C) Sketch the phase line for each equation, identify equilibria as sinks, sources, or neither. Then for the given initial conditions, sketch qualitative graphs of the corresponding solutions:

$$
y^{\prime}=y \cos y, y(0)=\pi, 0,5 \pi / 3
$$

Answers: Equilbrium points at $y=0$ and all solutions of $\cos (y)=0$, that is all odd integer multiples of $\pi / 2$:

$$
y=0,(2 k+1) \pi / 2, \text { all } k \in \mathbf{Z}
$$

By considering the sign of $\cos (y)$, we can see that the sources and sinks alternate:

$$
\ldots,-3 \pi / 2,0,3 \pi / 2, \ldots
$$

are sources, and

$$
\ldots,-5 \pi / 2,-\pi / 2, \pi / 2,5 \pi / 2, \ldots
$$

are sinks. (These can also be seen by using our derivative criterion: For instance, if $f(y)=y \cos (y)$, then $f^{\prime}(y)=\cos (y)-y \sin (y)$. So for instance $f^{\prime}(\pi / 2)=\cos (\pi / 2)-$ $\pi / 2 \sin (\pi / 2)=-\pi / 2<0$. Hence $y=\pi / 2$ is a sink.)

The solution with $y(0)=\pi$ decreases toward the sink at $\pi / 2$, the solution with $y(0)=0$ is the equilibrium solution $y(t)=0$ all t. The solution with $y(0)=5 \pi / 3$ increases toward the sink at $5 \pi / 2$ since the initial point lies above the source at $y=3 \pi / 2$.
D) Sketch the phase line for the ODE

$$
y^{\prime}=\frac{1}{(y-2)(y+1)}
$$

and discuss the behavior of the solution with $y(0)=1 / 2$.
Answer: The right side has vertical asymptotes at $y=2,-1$. Between the two asymptotes $1 /((y-2)(y+1))<0$, so the solution with $y(0)=1 / 2$ is decreasing.
E) Sketch the bifurcation diagram for the family of equations

$$
y^{\prime}=y(1-y)^{2}+a
$$

and describe the bifurcations that occur as a increases from $-\infty$ to $+\infty$.
With $a=0$, the graph $z=y(1-y)^{2}$ crosses the y-axis at $y=0$ and it is tangent to the y-axis at the double root $y=1$ (a local min). It is a standard cubic polynomial graph with
a local max and local min. The coefficient of y^{3} is positive, so it starts negative for $y \ll 0$ and ends positive for $y \gg 0$. The effect of the a if $a \neq 0$ is to shift this graph up or down. If $a>0$, then the double root at $y=1$ disappears and there is just one negative root. If $a<0$, then the graph shifts down. For a range of negative values $a_{0}<a<0$, there are three equilibrium points. We get a negative double root eventually at some $a_{0}<0$. Then if a is very negative $\left(a<a_{0}\right)$, the graph shifts down so far that the local max is below the y-axis. From this description you should be able to generate the bifurcation diagram.

