
Mathemati
s 304 { Ordinary Di�erential EquationsFinal Examination { SolutionsDe
ember 17, 2004I. A) The equation is separable, so separating and integrating,Z dy(y � 2)1=3 = Z 
os(t) dt32(y � 2)2=3 = sin(t) + 
y = �23 sin(t) + 
�3=2 + 2From the initial 
ondition y(0) = 3, we get 
 = 1.B) In this equation, f(t; y) = 
os(t)(y � 2)2=3 is 
ontinuous on the whole t; y-plane. But�f�y = 23 
os(t)(y � 2)�1=3 is not 
ontinuous at (0; 2). So the hypotheses of the Existen
eand Uniqueness Theorem are not satis�ed. y(t) � 2 is one solution sin
e y0(t) = 0 =
os(t)(2 � 2)2=3. But there are other solutions as well: For instan
e taking 
 = 0 insolution from A gives another.II. Equilibrium points are x = �pa for a � 0 (none for a < 0). The phase lines for a � 0should have all arrows pointing up, for a > 0, the arrows point up if x > pa or if x < �pa.They point down between pa and �pa. So x = pa is a sour
e, and x = �pa is a sink.III. A) Taking t in hours, A(t) = 15 
os��t12�+ 55B) The ODE y0 = �1:5y + 1:5A(t) is �rst order linear. Using entry # 9 in the table ofintegrals we havey(t) = 
e�1:5t + 55 + 22:5(�=12)2 + (1:5)2 �1:5 
os��t12�+ �12 sin��t12��C) The term 
ontaining the 
 goes to zero as t ! +1. So that term does not a�e
t thelong-term behavior of the solution. (This is like the transient terms in the solutions of our2nd order for
ed os
illator equations).IV. A) For this family of 1st order systems, T = a and D = �4a. The family follows theline D = �4T in the tra
e-determinant plane. That line 
rosses the parabola D = T 2=4at T = �16 and T = 0. So, the systems have spiral sinks for �16 < a < 0.1



B) With a = 2, the 
hara
teristi
 polynomial is �2�2�+8, so the eigenvalues are � = 4;�2.The origin is a saddle point in the phase portrait. The � = 4 line is spanned by theeigenve
tor (4; 1), and the � = �2 line is spanned by the eigenve
tor (�2; 1).V. Expanding along row 3, the 
hara
teristi
 polynomial is (�3��)(2��)2. The dimensionof the kernel of A� 2I = 0� 0 0 11 0 00 0 �51Ais just 1; the kernel is spanned by (0; 1; 0). An eigenve
tor for � = �3 is (�5; 1; 25). Sothe 
anoni
al form is C = 0� 2 1 00 2 00 0 �31ATo �nd the 
hange of basis matrix here we want a ve
tor V2 su
h that (A� 2I)V2 = V1 =(0; 1; 0). By inspe
tion of the matrix A� 2I, we see that V2 = e1 will work. SoQ = 0� 0 1 �51 0 10 0 25 1AThen the solution of the 
anoni
al form system Y 0 = CY isY = 
1e2t0� 1001A+ 
2e2t0� t101A+ 
3e�3t0� 0011Aand the solution of X 0 = AX isX = QY = 
1e2t0� 0101A+ 
2e2t0� 1t01A+ 
3e�3t0��5125 1AVI. A) Chara
teristi
 polynomial is �2 + 6�+ 9 = 0, so � = �3 is a repeated root.y = 
1e�3t + 
2te�3tB) Using the parti
ular solution yp = Ae�t + Bt2 + Ct + D (sin
e no for
ing term is asolution of the homogeneous equation), we get A = 3=4, B = 1=9, C = �4=27, D = 2=27.y = 
1e�3t + 
2te�3t + 3e�t=4 + t2=9� 4t=27 + 2=272



VII. A) From the se
ond equation, at equilibrium either x = 0 or x = 2y � 1. In the �rst
ase, y = 1. In the se
ond, y = 0 and x = �1. So there are two equilibrium points: (0; 1)and (�1; 0).B) The Ja
obian of the system isJ(x; y) = � 1 �12x� 2y + 1 �2x�At (x; y) = (0; 1), J(0; 1) = � 1 �1�1 0 � whi
h has determinant �1. So (0; 1) is a saddlepoint. At (x; y) = (�1; 0), J(�1; 0) = � 1 �1�1 2 � whi
h has tra
e 3 and determinant 1.So (0; 1) is a sour
e (sin
e D < T 2=4 and T > 0). In both 
ases, the equilbrium point ofthe non-linear system has the same type by our general theorem.VIII. A) Yes, this system is Hamiltonian, with Hamiltonian fun
tion H = exy . NoteHy = xexy = f(x; y) and �Hx = �yexy = g(x; y).B) If a system is Hamiltonian, then the linearization at ea
h 
riti
al point has 
oeÆ
ientmatrix A = � Hxy Hyy�Hxx �Hxy �(using equality of mixed partials). The sum of the diagonal entries is zero, so Tr(A) = 0.(Note: it is this fa
t that tells us that equilibrium points of Hamiltonian systems are alwayseither 
enters or saddles.)C) System 1 has a sour
e so it 
annot be Hamiltonian. System 3 has a spiral sink, so it
annot be Hamiltonian either. Only system 2 is possibly Hamiltonian.Extra Credit: See Se
tion 5.4 in Blan
hard, Devaney, and Hall. The idea is that if we havea gradient system, then by the same 
hain rule 
al
ulation we did in 
lass for Hamiltoniansystems, along a solution, ddtG(x(t); y(t)) = G2x +G2y � 0so G in
reases along solutions. This means that there 
annot be any 
losed 
urves that aresolutions. The linearization of a gradient system at an equilibrium has 
oeÆ
ient matrix:A = �Gxx GxyGxy Gyy �This is always a symmetri
 matrix, so the eigenvalues are real (by the Spe
tral Theoremfrom Linear Algebra). The equilbria 
an be saddles, sinks, or sour
es, but no \spiral"behavior is possible for gradient systems. 3


