
Mathematis 304 { Ordinary Di�erential EquationsFinal Examination { SolutionsDeember 17, 2004I. A) The equation is separable, so separating and integrating,Z dy(y � 2)1=3 = Z os(t) dt32(y � 2)2=3 = sin(t) + y = �23 sin(t) + �3=2 + 2From the initial ondition y(0) = 3, we get  = 1.B) In this equation, f(t; y) = os(t)(y � 2)2=3 is ontinuous on the whole t; y-plane. But�f�y = 23 os(t)(y � 2)�1=3 is not ontinuous at (0; 2). So the hypotheses of the Existeneand Uniqueness Theorem are not satis�ed. y(t) � 2 is one solution sine y0(t) = 0 =os(t)(2 � 2)2=3. But there are other solutions as well: For instane taking  = 0 insolution from A gives another.II. Equilibrium points are x = �pa for a � 0 (none for a < 0). The phase lines for a � 0should have all arrows pointing up, for a > 0, the arrows point up if x > pa or if x < �pa.They point down between pa and �pa. So x = pa is a soure, and x = �pa is a sink.III. A) Taking t in hours, A(t) = 15 os��t12�+ 55B) The ODE y0 = �1:5y + 1:5A(t) is �rst order linear. Using entry # 9 in the table ofintegrals we havey(t) = e�1:5t + 55 + 22:5(�=12)2 + (1:5)2 �1:5 os��t12�+ �12 sin��t12��C) The term ontaining the  goes to zero as t ! +1. So that term does not a�et thelong-term behavior of the solution. (This is like the transient terms in the solutions of our2nd order fored osillator equations).IV. A) For this family of 1st order systems, T = a and D = �4a. The family follows theline D = �4T in the trae-determinant plane. That line rosses the parabola D = T 2=4at T = �16 and T = 0. So, the systems have spiral sinks for �16 < a < 0.1



B) With a = 2, the harateristi polynomial is �2�2�+8, so the eigenvalues are � = 4;�2.The origin is a saddle point in the phase portrait. The � = 4 line is spanned by theeigenvetor (4; 1), and the � = �2 line is spanned by the eigenvetor (�2; 1).V. Expanding along row 3, the harateristi polynomial is (�3��)(2��)2. The dimensionof the kernel of A� 2I = 0� 0 0 11 0 00 0 �51Ais just 1; the kernel is spanned by (0; 1; 0). An eigenvetor for � = �3 is (�5; 1; 25). Sothe anonial form is C = 0� 2 1 00 2 00 0 �31ATo �nd the hange of basis matrix here we want a vetor V2 suh that (A� 2I)V2 = V1 =(0; 1; 0). By inspetion of the matrix A� 2I, we see that V2 = e1 will work. SoQ = 0� 0 1 �51 0 10 0 25 1AThen the solution of the anonial form system Y 0 = CY isY = 1e2t0� 1001A+ 2e2t0� t101A+ 3e�3t0� 0011Aand the solution of X 0 = AX isX = QY = 1e2t0� 0101A+ 2e2t0� 1t01A+ 3e�3t0��5125 1AVI. A) Charateristi polynomial is �2 + 6�+ 9 = 0, so � = �3 is a repeated root.y = 1e�3t + 2te�3tB) Using the partiular solution yp = Ae�t + Bt2 + Ct + D (sine no foring term is asolution of the homogeneous equation), we get A = 3=4, B = 1=9, C = �4=27, D = 2=27.y = 1e�3t + 2te�3t + 3e�t=4 + t2=9� 4t=27 + 2=272



VII. A) From the seond equation, at equilibrium either x = 0 or x = 2y � 1. In the �rstase, y = 1. In the seond, y = 0 and x = �1. So there are two equilibrium points: (0; 1)and (�1; 0).B) The Jaobian of the system isJ(x; y) = � 1 �12x� 2y + 1 �2x�At (x; y) = (0; 1), J(0; 1) = � 1 �1�1 0 � whih has determinant �1. So (0; 1) is a saddlepoint. At (x; y) = (�1; 0), J(�1; 0) = � 1 �1�1 2 � whih has trae 3 and determinant 1.So (0; 1) is a soure (sine D < T 2=4 and T > 0). In both ases, the equilbrium point ofthe non-linear system has the same type by our general theorem.VIII. A) Yes, this system is Hamiltonian, with Hamiltonian funtion H = exy . NoteHy = xexy = f(x; y) and �Hx = �yexy = g(x; y).B) If a system is Hamiltonian, then the linearization at eah ritial point has oeÆientmatrix A = � Hxy Hyy�Hxx �Hxy �(using equality of mixed partials). The sum of the diagonal entries is zero, so Tr(A) = 0.(Note: it is this fat that tells us that equilibrium points of Hamiltonian systems are alwayseither enters or saddles.)C) System 1 has a soure so it annot be Hamiltonian. System 3 has a spiral sink, so itannot be Hamiltonian either. Only system 2 is possibly Hamiltonian.Extra Credit: See Setion 5.4 in Blanhard, Devaney, and Hall. The idea is that if we havea gradient system, then by the same hain rule alulation we did in lass for Hamiltoniansystems, along a solution, ddtG(x(t); y(t)) = G2x +G2y � 0so G inreases along solutions. This means that there annot be any losed urves that aresolutions. The linearization of a gradient system at an equilibrium has oeÆient matrix:A = �Gxx GxyGxy Gyy �This is always a symmetri matrix, so the eigenvalues are real (by the Spetral Theoremfrom Linear Algebra). The equilbria an be saddles, sinks, or soures, but no \spiral"behavior is possible for gradient systems. 3


