
Mathematis 304 { Ordinary Di�erential EquationsLab/Problem Set 7 { 2nd Order Equations and RLC CiruitsOtober 29, 2004Bakground and GoalsToday we will apply our knowledge of 2nd order linear ODE to some questions abouteletrial iruits. An \RLC iruit" is one that ontains a voltage soure vT (t) (timedependent), a resistor (i.e. something that dissipates eletrial energy) with resistane R,an indutor (a devie or omponent that stores magneti energy) with indutane L, and aapaitor (a devie or omponent that stores eletrial energy) with apaitane C. Manybasi eletrial iruits have this form.It an be shown that the voltage hange aross the apaitor, written vC , satis�es the2nd order ODE(1) LC d2vCdt2 + RCdvCdt + vC = vT (t)so that these iruits are also desribed by the harmoni osillator equations that we havebeen studying for the past week. We will always onsider a periodi, sinusoidal voltagesoure (\foring") term vT (t) = a sin(!t):Maple NotesAll of the plots neessary for this lab will be generated using the basi Maple plotommand. However, if you want to hek your results, you an also use the DEplotommand from Lab 1 to plot approximate numerial solutions to 2nd order ODE as follows.For example, say we want to see the solution of the initial value problem8<: 4d2ydt2 + 3dydt + 10y = 3 os(2t)y(0) = 5y0(0) = �3Then the following ommands ould be used. First load the DEtools pakage with:with(DEtools):Then de�ne the ODE with:eqn:=4*diff(y(t),t$2)+3*diff(y(t),t)+10*y(t) = 3*os(2*t);and plot the solution for t 2 [0; 10℄ withDEplot(eqn,y(t),t=0..10,[[y(0)=5,D(y)(0)=-3℄℄);As in Lab 1, adjusting the lineolor and stepsize options, the range of t-values, et.will often be neessary to get reasonable, printable graphs.1



Lab QuestionsA) (A worked example) Suppose we want to understand the voltage in an RLC iruitwith R = 1000, L = 2, and C = 10�6, and a voltage soure vT = 20 sin(500t). Weknow that the general solution of (1) in this ase:(2) (2� 10�6)d2vCdt2 + (10�3)dvCdt + vC = 20 sin(50t)looks like vC(t) = 1v1(t) + 2v2(t) + vp(t), where 1v1(t) + 2v2(t) is the generalsolution for the homogeneous equation(2� 10�6)d2vCdt2 + (10�3)dvCdt + vC = 0and vp(t) is any partiular solution.1) To �nd v1(t); v2(t), we �nd the roots of the harateristi polynomial of theorresponding �rst order system:(2� 10�6)�2 + (10�3)�+ 1 = 0To �nd them using Maple, enter:fsolve(2*10^(-6)*lambda^2+10^(-3)*lambda+1,lambda,omplex);2) Call the roots ��i�. Then we know that the general solution of the homogeneousequation has the form 1e�t os(�t) + 2e�t sin(�t). De�ne the two terms here asfuntions in Maple using:v1:= t->exp(alpha*t)*os(beta*t);v2:= t->exp(alpha*t)*sin(beta*t);(You will need to assign values to alpha and beta or �ll in the orret numerialvalues.)3) Now, we need to �nd a partiular solution vp. This is where the method of unde-termined oeÆients that we disussed in lass earlier omes in. The 20 sin(50t)term on the right means that we guess that a partiular solution will have theform vp(t) = A os(50t) + B sin(50t). (Note, no term here is a solution of thehomogeneous equation, so we do not need a ts fator, that is, s = 0.) Plug vp(t)into (2) and determine the values of A;B to yield a solution. You should get::995A+ :05B = 0�:05A+ :995B = 20So A := �1:007 and B := 20:05. You an �nd these equations and the solutionsin Maple using 2



vp:=t->A*os(50*t)+B*sin(50*t);2.0*10^(-6)*diff(vp(t),t$2)+1.0*10^(-3)*diff(vp(t),t)+vp(t);ABSol := fsolve(f.995*A+.05*B,-.05*A+.995*B-20g,fA,Bg);vpp := t -> subs(ABSol,vp(t));The last line de�nes the partiular solution as a new funtion, with the values ofA;B \plugged in."4) Now, we �nd the values of 1; 2 that give a solution of the initial value problemwith v(0) = 0, v0(0) = 1. Here are some sample Maple ommands to work with:vC:=t->1*v1(t)+2*v2(t)+vpp(t);initeqs:=fvC(0)=0,subs(t=0,diff(vC(t),t))=1g;vals:=fsolve(initeqs,f1,2g);5) Finally, plot the solution of (2) with vC(0) = 0, and v0C(0) = 1. (Note: You'llneed to think about an appropriate interval of t values for your plot. A termlike os(661:437t) is osillating really fast!) Also plot the \transient" part of thesolution separately. (This should show you why the solution of (2) looks virtuallyindistinguishable from a sinusoidal funtion!)B) Suppose L;C > 0, but the resistane R = 0. (This is a very, very idealized situation, ofourse, even better than \superondutivity.") What do the solutions of (1) look likein this ase? Derive analyti formulas by our undetermined oeÆients tehnique forinhomogeneous 2nd order equations. Be sure to distinguish between the two di�erentases:1) i! is not a root of the harateristi polynomial, and2) i! is a root of the harateristi polynomial.How is the analyti form of the solution di�erent in these two ases?C) Using Maple, plot the analyti solutions of (1) with R = 0, C = 10�6, L = 1, a = 1,vC(0) = 1, v0C(0) = 0, and ! = 900; 950; 1000; 1050; 1100 (�ve graphs in all). (You'llneed to hose your t interval arefully to get informative graphs!) The name for the! = 1000 ase is resonane. Desribe what a resonant solution does as t ! 1. Canyou think of a \real world" situation that might orrespond to resonane? Is it a\good" or a \bad" thing to have a resonant solution?D) Next, we will study the more realisti ase R > 0. By onsidering the form of theroots of the harateristi polynomial of the 1st order system, show that if R > 0,then every solution of the orresponding homogeneous equationLC d2vCdt2 + RCdvCdt + vC = 0tends to zero as t ! 1. These terms in the general solution of (1) are alled \tran-sients" for this reason. 3



E) Plot and desribe the solutions for �xed a = 10 and ! = 1000; 1200; 1400; 1600; 1800; 2000with R = 2000, C = 2 � 10�7, and L = 1:5. How does the amplitude of the steadystate solution ompare with the amplitude of the foring term (as a funtion of !)?Does resonane our in this situation? Explain.AssignmentIndividual write-ups giving answers to the above questions. Due: In lass, Friday,November 5.
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