g1, p4] - D p4 D[g2, p4], g1, g2};

GB = GroebnerBasis[Id, {p0, p1, p2, p3, p4}, {C, D},

MonomialOrder -> EliminationOrder];

vlist={p0,p1,p2,p3,p4};

mV = MultMatrixGrevlex[GB, vlist];

V = VSDimension[GB, {p0, p1, p2, p3, p4}];

V = V[[1]];

Mh = {};

For[k = 1, k <= Length[Combo],

Clear[i, j];

AppendTo[Mh,

hfMultMatrixGrevlex[Combo[[k]], 1, V, GB, vlist]];

k++];

Clear[k];

S = {};

For[a = 1, a <= Length[Mh],

MM = Table[Table[0, {i, 1, Length[V]}]0, {j, 1, Length[V]}];

For[i = 1, i <= Length[mV],

For[j = i, j <= Length[mV[[1]]],

T = Tr[Dot[mV[[i]],Dot[mV[[j]],Mh[[a]]]]];

MM[[i, j]] = T;

MM[[j, i]] = T;

j++];

i++];

AppendTo[S, Sig[MM]];

a++];

Return[Sum[S[[i]], {i, 1, Length[S]}]/32];

];

References

[1] Pachter, Lior; Sturmfels, Bernd: Algebraic Statistics for Computational
Biology, Cambridge, Cambridge, U.K. 2005.

26

[2] Hosten, Khetan, & Sturmfels. “Solving the Likelihood Equations,”
Foundations of Computational Mathematics 5 (2005), 389-407.

[3] Cox, Little, & O’Shea. Ideals, Varieties, and Algorithms, 3rd ed.,
Springer, New York, 2006.

[4] Cox, Little, & O’Shea. Using Algebraic Geometry, 2nd ed. Springer,
New York, 2004.

[5] Cox, David, et al. Mathematica Gröbner Basis Package
for Ideals, Varieties, and Algorithms, available at URL
http://www.cs.amherst.edu/~dac/iva/groebner40.m

27

